JPH103846A - Manufacture of impregnated negative electrode for cathode-ray tube - Google Patents

Manufacture of impregnated negative electrode for cathode-ray tube

Info

Publication number
JPH103846A
JPH103846A JP6844897A JP6844897A JPH103846A JP H103846 A JPH103846 A JP H103846A JP 6844897 A JP6844897 A JP 6844897A JP 6844897 A JP6844897 A JP 6844897A JP H103846 A JPH103846 A JP H103846A
Authority
JP
Japan
Prior art keywords
anode
positive electrode
cathode
support part
emission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6844897A
Other languages
Japanese (ja)
Inventor
Jean-Claude Pruvost
プリュヴォス ジャン−クロード
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thomson Tubes and Displays SA
Original Assignee
Thomson Tubes and Displays SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson Tubes and Displays SA filed Critical Thomson Tubes and Displays SA
Publication of JPH103846A publication Critical patent/JPH103846A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/13Solid thermionic cathodes
    • H01J1/20Cathodes heated indirectly by an electric current; Cathodes heated by electron or ion bombardment
    • H01J1/28Dispenser-type cathodes, e.g. L-cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/04Manufacture of electrodes or electrode systems of thermionic cathodes
    • H01J9/042Manufacture, activation of the emissive part
    • H01J9/047Cathodes having impregnated bodies

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Solid Thermionic Cathode (AREA)
  • Electrodes For Cathode-Ray Tubes (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve reliability with reproducibility, to secure the positioning of a positive electrode in a support part, and to aim at economical production by inserting a pure metal material between an emission positive electrode and a support part so as to facilitate the soldering. SOLUTION: A metallic transporting material 8, which is chemically neutral and with which soldering of both an emission positive electrode and a support part can be performed at a sufficiently low temperature so as to prevent the deterioration of the emission characteristic of the positive electrode, is inserted between the emission positive electrode 1 and the support part 13. A selected material has a melting point between the operating temperature of a negative electrode and the operating temperature of the metal which forms the positive electrode. The material 8 provided as a boundary between the positive electrode 1 and the support part 13 is formed into the form of a metal powder, a ribbon or a wire. Especially, the material 8 is directly coated by vacuum evaporation on the support part 13 so as to restrict the quantity of the material 8 at the minimum so as to lower the weight and dimension of the negative electrode in view of heat output. Thermal output characteristic of the negative electrode is not influenced by the thickness of the material 8, and the thickness is set at a value, which can obtain the excellent soldering characteristic between the positive electrode 1 and the support part 13.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、含浸された陰極を
製造する方法に係り、特に、電子銃を陰極線管に取り付
ける方法に関する。
The present invention relates to a method for producing an impregnated cathode, and more particularly to a method for mounting an electron gun on a cathode ray tube.

【0002】[0002]

【従来の技術】含浸された陰極は、放出材料(バリウ
ム、ストロンチウム、カルシウム、アルミニウム、セシ
ウム等)で含浸された耐熱性材料(タングステン、モリ
ブデン、レニウム等)からなる多孔性放出陽極を含む。
上記陽極は、一般的に小さい耐熱性金属ディッシュ(タ
ンタル、モリブデン等)の形をなす支持部上に配置され
る。上記陽極とディッシュのユニットは陰極の上部を形
成する。
BACKGROUND OF THE INVENTION Impregnated cathodes include a porous emission anode made of a refractory material (tungsten, molybdenum, rhenium, etc.) impregnated with an emission material (barium, strontium, calcium, aluminum, cesium, etc.).
The anode is placed on a support, typically in the form of a small heat-resistant metal dish (tantalum, molybdenum, etc.). The anode and dish unit forms the top of the cathode.

【0003】放出陽極及びその支持部は、陰極の製造の
種々の段階及び陰極線管の高い動作温度に耐えることが
できる機械的なユニットを形成するよう組み立てられ
る。更に、陽極とその支持部との接触は、陰極の性能を
保証するためできるだけ良好にするべきである。従来、
含浸された陰極の上部を作成するため種々の方法が使用
されている。一つの方法は、支持部との半田付けを容易
に行うため放出陽極の裏面に被膜を堆積することによ
る。上記被膜は、一般的にモリブデン及びレニウムの粉
末に基づいている。上記方法の主な欠点は、上記被膜が
高価であること、蒸発及び堆積の程度が高いため収容す
るのが困難であること、支持部上に堆積される量を制御
及び再現する困難さにより境界の厚さが変化しやすくな
ること、小さい寸法(2mm未満)の陰極への被覆が不
可能であること、及び、溶接を行うため被膜で覆われた
陽極の表面の調整が必要とされることである。
[0003] The emitting anode and its support are assembled to form a mechanical unit that can withstand the various stages of cathode manufacture and the high operating temperatures of the cathode ray tube. Furthermore, the contact between the anode and its support should be as good as possible to guarantee the performance of the cathode. Conventionally,
Various methods have been used to create the top of the impregnated cathode. One method is to deposit a coating on the back surface of the emission anode to facilitate soldering to the support. The coating is generally based on molybdenum and rhenium powder. The main disadvantages of the above method are that the coating is expensive, difficult to contain due to the high degree of evaporation and deposition, and difficult to control and reproduce the amount deposited on the support. That the thickness of the anode is liable to change, that the coating on the cathode having a small size (less than 2 mm) is impossible, and that the surface of the anode covered with the coating needs to be adjusted in order to perform welding. It is.

【0004】1993年6月8日にエル アール ファ
ルセ(L. R. Falce) 他に発行された米国特許第5,21
8,263号明細書に記載された第2の方法は、支持部
を部分的に覆う蓋又は断片によって支持部上の陰極の放
出陽極を塞ぐ。蓋は陽極が管内へ放出し得るよう開口を
有する。蓋は支持部と半田付けされ、陰極の上部と共に
単一の断片を形成する。上記方法の主な欠点は、上記構
造を作成する際に陰極の重量が増加し陰極の活性時間に
有害であること、陽極と陰極の残りの部分との間の低い
熱伝導率が陰極の全体的な性能に害を与えること、斜め
に又は高い自由度で陽極を組み立てる危険性があるこ
と、陰極の前面にある銃の電極と陽極の表面との間に金
属片が存在し、その片が印加された電界の構造を変形さ
せること、及び、引き続いて材料が陰極の出口で陽極の
表面に堆積して陰極からの出力を低下させることであ
る。
[0004] US Patent No. 5,211, issued June 6, 1993 to LR Falce et al.
A second method described in U.S. Pat. No. 8,263 is to plug the emission anode of the cathode on the support with a lid or a piece that partially covers the support. The lid has an opening to allow the anode to discharge into the tube. The lid is soldered to the support and forms a single piece with the top of the cathode. The main disadvantages of the above method are that the weight of the cathode increases when creating the above structure and is detrimental to the activation time of the cathode, and the low thermal conductivity between the anode and the rest of the cathode reduces the overall The risk of assembling the anode obliquely or with a high degree of freedom, the presence of metal fragments between the gun electrode in front of the cathode and the surface of the anode, Deforming the structure of the applied electric field and subsequently depositing material on the surface of the anode at the exit of the cathode, reducing the output from the cathode.

【0005】1992年12月15日にケー エス リ
ー(K. S. Lee) に発行された米国特許第5,171,1
80号明細書に開示された第3の方法は、陽極をその支
持部上に半田付けをすることなく直接的に組み立て、次
に、結合を形成するため、陽極中に含有された放出物が
支持部と化学反応を生じるように、部品の組立体を高温
の水素炉内で処理することからなる。上記方法の主な欠
点は、陽極中に含有された放出材料が支持部との結合が
形成され得るよう損失し、陰極の使用期間を短縮させる
こと、水素炉内の処理には多数の小さい寸法の部品の山
だけが必要とされること、陽極の正確な位置決めは、炉
内の処理の間、或いは、化学反応中の位置決めの際に生
じる動きによって保証されないこと、位置決めの安定性
が使用中の陽極に対し保証されないこと、及び、生成物
が剥離する可能性があることである。
[0005] US Pat. No. 5,171,1 issued to KS Lee on December 15, 1992
No. 80 discloses a third method of assembling the anode directly on its support without soldering, and then forming the bond by removing the emissions contained in the anode. Processing the assembly of parts in a high temperature hydrogen furnace to cause a chemical reaction with the support. The main drawbacks of the above method are that the emission material contained in the anode is lost so that a bond with the support can be formed, shortening the service life of the cathode, a large number of small dimensions for processing in a hydrogen furnace That only a pile of parts are required, that the exact positioning of the anode is not guaranteed by the movements that occur during processing in the furnace or during chemical reactions, and that the positioning stability is in use. Is not guaranteed for the positive electrode, and the product may be exfoliated.

【0006】1992年7月2日にジェー チョイ(J.
Choi) に発行された米国特許第5,128,584号明
細書に開示された第4の方法は、接合されるべき両方の
表面を粗くする予備的な処理と共に、陰極陽極を支持部
と直接に半田付けすることからなる。半田付けは電気抵
抗により行われ、両方の構成部品の間に良好な接点を形
成することにより容易に行われる。上記方法の最大の欠
点は、耐熱性材料を半田付けするため必要な電力が、陽
極に含有された放出物を部分的に変成又は破壊する著し
い温度上昇を生じさせること、陰極を電子銃に組み付け
る際に、弱く、脆いままの状態であるので半田が脆弱で
あること、半田を形成するため粗くされた陽極の面を調
整する必要があること、及び、小さい寸法(2mm未
満)の陽極の表面の調整が困難であることである。
[0006] On July 2, 1992, J. Choi
A fourth method, disclosed in US Pat. No. 5,128,584, issued to Choi), uses a preliminary treatment to roughen both surfaces to be joined, with the cathode anode being directly connected to the support. To be soldered. Soldering is done by electrical resistance and is easily done by forming a good contact between both components. The biggest drawback of the above method is that the power required to solder the refractory material causes a significant temperature rise that partially modifies or destroys the emissions contained in the anode, assembling the cathode into the electron gun At this time, the solder is weak because it remains weak and brittle, it is necessary to adjust the surface of the anode which is roughened to form the solder, and the surface of the anode having a small size (less than 2 mm) Is difficult to adjust.

【0007】[0007]

【発明が解決しようとする課題】従って、含浸された陰
極を製造する方法、より詳細には、上記従来技術の欠点
が解決され、高信頼性かつ再現可能であり陽極の支持部
への位置決めを保証すると同時に、容易に実施され、経
済的であり、並びに、陽極の放射率に対する影響は中性
である放出陽極の支持部への組み付け方法が要求され
る。
Accordingly, a method for producing an impregnated cathode, and more particularly, the disadvantages of the prior art described above, have been solved, and a highly reliable and reproducible positioning of the anode on the support is provided. A method is required to assemble the emitting anode to the support that is easy to implement and economical, while at the same time ensuring a positive effect on the emissivity of the anode.

【0008】[0008]

【課題を解決するための手段】本発明による含浸された
陰極を製造する方法は、耐熱性材料からなる多孔性放出
陽極を耐熱性材料からなる支持部の内側に半田付けする
段階からなり、半田付けを容易に行うため、純粋な金属
材料が放出陽極とその支持部との間に設けられている。
特に、本発明の有利な実施形態において、輸送材料は放
出陽極とその支持部との間に設けられた薄い金属タブで
ある。
SUMMARY OF THE INVENTION A method of manufacturing an impregnated cathode according to the present invention comprises the steps of soldering a porous emission anode made of a refractory material inside a support made of a refractory material. Pure metal material is provided between the emitting anode and its support for easy attachment.
In particular, in an advantageous embodiment of the invention, the transport material is a thin metal tab provided between the emitting anode and its support.

【0009】[0009]

【発明の実施の形態】図1に示されるように、含浸され
た陰極は、一般的に円筒状本体2を含み、その円筒状本
体2の端は放出陽極1を構成する陰極の上部である。多
くの場合に放出陽極1は、大抵タンタル又はモリブデン
からなる支持部13上に設けられ、基本の材料としてタ
ングステンを含有する。本体2の内側には加熱素子5が
挿入される。円筒部4は、陰極の外側裾部を形成し、組
立体の熱効率を高めるため、加熱素子5により生成され
た熱の損失を防止する熱保護部として機能する。陰極の
本体2は、例えば、図2に示されたような位置6で本体
2と半田付けされ、かつ、外側裾部4に半田付けされた
細長い片3により保護部の内側の位置に維持される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As shown in FIG. 1, an impregnated cathode generally comprises a cylindrical body 2, the end of which is the top of the cathode constituting the emission anode 1. . In many cases, the emission anode 1 is provided on a support 13 which is mostly made of tantalum or molybdenum and contains tungsten as a basic material. The heating element 5 is inserted inside the main body 2. The cylindrical portion 4 forms an outer skirt portion of the cathode and functions as a thermal protection portion for preventing a loss of heat generated by the heating element 5 in order to increase a thermal efficiency of the assembly. The cathode body 2 is for example soldered to the body 2 at a position 6 as shown in FIG. 2 and maintained in a position inside the protective part by a strip 3 soldered to an outer skirt 4. You.

【0010】陰極の種々の素子の組立に関する困難な問
題の一つは、陽極1のその支持部13への接続である。
この接続は、1200°Cを超える高い動作温度で、機
械的に強固であり、優れた熱伝導を与え、陽極の放出特
性に向けて中性であることが必要とされる。放出中の安
定性、使用期間、アーク時間、及び放出閾値の安定性の
パラメータは、本質的に残りの陰極構造体に対する陽極
の機械的強度に依存する。
One of the difficult problems associated with the assembly of the various components of the cathode is the connection of the anode 1 to its support 13.
This connection is required to be mechanically strong at high operating temperatures above 1200 ° C., to provide good thermal conduction and to be neutral towards the emission characteristics of the anode. The parameters of stability during discharge, duration of use, arc time, and stability of the discharge threshold depend essentially on the mechanical strength of the anode relative to the rest of the cathode structure.

【0011】放出陽極及びその支持部は耐熱性材料から
なるので、半田付けにより両方の構成部品の直接的な接
続を行うことは非常に難しい。従来技術に示された多数
の解決法では、陰極線管の主要部品を大量生産するため
に必要な再現特性を備えた、簡単、高信頼性、並びに安
価な方策が与えられない。加熱素子5と陽極との間の熱
伝導を最適化することが可能である優れた接触を、耐熱
性金属支持部13と放出陽極1との間に得るため、陽極
の多孔性を破壊することなく、並びに、放出特性を変え
ることなく、一体的に半田付けすることにより材料を接
合することが必要である。このため、非常に高い温度の
半田付けは禁止される。
Since the emission anode and its support are made of a heat-resistant material, it is very difficult to make a direct connection between both components by soldering. Many solutions presented in the prior art do not provide a simple, reliable and inexpensive solution with the reproducibility required for mass production of the main components of a cathode ray tube. Destroying the porosity of the anode in order to obtain a good contact between the refractory metal support 13 and the emitting anode 1 which makes it possible to optimize the heat transfer between the heating element 5 and the anode; It is necessary to join the materials by soldering them together without changing the emission characteristics. For this reason, very high temperature soldering is prohibited.

【0012】図2に示されるように、本発明は、放出陽
極1とその支持部13との間に、化学的に中性であり、
かつ、陽極の放出特性を劣化させないように十分に低い
温度で両方の構成部品の半田付けが行える金属性輸送材
料8を挿入することを提案する。このため、選定された
材料は、陰極の動作温度と、陽極を構成する金属の動作
温度の間に融点を有することが必要である。
As shown in FIG. 2, the present invention provides a method for chemically neutralizing between the emission anode 1 and its support 13,
It is also proposed to insert a metallic transport material 8 that allows both components to be soldered at a sufficiently low temperature so as not to degrade the emission characteristics of the anode. For this reason, it is necessary that the selected material has a melting point between the operating temperature of the cathode and the operating temperature of the metal forming the anode.

【0013】陽極とその支持部との間の境界として設け
られた輸送材料は、金属粉末、平たいリボン、又は、線
材の形をなす。特に、熱出力の理由から、陰極の重量及
び/又は寸法を低減させるべく輸送材料の量を最小限に
抑えることが必要であるため、本発明の有利な一実施例
によれば、輸送材料は真空蒸着により支持部13上に直
接被覆される。この方法によれば、材料8の層の厚さ
は、好ましくは1乃至25ミクロンに制御される。この
厚さは、陰極の熱出力特性に影響を与えることなく、放
出陽極1と支持部13との間に良好な半田可能性が得ら
れる厚さである。
The transport material provided as a boundary between the anode and its support is in the form of a metal powder, a flat ribbon or a wire. According to an advantageous embodiment of the invention, the transport material is, according to an advantageous embodiment of the invention, in particular, because for heat output reasons it is necessary to minimize the amount of transport material in order to reduce the weight and / or size of the cathode. It is directly coated on the support 13 by vacuum evaporation. According to this method, the thickness of the layer of material 8 is preferably controlled between 1 and 25 microns. This thickness is such that good solderability can be obtained between the emission anode 1 and the support 13 without affecting the heat output characteristics of the cathode.

【0014】[0014]

【実施例】本発明の他の好ましい実施例によれば、輸送
材料は、厚さが1乃至25ミクロンの範囲で選択された
薄い金属タブの形をなす。タブは、輸送材料の重量を低
下させるため、支持部13と陽極1との間の全接触面を
占有しないよう切断される点が有利である。しかし、陽
極とその支持部との間で高信頼性の半田付けを行うため
には、半田付けされるべき構成部品の小さい寸法を考慮
して、輸送材料で覆われる表面は十分な大きさが必要で
ある。一般的に丸みを帯びた形状の陽極面の表面積の
0.4乃至0.7倍の範囲のタブ表面積は、優れた信頼
性の条件下で構成部品の半田付けを保証し得ることが実
験によって示された。
According to another preferred embodiment of the present invention, the transport material is in the form of a thin metal tab selected with a thickness in the range of 1 to 25 microns. Advantageously, the tab is cut so as not to occupy the entire contact surface between the support 13 and the anode 1 in order to reduce the weight of the transport material. However, for reliable soldering between the anode and its support, the surface covered with the transport material must be large enough, taking into account the small dimensions of the components to be soldered. is necessary. Experiments have shown that a tab surface area in the range of 0.4 to 0.7 times the surface area of the generally rounded anode surface can assure soldering of components under conditions of excellent reliability. Indicated.

【0015】支持部13の内側を表わす図3に示されて
いるように、タブ10は、例えば、一般的にディッシュ
状の支持部13への挿入の際に自動的に中心を合わせる
のに有利である四隅が丸められた矩形状をなす。この方
法によれば、半田付け点9を陽極1の中心部に置くこと
により、陽極1の支持部13への半田付けが更に確実に
行われる。直径1.27mmの環状の円筒状放出陽極の
場合に、例えば、金属の厚さが1乃至25ミクロンの間
で選定可能である長さ1.1mm、幅0.6mmの金属
タブが選択される。
As shown in FIG. 3 showing the inside of the support 13, the tab 10 is advantageous for automatic centering, for example, upon insertion into the generally dish-like support 13. Is a rectangular shape with four rounded corners. According to this method, by placing the soldering point 9 at the center of the anode 1, the soldering of the anode 1 to the support 13 is more reliably performed. In the case of an annular cylindrical emitting anode with a diameter of 1.27 mm, for example, a metal tab with a length of 1.1 mm and a width of 0.6 mm is selected, with a metal thickness selectable between 1 and 25 microns. .

【0016】境界材料8の金属は、陽極とその支持部と
の間で良好な機械的接続を保証することが可能であると
共に、高温で化学反応を起こさないように選択される。
同様に、その融点は、陽極の放出特性を低下させないよ
うに十分に低くしなければならない。本発明を実現する
ため、純粋又は合金の形態に係わらず種々の金属が使用
され、ニッケル、クロム、バナジウム、及びレニウム
は、例えば、機械的な観点と放出陽極の放出特性に向け
た中性の観点との両方の点から優れた結果を示した。
The metal of the boundary material 8 is chosen such that it can guarantee a good mechanical connection between the anode and its support and does not undergo a chemical reaction at high temperatures.
Similarly, its melting point must be low enough not to degrade the emission characteristics of the anode. To realize the present invention, various metals, whether pure or alloyed, are used, and nickel, chromium, vanadium, and rhenium are, for example, neutral from a mechanical point of view and emission characteristics of the emission anode. Excellent results were obtained from both viewpoints.

【0017】本発明の有利な一実施例によれば、純粋な
ニッケルがタブ10を作成するため選択される。この金
属は、1200°周辺の陰極の動作温度と、3410°
Cのオーダーのタングステン陽極の融点との間に145
3°Cの融点を有し、良好な熱伝導性と、タングステン
及びタンタルとの非常に良好な半田の実現可能性とを与
える。更に、ニッケルには磁性材料であり、陰極を構成
する構成部品の小さい寸法を考慮した場合に手動で行う
ことが非常に難しい電磁石によるタブのディッシュへの
自動化被覆を考慮することができるという付加的な利点
が得られる。
According to one advantageous embodiment of the present invention, pure nickel is selected to make tab 10. The metal has a cathode operating temperature of around 1200 ° and 3410 °
145 between the melting point of a tungsten anode on the order of C
It has a melting point of 3 ° C. and gives good thermal conductivity and very good solder feasibility with tungsten and tantalum. In addition, nickel is a magnetic material and has the added advantage of allowing for automated coating of the tub dish with an electromagnet that is very difficult to perform manually when considering the small dimensions of the components that make up the cathode. Advantages are obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来技術による含浸された陰極の側断面図であ
る。
FIG. 1 is a side sectional view of an impregnated cathode according to the prior art.

【図2】陰極の上部が分解図で表わされた本発明による
陰極の側面図である。
FIG. 2 is a side view of the cathode according to the present invention, in which an upper part of the cathode is shown in an exploded view.

【図3】本発明の好ましい一実施例の平面図である。FIG. 3 is a plan view of a preferred embodiment of the present invention.

【図4】本発明の好ましい一実施例の側断面図である。FIG. 4 is a side sectional view of a preferred embodiment of the present invention.

【符号の説明】 1 放出陽極 2 円筒状本体 3 細長い片 4 円筒部 5 加熱素子 6 半田付け位置 8 境界材料 9 半田付け点 10 タブ 13 支持部[Description of Signs] 1 Emission anode 2 Cylindrical body 3 Slender piece 4 Cylindrical part 5 Heating element 6 Soldering position 8 Boundary material 9 Soldering point 10 Tab 13 Supporting part

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 耐熱性材料からなる多孔性放出陽極を耐
熱性金属支持部の内側に半田付けする段階を有し、 半田付けを容易に行うため、純粋な金属材料が上記陽極
とその支持部との間に設けられている含浸された陰極を
製造する方法。
1. A step of soldering a porous emission anode made of a heat-resistant material to the inside of a heat-resistant metal support. In order to facilitate soldering, a pure metal material is used for the anode and its support. A method for producing an impregnated cathode provided between
JP6844897A 1996-03-28 1997-03-21 Manufacture of impregnated negative electrode for cathode-ray tube Pending JPH103846A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR96400659:7 1996-03-28
EP96400659A EP0798758A1 (en) 1996-03-28 1996-03-28 Method of fabricating or impregnated cathode for a cathode ray tube

Publications (1)

Publication Number Publication Date
JPH103846A true JPH103846A (en) 1998-01-06

Family

ID=8225241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6844897A Pending JPH103846A (en) 1996-03-28 1997-03-21 Manufacture of impregnated negative electrode for cathode-ray tube

Country Status (4)

Country Link
EP (1) EP0798758A1 (en)
JP (1) JPH103846A (en)
KR (1) KR970067448A (en)
CA (1) CA2200513A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106206216A (en) * 2016-08-26 2016-12-07 北京工业大学 Carbonization La2o3with Lu2o3composite mixed Mo cathode material and preparation method thereof
CN106328468A (en) * 2016-08-21 2017-01-11 北京工业大学 Preparation method of La2O3-doped Mo negative electrode material for magnetron

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1050519A (en) * 1951-01-08 1954-01-08 English Electric Valve Co Ltd Emissive Cathode Improvements for Electron Discharge Tubes
JPS62213031A (en) * 1986-03-14 1987-09-18 Hitachi Ltd Impregnated type cathode structure
JPH04141928A (en) * 1990-10-01 1992-05-15 Toshiba Corp Impregnation-type cathode structural body
JPH04322029A (en) * 1991-04-19 1992-11-12 New Japan Radio Co Ltd Impregnated type cathode and manufacture thereof
KR930007461B1 (en) * 1991-04-23 1993-08-11 주식회사 금성사 Method of making a dispenser type cathode

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106328468A (en) * 2016-08-21 2017-01-11 北京工业大学 Preparation method of La2O3-doped Mo negative electrode material for magnetron
CN106206216A (en) * 2016-08-26 2016-12-07 北京工业大学 Carbonization La2o3with Lu2o3composite mixed Mo cathode material and preparation method thereof
CN106206216B (en) * 2016-08-26 2018-04-17 北京工业大学 Be carbonized La2O3 and the composite mixed Mo cathode materials of Lu2O3 and preparation method thereof
US10388484B2 (en) 2016-08-26 2019-08-20 Beijing University Of Technology Carburized La2O3 and Lu2O3 co-doped Mo filament cathode

Also Published As

Publication number Publication date
EP0798758A1 (en) 1997-10-01
KR970067448A (en) 1997-10-13
CA2200513A1 (en) 1997-09-28

Similar Documents

Publication Publication Date Title
JP3594716B2 (en) Transmission X-ray tube
JPS5921143B2 (en) Lattice controlled electron source and its manufacturing method
WO1997044803A1 (en) Cathode body structure, electron gun body structure, grid unit for electron gun, electronic tube, heater, and method for manufacturing cathode body structure
JPH103846A (en) Manufacture of impregnated negative electrode for cathode-ray tube
US6015325A (en) Method for manufacturing transmission type X-ray tube
JPH06101299B2 (en) Method for manufacturing impregnated cathode
US4733124A (en) Cathode structure for magnetron
KR890004832B1 (en) Manufacture of cathodes leated indirectly by an electric current
EP1150334B1 (en) Electrode for discharge tube and discharge tube using it
JP2590750B2 (en) Impregnated cathode structure
JPS5925337B2 (en) Manufacturing method of electron tube grid electrode
JPS58198819A (en) Cathode ray tube manufacturing method
US6762544B2 (en) Metal cathode for electron tube
JP3137406B2 (en) Manufacturing method of cathode assembly
KR100418027B1 (en) A Cathode for Electron Tube
JPH09115424A (en) Cathode body structure for cathode-ray tube
JPS62217525A (en) Impregnated cathode
JP3727519B2 (en) Sleeve for hot cathode assembly and method for manufacturing the same
JPS6298537A (en) Magnetron for microwave oven
KR920004897B1 (en) Impregnated type dispensor cathode and manufacturing method the same
JPS6347100B2 (en)
KR900005803B1 (en) Rounding insulating fixing method of cathode instructure
MXPA97002300A (en) A method to fabricate an impregnated cathode for a cathodic ray tube
JPH04322029A (en) Impregnated type cathode and manufacture thereof
JPS62145621A (en) Impregnated cathode