JPH10330385A - Disproportionation of organosilanes - Google Patents

Disproportionation of organosilanes

Info

Publication number
JPH10330385A
JPH10330385A JP14150097A JP14150097A JPH10330385A JP H10330385 A JPH10330385 A JP H10330385A JP 14150097 A JP14150097 A JP 14150097A JP 14150097 A JP14150097 A JP 14150097A JP H10330385 A JPH10330385 A JP H10330385A
Authority
JP
Japan
Prior art keywords
metal hydroxide
disproportionation
metal
reaction
represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14150097A
Other languages
Japanese (ja)
Inventor
Takeshi Yasutake
剛 安武
Shinji Miyata
慎治 宮田
Maki Hoshikawa
真樹 星川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP14150097A priority Critical patent/JPH10330385A/en
Publication of JPH10330385A publication Critical patent/JPH10330385A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method capable of industrially inexpensively producing an organosilane having hydrogen number larger than that of a monosilane or raw material silane as a result by subjecting the organosilane to disproportionation reaction by using a more inexpensive catalyst having high activity. SOLUTION: In a method for subjecting an organosilane having at least one or more Si-H bonds and represented by the formula; Hn Si(OR)4-n [(n) is 1, 2 or 3 and R is an alkyl group or an aryl group] to disproportionation reaction by bringing the organosilane into contact with a metal hydroxide represented by the formula; MOH or M(OH)2 [M is an alkali metal or an alkali earth metal], an operation for removing water content previously contained in a metal hydroxide is carried out and then used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、一般式HRSi
(OR)4−nで表される水素数1から3の有機シラン
類を不均化して、モノシランもしくは原料シラン類より
も水素数の多い有機シラン類を製造する方法に関する。
より詳しくは、一般式HRSi(OR) 4−nで表さ
れる水素数1から3の有機シラン類を不均化して、安価
にかつ容易にモノシランもしくは原料シラン類よりも水
素数の多い有機シラン類を製造する方法に関する。
The present invention relates to a compound represented by the general formula HnRSi
(OR)4-nOrganic silane having 1 to 3 hydrogen atoms represented by
Disproportionate to monosilane or raw material silanes
Also relates to a method for producing an organosilane having a large number of hydrogen atoms.
More specifically, the general formula HnRSi (OR) 4-nRepresented by
Disproportionate organic silanes with 1 to 3 hydrogen atoms
More easily and more easily than monosilane or raw material silanes
The present invention relates to a method for producing organosilanes having many prime numbers.

【0002】[0002]

【従来の技術】モノシランガスは、多結晶シリコンや単
結晶シリコン、アモルファスシリコン、絶縁膜(シリ
カ)等の原料として、半導体基盤、太陽電池、シリコン
エピタキシャル膜、ファインセラミックス等に広く応用
されている。特に近年の半導体産業の著しい成長に伴っ
て、その需要も急激な伸びを示しており、これからも更
に安価にかつ大量に製造する方法の開発が望まれてい
る。また水素数の多い有機シラン類についても、近年半
導体の絶縁膜や封止剤用途として注目され始めている。
2. Description of the Related Art Monosilane gas has been widely applied to semiconductor substrates, solar cells, silicon epitaxial films, fine ceramics, etc. as a raw material for polycrystalline silicon, single crystal silicon, amorphous silicon, insulating films (silica) and the like. In particular, with the remarkable growth of the semiconductor industry in recent years, the demand has been rapidly increasing, and it is desired to develop a method for manufacturing the semiconductor device at a lower cost and in a larger quantity. In addition, organic silanes having a large number of hydrogens have recently been receiving attention as applications for semiconductor insulating films and sealants.

【0003】先に挙げたモノシランガスの工業的製造方
法としては、 1)マグネシウムシリサイドと塩酸を反応させる方法 反応式例:MgSi+4HCl→SiH+2MgCl・・・[1] 2)四塩化硅素と金属水素化物とを反応させる方法 反応式例:SiCl+4LiH→SiH+4LiCl ・・・[2] 3)クロロシランを不均化反応させる方法 反応式例:4HSiCl→SiH+3SiCl ・・・[3] が挙げられる。
The above-mentioned industrial methods for producing monosilane gas include: 1) a method of reacting magnesium silicide with hydrochloric acid. Reaction formula example: Mg 2 Si + 4HCl → SiH 4 + 2MgCl 2 ... [1] 2) Silicon tetrachloride Method for reacting with metal hydride Example of reaction formula: SiCl 4 + 4LiH → SiH 4 + 4LiCl... [2] 3) Method for disproportionation reaction of chlorosilane Reaction example of reaction: 4HSiCl 3 → SiH 4 + 3SiCl 4 . 3].

【0004】これらの方法の問題点を具体的にすると、
何れの方法も腐食性の高いガス、即ち塩酸や大気中の水
分とも容易に反応して塩酸を生成するクロロシランが介
在する方法であり、高級材質の機器、機材を使用する必
要があるため経済的に不利であるという点に加え、1)
の方法に関しては、ジシランやトリシランのような高級
シランを副成するためモノシランの収率が低下する点、
及び原料の金属マグネシウムが高価であるため経済的で
はなく、副生成物のMgClの処理費も発生する点、
2)の方法に関しては、比較的容易に高純度のモノシラ
ンが得られる反面、原料の水素化リチウムが極めて高価
であり経済的に問題がある点、3)の方法では、安価に
モノシランを得ることができるが、トリクロロシランと
他のクロロシランの反応平衡上、モノシランの生成率が
低いため、工業的生産のためには巨大な設備を要すると
いう点が挙げられる。
[0004] Specifically, the problems of these methods are as follows.
Both methods involve a highly corrosive gas, that is, chlorosilane, which easily reacts with hydrochloric acid and atmospheric moisture to generate hydrochloric acid, and is economical because it requires the use of high-grade equipment and equipment. In addition to the disadvantages of
With regard to the method, the yield of monosilane is reduced due to by-products of higher silanes such as disilane and trisilane,
And the fact that the raw material metallic magnesium is expensive, so it is not economical, and the processing cost of the by-product MgCl 2 is also generated,
In the method 2), high-purity monosilane can be obtained relatively easily, but on the other hand, the raw material lithium hydride is extremely expensive, which is economically problematic. However, due to the low equilibrium rate of monosilane due to the reaction equilibrium between trichlorosilane and other chlorosilanes, a large facility is required for industrial production.

【0005】これらに対し腐食性の低い原料から比較的
安価にモノシランを製造する方法として、一般式H
i(OR)4−nで表されるシラン類を不均化反応せし
め、モノシランを製造する方法が注目されている。反応
の例としては、例えば特公昭51−20440号公報に
記載の如き、トリエトキシシランの不均化反応がある
([4]式)。
[0005] On the other hand, as a method of producing monosilane relatively inexpensively from raw materials having low corrosivity, a general formula H n S
A method of producing monosilane by disproportionating a silane represented by i (OR) 4-n has been attracting attention. As an example of the reaction, there is a disproportionation reaction of triethoxysilane as described in JP-B-51-20440 (formula [4]).

【0006】 4HSi(OC→SiH+3Si(OC ・・[4] トリエトキシシランを始め、一般式HSi(OR)
4−nで表される有機シラン類は、古くは特公昭37−
17967号公報から、特公昭51−1692号公報、
特公昭63−3869号公報、その他多数の特許やジャ
ーナル等に記載の如く、触媒や溶媒の存在下、金属硅素
と該当するアルコールの反応で容易に製造することがで
きる。
4HSi (OC 2 H 5 ) 3 → SiH 4 + 3Si (OC 2 H 5 ) 4 .. [4] Starting with triethoxysilane, the general formula H n Si (OR)
The organic silanes represented by 4-n have been used for a long time.
No. 17967, Japanese Patent Publication No. 51-1692,
As described in JP-B-63-3869, a number of other patents and journals, etc., it can be easily produced by reacting metal silicon with a corresponding alcohol in the presence of a catalyst or a solvent.

【0007】これらの有機シラン類を原料とする方法で
は、漏洩時の対策や環境問題等に十分な対応を必要とす
ることは当然であるが、クロロシランと比較して極端に
腐食性が低く、炭素鋼でも十分に使用に耐えるため経済
的に有利である。また、先述のクロロシランの不均化反
応とは異なり、反応でモノシランを容易に生成できるた
め装置規模的にも有利である。このため、有機シラン類
からモノシランを合理的に得るための触媒や反応様式の
検討が広くなされている。
[0007] In the method using these organic silanes as raw materials, it is natural that it is necessary to take measures against leakage and to sufficiently cope with environmental problems. However, the method has extremely low corrosiveness as compared with chlorosilane. Even carbon steel is economically advantageous because it can sufficiently withstand use. Further, unlike the above-described disproportionation reaction of chlorosilane, monosilane can be easily generated by the reaction, which is advantageous in terms of the apparatus scale. For this reason, studies on catalysts and reaction modes for obtaining monosilane rationally from organic silanes have been widely conducted.

【0008】[0008]

【発明が解決しようとする課題】一般式HSi(O
R)4−nで表される有機シラン類を不均化反応せしめ
る際の触媒は、塩基触媒が有利である。しかし反応機構
の解明は未だ不十分であり、これまでさまざまな観点か
ら活性の高い触媒の開発が進められてきた。
The general formula H n Si (O
R) A base catalyst is advantageous as a catalyst for disproportionating the organosilane represented by 4-n . However, the elucidation of the reaction mechanism is still insufficient, and the development of highly active catalysts has been promoted from various viewpoints.

【0009】例えば、特公昭51−20040号公報で
は金属アルコラート触媒を使用する方法、特公平6−8
8769号公報では、コバルト、ニッケル、白金族の金
属またはその化合物を使用する方法、特公平6−887
70号公報では、陰イオン交換樹脂を使用する方法、特
開昭63−195107号公報、特公平8−29926
号、特公平8−29927号では、第3〜6周期に属す
る金属の酸化物を使用して気相で反応させる方法が開示
されている。これらの触媒を使用することにより、一般
式HSi(OR)4−nで表される有機シラン類を不
均化反応せしめ、モノシランもしくは原料シラン類より
も水素数の多い有機シラン類を製造することができる。
For example, Japanese Patent Publication No. Sho 51-20040 discloses a method using a metal alcoholate catalyst.
No. 8769 discloses a method using cobalt, nickel, platinum group metals or compounds thereof, and Japanese Patent Publication No. 6-887.
No. 70 discloses a method using an anion exchange resin, Japanese Patent Application Laid-Open No. 63-195107, and Japanese Patent Publication No. 8-29926.
Japanese Patent Publication No. Hei 8-29927 discloses a method in which an oxide of a metal belonging to the third to sixth cycles is used to cause a reaction in a gas phase. The use of these catalysts, the general formula H n Si (OR) 4- n in organic silanes was allowed disproportionation reaction represented, often organic silanes of the number of hydrogen than monosilane or raw silanes prepared can do.

【0010】しかしながら、金属アルコラートや陰イオ
ン交換樹脂は高価であり、反応活性や触媒寿命によって
は安価に目的生成物を製造することができない。また、
熱的にも十分ではなく、反応の条件が狭くなるという問
題点もあった。
However, metal alcoholates and anion exchange resins are expensive, and the desired products cannot be produced at low cost depending on the reaction activity and catalyst life. Also,
There is also a problem that the thermal conditions are not sufficient, and the reaction conditions are narrowed.

【0011】本発明は、より安価でかつ活性の高い触媒
を使用して一般式HSi(OR) 4−nで表される有
機シラン類を不均化反応せしめ、結果として工業的に安
価にモノシランもしくは原料シラン類よりも水素数の多
い有機シラン類を製造することができる方法を提供する
ことにある。
The present invention provides a less expensive and more active catalyst.
Using the general formula HnSi (OR) 4-nYes represented by
Silanes disproportionate, resulting in industrially cheap
Has a higher hydrogen number than monosilane or raw material silanes.
To provide a method for producing organic silanes
It is in.

【0012】[0012]

【課題を解決するための手段】本発明者らは、安価な強
塩基として金属水酸化物に着目し研究を行うこととし
た。水酸化ナトリウムや水酸化カリウムは過去にわずか
に提案された例がある程度で、活性が低いとされてお
り、現在工業的に有機シラン類の不均化触媒として使用
されてはいない。しかしながら、本発明者らが金属水酸
化物を有機シラン類の不均化触媒として使用するべく鋭
意検討を行ったところ、新たなる知見を得ることができ
た。
Means for Solving the Problems The present inventors have focused on metal hydroxides as inexpensive strong bases and conducted research. Sodium hydroxide and potassium hydroxide have been proposed to some extent in the past and are considered to have low activity, and are not currently industrially used as disproportionation catalysts for organosilanes. However, the present inventors have conducted intensive studies to use metal hydroxide as a catalyst for disproportionation of organic silanes, and have obtained new findings.

【0013】金属水酸化物をそのまま触媒として使用
し、有機シラン類と接触させた場合は確かに触媒活性が
低く、収率よくモノシランもしくは原料シラン類よりも
水素数の多い有機シラン類を製造することができず、ま
た長時間の実験を行うと装置が閉塞してしまうという現
象が起こる。
When a metal hydroxide is used as it is as a catalyst and is brought into contact with an organic silane, the catalytic activity is certainly low, and an organic silane having a higher number of hydrogen atoms than the monosilane or the starting silane is produced with a high yield. Cannot be performed, and when the experiment is performed for a long time, a phenomenon occurs in which the device is blocked.

【0014】しかしこの現象に関して更に検討を進めた
ところ、この原因は金属水酸化物中に不可避的に含まれ
ている水分によるものであることを明らかにし、予めこ
の水分を除去する操作を施せば、触媒活性を高く維持す
ることができ、収率よくモノシランもしくは原料シラン
類よりも水素数の多い有機シラン類を製造できることを
見出し本発明を完成するに至ったのである。
However, when this phenomenon was further studied, it was clarified that the cause was caused by moisture unavoidably contained in the metal hydroxide, and if an operation for removing this moisture was performed in advance, The present inventors have found that the catalyst activity can be kept high and that organic silanes having a larger number of hydrogen atoms than monosilane or raw material silanes can be produced in good yield, and the present invention has been completed.

【0015】即ち、本発明は一般式HSi(OR)
4−n[式中nは1、2または3であり、Rはアルキル
基もしくはアリール基を示す]で表される少なくとも1
個以上のSi−H結合を有する有機シラン類を、一般式
MOH、またはM(OH)[式中Mは、アルカリ金
属もしくはアルカリ土類金属を示す]で表される金属水
酸化物と接触して不均化せしめる方法に於いて、予め金
属水酸化物中に含まれる水分を除去する操作を施した後
使用することを特徴とする有機シラン類の不均化方法に
関する。
That is, the present invention relates to the general formula H n Si (OR)
4-n wherein n is 1, 2 or 3, and R represents an alkyl group or an aryl group.
Contacting an organosilane having at least one Si—H bond with a metal hydroxide represented by the general formula: MOH or M (OH) 2 [where M represents an alkali metal or an alkaline earth metal] The present invention relates to a method for disproportionation of organosilanes, which is performed after an operation of removing water contained in a metal hydroxide in advance and then used.

【0016】[0016]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明で使用する不均化原料は一般式HSi(OR)
4−nで表される少なくとも1個以上のSi−H結合を
有する有機シラン類である。ここに、式中nは1、2ま
たは3であり、Rはアルキル基もしくはアリール基を示
す。具体的にはトリメトキシシラン[HSi(OC
]、ジメトキシシラン[HSi(OCH
]、トリエトキシシラン[HSi(OC
]、ジエトキシシラン[HSi(OC
]、トリフェノキシシラン[HSi(OC
]、ジフェノキシシラン[HSi(OC
]等が挙げられるが、もちろんこれらに限定さ
れるものではない。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
Disproportionation raw materials used in the present invention have the general formula H n Si (OR)
Organic silanes having at least one or more Si-H bond represented by 4-n . Here, in the formula, n is 1, 2 or 3, and R represents an alkyl group or an aryl group. Specifically, trimethoxysilane [HSi (OC
H 3 ) 3 ], dimethoxysilane [H 2 Si (OCH 3 )
2 ], triethoxysilane [HSi (OC
2 H 5 ) 3 ], diethoxysilane [H 2 Si (OC 2 H
5 ) 2 ], triphenoxysilane [HSi (OC
6 H 5 ) 3 ], diphenoxysilane [H 2 Si (OC 6
H 5 ) 2 ] and the like, but are not limited thereto.

【0017】また触媒としては一般式MOH、またはM
(OH)で表される金属水酸化物を使用する。ここ
に、式中Mは、アルカリ金属もしくはアルカリ土類金属
を示す。具体的には、LiOH、NaOH、KOH、M
g(OH)、Ca(OH)、Ba(OH)等が挙
げられるが、安価な触媒を使用するという点では、Na
OH、KOH、Ca(OH)等を使用することが好ま
しい。
The catalyst is represented by the general formula MOH or M
A metal hydroxide represented by (OH) 2 is used. Here, M represents an alkali metal or an alkaline earth metal. Specifically, LiOH, NaOH, KOH, M
g (OH) 2 , Ca (OH) 2 , Ba (OH) 2, and the like.
It is preferable to use OH, KOH, Ca (OH) 2 or the like.

【0018】反応は、有機シラン類を金属水酸化物と接
触せしめる操作である。例えば、固定層形式即ち、固体
の金属水酸化物を充填した層中に液体もしくは気体の原
料有機シラン類を流通する方式や、槽型形式即ち、液状
の分散媒に金属水酸化物を分散せしめた液中に、原料有
機シラン類を供給する方式等広く採用することができ、
特に反応型式に制限されるわけではない。従って、反応
温度や圧力、滞留時間、溶媒種類等も特に限定されるも
のではなく、目的に応じて自由に条件を選択することが
できる。
The reaction is an operation of bringing an organosilane into contact with a metal hydroxide. For example, a fixed layer type, that is, a method in which liquid or gaseous organic silanes are circulated in a layer filled with solid metal hydroxide, or a tank type, that is, metal hydroxide is dispersed in a liquid dispersion medium. Can be widely adopted such as a method of supplying raw material organic silanes in
It is not particularly limited to the reaction type. Therefore, the reaction temperature, pressure, residence time, type of solvent, and the like are not particularly limited, and conditions can be freely selected according to the purpose.

【0019】本発明では、触媒として使用する金属水酸
化物は、予め含まれる水分を除去する操作を施す。一般
に金属水酸化物中には特級試薬のグレードでも数%〜十
数%の水分を含んでいる。従って、この操作を行わない
まま金属水酸化物を有機シラン類の不均化触媒として使
用すると、元来含まれる水分によって原料有機シラン類
もしくはモノシラン等の反応生成物が分解してシリカを
生成するため、見かけ上高い収率で目的生成物を得るこ
とができない。また詳細は明らかではないが、生成した
シリカが金属水酸化物表面に付着することで活性点が失
われることも金属水酸化物の触媒活性の低い原因の1つ
のようである。
In the present invention, the metal hydroxide used as a catalyst is subjected to an operation for removing moisture contained in advance. Generally, even a grade of a special grade reagent contains several percent to several tens percent of water in a metal hydroxide. Therefore, if a metal hydroxide is used as a disproportionation catalyst for organic silanes without performing this operation, reaction products such as raw material organic silanes or monosilane are decomposed by moisture originally contained to produce silica. Therefore, the target product cannot be obtained with an apparently high yield. Although the details are not clear, the loss of the active site due to the generated silica adhering to the surface of the metal hydroxide seems to be one of the causes of the low catalytic activity of the metal hydroxide.

【0020】以下、予め金属水酸化物中に含まれる水分
を、有機シラン類の不均化に影響がなくなる程度除去す
る方法について具体的に開示する。 1)単純に加熱する方法 単に水の沸点、即ち100℃以上で加熱しても目的は達
成されない。金属水酸化物中の水分を除くためには、2
00℃以上で10分以上好ましくは30分以上加熱する
ことが必要である。その際の雰囲気は特に限定されない
が、乾燥空気や乾燥窒素を使用する方が効果が高いこと
は言うまでもない。
Hereinafter, a method for removing water contained in the metal hydroxide in advance so as not to affect the disproportionation of the organosilane will be specifically disclosed. 1) Simple heating method Simply heating at the boiling point of water, that is, 100 ° C. or higher, does not achieve the object. To remove moisture in metal hydroxide, 2
It is necessary to heat at 00 ° C. or more for 10 minutes or more, preferably 30 minutes or more. The atmosphere at that time is not particularly limited, but it goes without saying that the use of dry air or dry nitrogen is more effective.

【0021】2)水と最低共沸物を形成する有機溶媒に
金属水酸化物を分散した後、乾燥する方法 金属水酸化物を有機溶媒中に分散させ、数十分から数時
間攪拌を行う。この際必ずしも金属水酸化物が有機溶媒
に溶解する必要はない。乾燥とは、加熱により有機溶媒
を蒸発除去する操作をいう。例えば金属水酸化物が有機
溶媒に溶解しない場合は濾過後、乾燥気流中で加熱する
方法、溶解する場合はやはり乾燥気流雰囲気下で乾固す
る方法が挙げられ、その課程において水も最低共沸物と
して除去される。水と最低共沸物を形成する有機溶媒と
しては、エタノールやプロパノール等のアルコール類、
ペンタン、ヘキサン等のパラフィン類、ベンゼン、トル
エン等の芳香族炭化水素等数多いが、安価なものが好ま
しいことはいうまでもなく、また水と有機物が二液相を
形成すると取扱いが難しいという理由も含め、エタノー
ル、プロパノール、ブタノールを特に好ましい有機溶媒
として挙げておく。ここにプロパノール及びブタノール
は構造異性体をも含む総称である。
2) A method of dispersing a metal hydroxide in an organic solvent that forms a minimum azeotrope with water, followed by drying The metal hydroxide is dispersed in an organic solvent, and the mixture is stirred for several tens minutes to several hours. . At this time, the metal hydroxide does not necessarily need to be dissolved in the organic solvent. Drying refers to an operation of evaporating and removing an organic solvent by heating. For example, if the metal hydroxide does not dissolve in the organic solvent, a method of heating in a dry gas stream after filtration and a method of dissolving the metal hydroxide in a dry gas stream atmosphere are also used. Removed as an object. Organic solvents that form the lowest azeotrope with water include alcohols such as ethanol and propanol,
There are many paraffins such as pentane and hexane, and aromatic hydrocarbons such as benzene and toluene.However, it is needless to say that inexpensive ones are preferable, and also because water and organic substances form a two-liquid phase, it is difficult to handle. In particular, ethanol, propanol and butanol are mentioned as particularly preferred organic solvents. Here, propanol and butanol are generic terms including structural isomers.

【0022】3)加水分解性物質と接触する方法 金属水酸化物を加水分解性物質中に分散する方法、金属
水酸化物の固定層中に加水分解性物質を流通する方法が
例として挙げられる。有機金属類は一般に加水分解性物
質であるが、取扱いが比較的容易であるという観点か
ら、一般式Mt(OR)[式中Mtは金属、mは金属
の価数を示す正数であり、Rはアルキル基もしくはアリ
ール基を示す]で表される金属アルコキサイドが好まし
い。また反応の目的からいうと、水分の除去操作後に他
種の金属が残ると不純物ともなりうるため、一般式Si
(OR)[式中Rはアルキル基もしくはアリール基を
示す]で表される有機シラン類を使用することが特に好
ましい。
3) Method of contacting with a hydrolyzable substance Examples of the method include dispersing a metal hydroxide in the hydrolyzable substance and flowing the hydrolyzable substance through a fixed layer of the metal hydroxide. . Organic metals are generally hydrolyzable substances, but from the viewpoint of relatively easy handling, the general formula Mt (OR) m [where Mt is a metal and m is a positive number indicating the valence of the metal. , R represents an alkyl group or an aryl group]. Also, from the purpose of the reaction, if another kind of metal remains after the operation of removing water, it may become an impurity.
It is particularly preferable to use an organic silane represented by (OR) 4 wherein R represents an alkyl group or an aryl group.

【0023】1)〜3)の方法共通して言えることであ
るが、NaOHやKOH等のアルカリ金属水酸化物は潮
解性を有するため、水分除去の操作後、大気と接触させ
ない等の注意が必要である。以上、金属水酸化物中の水
分を予め除去し、有機シラン類の不均化触媒として高い
活性を示す触媒を調製する方法として3つの方法を開示
した。この操作のいずれかを施した金属水酸化物を触媒
として使用すれば、有機シラン類の不均化に関して極め
て高い活性を示し、またそれを維持できるようになる。
即ち、安価にかつ収率よくモノシランもしくは原料シラ
ン類よりも水素数の多い有機シラン類を製造することが
できる。
As can be said in common with the methods 1) to 3), since alkali metal hydroxides such as NaOH and KOH have deliquescence, care must be taken not to bring them into contact with the atmosphere after the operation of removing water. is necessary. As described above, three methods have been disclosed as methods for removing water in a metal hydroxide in advance and preparing a catalyst having high activity as a catalyst for disproportionation of organosilanes. If a metal hydroxide subjected to any of these operations is used as a catalyst, it exhibits extremely high activity with respect to disproportionation of organosilanes and can maintain it.
That is, organic silanes having a larger number of hydrogen atoms than monosilane or raw material silanes can be produced inexpensively and with high yield.

【0024】[0024]

【実施例】以下、実施例により本発明を具体的に説明す
る。 実施例1 内径15mm、長さ200mmのSUS304製チュー
ブに和光純薬製特級水酸化カリウム(ア)[KOH]試
薬(ペレット)を砕いて1〜2mmの粒状にしたものを
チューブの中央部に約8cc、5.7gを充填し、上下
をシリカウール(イ)で挟んで固定層反応器1を作っ
た。固定層にはシースヒータ(ウ)を巻き、約300℃
まで昇温できるようにした。また、チューブの下部から
原料液を流通できるように、原料タンク2及びプランジ
ャポンプ3を取り付け、上部にはガス出口4と液出口5
を設け、ガスはキャリヤガスと一緒にガスクロマトグラ
フ(島津製GC−8A)6に入るように、液はサンプリ
ングができるように配管して、図1に示す如き装置を作
製した。固定層反応器1の下部から窒素ガスを50cc
/minの速度で流通しながら、KOH層の温度を21
0〜230℃に昇温後、1時間放置しKOH中の水分を
除去する操作を行った。
The present invention will be described below in detail with reference to examples. Example 1 Wako Pure Chemical's special grade potassium hydroxide (A) [KOH] reagent (pellet) was crushed into a SUS304 tube having an inner diameter of 15 mm and a length of 200 mm and formed into granules of 1 to 2 mm in the center of the tube. 8 cc and 5.7 g were filled, and the upper and lower sides were sandwiched between silica wools (a) to prepare a fixed bed reactor 1. A sheath heater (C) is wrapped around the fixed layer, about 300 ° C.
Temperature. Also, a raw material tank 2 and a plunger pump 3 are attached so that the raw material liquid can flow from the lower part of the tube, and the gas outlet 4 and the liquid outlet 5 are provided on the upper part.
The liquid was piped so that the gas could enter the gas chromatograph (GC-8A, manufactured by Shimadzu) 6 together with the carrier gas, so that an apparatus as shown in FIG. 1 was produced. 50 cc of nitrogen gas from the lower part of the fixed bed reactor 1
/ Min while flowing at a rate of 21 min / min.
After elevating the temperature to 0 to 230 ° C., the operation was left for 1 hour to remove water in KOH.

【0025】原料タンク2に東京化成製のトリメトキシ
シラン[HSi(OCH]試薬、及びテトラメト
キシシラン[Si(OCH]試薬を、重量比で3
5:65になるように混合した原料300gを仕込ん
だ。KOH層の温度を80℃に設定した後、プランジャ
ポンプ3で原料を固定層反応器1中に0.5g/min
の速度で定量供給し、トリメトキシシランの不均化反応
を行った。原料とKOHが接触すると直ちに反応が進行
してガスが発生し、これはガスクロマトグラフィー6分
析の結果、シランガスであることを確認した。また反応
器出口液はガスクロマトグラフィー分析(島津製GC−
8A)の結果、トリメトキシシランとテトラメトキシシ
ランの混合液であることを確認した。反応開始後約1時
間でほぼ定常状態に到達し、この際のガス、液それぞれ
の組成分析を行った結果、トリメトキシシランの転化率
は約85%、シランガスの生成速度は約7cc/min
であった。反応は6時間継続して行ったが、その間固定
層反応器1内の圧力上昇もなく安定して進行し、反応終
了後の計量の結果、原料の供給総重量と、回収液総重量
及び生成シランガスの換算重量の合計、いわゆる重量収
支はほぼ一致していた。また、KOH層に窒素流通下1
30℃、1時間の乾燥操作を行った後、KOHを取出し
たところ、一部飴状に融着しているのが認められたが、
外観には大きな変化はなく、また重量を測定したところ
5.4gであり、若干の重量減であった。
A trimethoxysilane [HSi (OCH 3 ) 3 ] reagent and a tetramethoxysilane [Si (OCH 3 ) 4 ] reagent manufactured by Tokyo Chemical Industry Co., Ltd.
300 g of a raw material mixed so as to give a ratio of 5:65 was charged. After setting the temperature of the KOH layer to 80 ° C., the raw material was introduced into the fixed-bed reactor 1 by the plunger pump 3 at 0.5 g / min.
, And a disproportionation reaction of trimethoxysilane was performed. Immediately upon contact between the raw material and KOH, the reaction proceeded and gas was generated. As a result of gas chromatography 6 analysis, it was confirmed that the gas was silane gas. The liquid at the outlet of the reactor was analyzed by gas chromatography (GC-
As a result of 8A), it was confirmed that the mixture was a mixture of trimethoxysilane and tetramethoxysilane. About one hour after the start of the reaction, the state almost reached a steady state. At this time, the composition of each gas and liquid was analyzed. As a result, the conversion of trimethoxysilane was about 85%, and the generation rate of silane gas was about 7 cc / min.
Met. The reaction was continued for 6 hours, during which the reaction proceeded stably without increasing the pressure in the fixed-bed reactor 1. As a result of the measurement after completion of the reaction, the total weight of the raw material supplied, the total weight of the recovered liquid, and the production The sum of the converted weights of silane gas, that is, the so-called weight balance, was almost the same. In addition, under nitrogen flow to the KOH layer,
After performing a drying operation at 30 ° C. for 1 hour, KOH was taken out.
There was no significant change in the appearance, and the weight was measured to be 5.4 g, indicating a slight weight loss.

【0026】実施例2 和光純薬製水酸化ナトリウム試薬を1〜2mmの粒状に
したもの約20gを東京化成製テトラメトキシシラン約
200ccに分散、攪拌しながら約2時間放置し、Na
OH中の水分を除去する操作を行った。操作終了後、窒
素ボックス内で濾過した後、実施例1で使用したチュー
ブに約8cc、NaOHを充填した。その後、実施例1
と同様の操作で固定層反応器を造り、また同じ条件で原
料の供給を行った。反応開始後約1時間でほぼ定常状態
に到達し、この際のガス、液それぞれの組成分析を行っ
た結果、トリメトキシシランの転化率は約88%、シラ
ンガスの生成速度は約7cc/minであった。反応は
6時間継続して行ったが、順調に進行し、反応終了後の
重量収支もほぼ一致していた。また、実施例1と同様の
乾燥操作を行った後、NaOHを取出したが、外観には
大きな変化はなかった。
Example 2 Approximately 20 g of sodium hydroxide reagent manufactured by Wako Pure Chemical in the form of granules of 1 to 2 mm was dispersed in about 200 cc of tetramethoxysilane manufactured by Tokyo Chemical Industry, and allowed to stand with stirring for about 2 hours.
An operation for removing water in OH was performed. After completion of the operation, the mixture was filtered in a nitrogen box, and then the tube used in Example 1 was filled with about 8 cc of NaOH. Then, Example 1
A fixed-bed reactor was manufactured in the same manner as described above, and the raw materials were supplied under the same conditions. About one hour after the start of the reaction, the state almost reached a steady state. At this time, the composition of each gas and liquid was analyzed. As a result, the conversion of trimethoxysilane was about 88%, and the generation rate of silane gas was about 7 cc / min. there were. The reaction was continued for 6 hours, but proceeded smoothly, and the weight balance after the reaction was almost the same. After performing the same drying operation as in Example 1, NaOH was removed, but there was no significant change in appearance.

【0027】比較例1 実施例1と同様の操作でKOH試薬5.5gを充填した
固定層反応器を造り、KOH中の水分を除去する操作を
行わないまま、実施例1と同様の条件で不均化反応を行
った。原料とKOHが接触すると直ちに反応が進行して
ガスが発生したが、ガスクロマトグラフィー分析の結
果、シランガスと共に水素ガスのピークを検出した。そ
のまま、反応を継続したが30分を経過した頃から固定
層反応器内の圧力が上昇し始め、36分の時点で圧力が
1Kg/cmGを超えたため、原料供給を停止した。
固定層反応器中の液を抜いた後、KOH層に窒素流通下
130℃、1時間の乾燥操作を行った後、KOHを取出
したところ、全体が飴状に融着しており、表面にはシリ
カらしき白色粉末が付着していた。また、閉塞箇所はK
OH層上部のシリカウールであり、シリカらしき白色粉
末を巻き込んでスポンジ状になっていた。
Comparative Example 1 A fixed-bed reactor filled with 5.5 g of a KOH reagent was produced in the same manner as in Example 1, and the same conditions as in Example 1 were used without performing the operation for removing water in KOH. A disproportionation reaction was performed. Immediately upon contact between the raw material and KOH, the reaction proceeded and gas was generated. As a result of gas chromatography analysis, a peak of hydrogen gas was detected together with silane gas. The reaction was continued as it was, but after about 30 minutes, the pressure in the fixed bed reactor began to rise, and at 36 minutes, the pressure exceeded 1 kg / cm 2 G, so the supply of the raw material was stopped.
After draining the liquid in the fixed bed reactor, the KOH layer was dried under nitrogen at 130 ° C. for 1 hour, and then KOH was taken out. Had a white powder that appeared to be silica. In addition, the blockage point is K
It was silica wool above the OH layer, and was in the form of a sponge with white powder that appeared to be silica involved.

【0028】実施例3 和光純薬製水酸化カリウム試薬を1〜2mmの粒状にし
たもの約20gを和光純薬製特級エタノール約200c
cに分散、攪拌しながら約2時間放置した後、エバポレ
ータでエタノールを乾固し、KOH中の水分を除去する
操作を行った。操作終了後、窒素ボックス内で実施例1
で使用したチューブに約8cc、5.7gのKOHを充
填した。その後、実施例1と同様の操作で固定層反応器
を造り、また同じ条件で原料の供給を行った。反応開始
後約1時間でほぼ定常状態に到達し、この際のガス、液
それぞれの組成分析を行った結果、トリメトキシシラン
の転化率は約91%、シランガスの生成速度は約7cc
/minであった。反応は6時間継続して行ったが、順
調に進行し、反応終了後の重量収支もほぼ一致してい
た。また、実施例1と同様の乾燥操作を行った後、KO
Hを取出したが、外観には大きな変化はなく、重量も
5.7gのままであった。
Example 3 Approximately 20 g of a potassium hydroxide reagent manufactured by Wako Pure Chemical in the form of granules of 1 to 2 mm was weighed to about 200 c of special grade ethanol manufactured by Wako Pure Chemical.
After dispersing and stirring for about 2 hours, ethanol was evaporated to dryness using an evaporator, and an operation of removing water in KOH was performed. After completion of the operation, Example 1 was placed in a nitrogen box.
Was filled with about 8 cc and 5.7 g of KOH. Thereafter, a fixed-bed reactor was manufactured in the same manner as in Example 1, and the raw materials were supplied under the same conditions. About one hour after the start of the reaction, the state almost reached a steady state. At this time, the composition of each gas and liquid was analyzed. As a result, the conversion of trimethoxysilane was about 91%, and the generation rate of silane gas was about 7 cc.
/ Min. The reaction was continued for 6 hours, but proceeded smoothly, and the weight balance after the reaction was almost the same. After performing the same drying operation as in Example 1, KO
H was taken out, but there was no significant change in the appearance, and the weight remained 5.7 g.

【0029】実施例4 和光純薬製水酸化カリウム試薬10gを90gの水に溶
解し、その中に住友化学社製γ−アルミナ(粒径1〜2
mm)50gを入れて常温で10時間放置、γ−アルミ
ナにKOHを含浸させた。γ−アルミナを濾別後、窒素
気流中120℃で2時間乾燥した後、約20gを実施例
2と同様の操作で、KOH中の水分を除去する操作を行
った。操作後濾別したγ−アルミナ担持KOH、約8c
cを実施例1で使用したチューブに充填し、実施例1と
同様の操作で固定層反応器を造り、また同じ条件で原料
の供給を行った。反応開始後約1時間でほぼ定常状態に
到達し、この際のガス、液それぞれの組成分析を行った
結果、トリメトキシシランの転化率は約88%、シラン
ガスの生成速度は約7cc/minであった。反応は6
時間継続して行ったが、順調に進行し、反応終了後の重
量収支もほぼ一致していた。また、実施例1と同様の乾
燥操作を行った後、KOHを取出したが、外観には大き
な変化はなかった。
Example 4 10 g of a potassium hydroxide reagent manufactured by Wako Pure Chemical was dissolved in 90 g of water, and γ-alumina manufactured by Sumitomo Chemical Co., Ltd.
mm) and left at room temperature for 10 hours to impregnate γ-alumina with KOH. After the γ-alumina was separated by filtration and dried in a nitrogen stream at 120 ° C. for 2 hours, about 20 g of water was removed from KOH in the same manner as in Example 2. Γ-alumina-supported KOH filtered after operation, about 8c
c was filled in the tube used in Example 1, a fixed-bed reactor was produced by the same operation as in Example 1, and the raw materials were supplied under the same conditions. About one hour after the start of the reaction, the state almost reached a steady state. At this time, the composition of each gas and liquid was analyzed. As a result, the conversion of trimethoxysilane was about 88%, and the generation rate of silane gas was about 7 cc / min. there were. Reaction 6
The reaction was continued for a long time, but progressed smoothly, and the weight balance after the completion of the reaction was almost the same. After performing the same drying operation as in Example 1, KOH was taken out, but there was no significant change in appearance.

【0030】比較例2 事前に水分を除去する操作を行っていないγ−アルミナ
担持KOH7.2gをチューブに充填し、後は実施例4
と同じ方法で反応を行った。反応初期に比較例1と同様
シランガスと共に水素ガスのピークを検出した。反応開
始後約2時間でほぼ定常状態に到達し、この際のガス、
液それぞれの組成分析を行った結果、トリメトキシシラ
ンの転化率は約84%、シランガスの生成速度は約7c
c/minであった。反応は6時間継続して順調に進行
したが、反応終了後、重量収支を測定、計算したところ
シランの重量換算値が理論値の83%程度であることが
わかった。実施例1と同様の乾燥操作を行った後、KO
Hを取出したが、表面にはシリカらしき白色粉末が付着
しており、重量は7.5gと若干増加していた。
Comparative Example 2 A tube was filled with 7.2 g of γ-alumina-supported KOH, which had not been subjected to an operation for removing water in advance, and then Example 4 was performed.
The reaction was performed in the same manner as described above. At the beginning of the reaction, the peak of hydrogen gas was detected together with the silane gas in the same manner as in Comparative Example 1. Approximately 2 hours after the start of the reaction, it reached a nearly steady state,
As a result of composition analysis of each liquid, the conversion of trimethoxysilane was about 84%, and the generation rate of silane gas was about 7c.
c / min. The reaction proceeded smoothly for 6 hours, but after the reaction was completed, the weight balance was measured and calculated. As a result, it was found that the silane weight conversion value was about 83% of the theoretical value. After performing the same drying operation as in Example 1, KO
Although H was taken out, a white powder like silica was adhered to the surface, and the weight was slightly increased to 7.5 g.

【0031】[0031]

【発明の効果】本発明は、予め金属水酸化物の水分を除
去する操作を施すことによって、有機シラン類の不均化
に対して極めて高い活性を示し、またそれを維持できる
ようになる。即ち、本発明の範囲外にある比較例は金属
水酸化物の全体が飴状に融着したり、表面にシリカ状の
白色粉末が付着することにより、固定層反応器内で閉塞
を起こし圧力が上昇し、長時間の反応が維持できない。
これに対し本発明の範囲内にある実施例は、これらの性
能がすべて優れている。また、本発明を実施することに
より、安価な触媒で効率よくモノシランもしくは原料シ
ラン類よりも水素数の多い有機シラン類を製造すること
ができるため、その効果は大きい。
According to the present invention, by preliminarily performing the operation of removing the water content of the metal hydroxide, the organic silane exhibits extremely high activity against disproportionation and can maintain the activity. That is, in Comparative Examples outside the scope of the present invention, the entire metal hydroxide was fused in a candy-like manner, or a silica-like white powder was adhered to the surface, causing clogging in the fixed-bed reactor and pressure. Rise, and a long-term reaction cannot be maintained.
In contrast, embodiments within the scope of the present invention have all of these performances. Further, by implementing the present invention, monosilane or an organic silane having a larger number of hydrogen atoms than the raw material silane can be efficiently produced with an inexpensive catalyst, so that the effect is large.

【0032】[0032]

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の効果を確認する装置の一例FIG. 1 shows an example of an apparatus for confirming the effects of the present invention.

【符号の説明】[Explanation of symbols]

1 固定層反応器 2 原料タンク 3 プランジャポンプ 4 ガス出口 5 液出口 6 ガスクロマトグラフィー (ア)金属水酸化物 (イ)シリカウール (ウ)シースヒーター (エ)熱電対温度計 DESCRIPTION OF SYMBOLS 1 Fixed-bed reactor 2 Raw material tank 3 Plunger pump 4 Gas outlet 5 Liquid outlet 6 Gas chromatography (A) Metal hydroxide (A) Silica wool (U) Sheath heater (D) Thermocouple thermometer

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 一般式HSi(OR)4−n[式中
nは1、2または3であり、Rはアルキル基もしくはア
リール基を示す]で表される少なくとも1個以上のSi
−H結合を有する有機シラン類を、一般式 MOH、ま
たはM(OH)[式中Mは、アルカリ金属もしくはア
ルカリ土類金属を示す]で表される金属水酸化物と接触
して不均化せしめる方法に於いて、予め金属水酸化物中
に含まれる水分を除去する操作を施した後使用すること
を特徴とする有機シラン類の不均化方法。
1. At least one Si represented by the general formula H n Si (OR) 4-n wherein n is 1, 2 or 3, and R represents an alkyl group or an aryl group.
An organosilane having an —H bond is brought into contact with a metal hydroxide represented by the general formula: MOH or M (OH) 2 [wherein M represents an alkali metal or an alkaline earth metal], resulting in unevenness. A method for disproportionation of organic silanes, which is performed after an operation of removing water contained in a metal hydroxide in advance.
【請求項2】 予め金属水酸化物中に含まれる水分を
除去する操作が、200℃以上で10分以上加熱する操
作である請求項1記載の有機シラン類の不均化方法。
2. The method for disproportionation of organosilanes according to claim 1, wherein the operation of removing moisture contained in the metal hydroxide in advance is an operation of heating at 200 ° C. or more for 10 minutes or more.
【請求項3】 予め金属水酸化物中に含まれる水分を
除去する操作が、水と最低共沸物を形成する有機溶媒に
金属水酸化物を分散した後、乾燥する操作である請求項
1記載の有機シラン類の不均化方法。
3. The operation for previously removing water contained in the metal hydroxide is an operation of dispersing the metal hydroxide in an organic solvent that forms a minimum azeotrope with water and then drying. The method for disproportionation of organosilanes according to the above.
【請求項4】 予め金属水酸化物中に含まれる水分を
除去する操作が、加水分解性物質と接触せしめる操作で
ある請求項1記載の有機シラン類の不均化方法。
4. The method for disproportionation of organosilanes according to claim 1, wherein the operation of previously removing water contained in the metal hydroxide is an operation of bringing the metal hydroxide into contact with a hydrolyzable substance.
【請求項5】 水と最低共沸物を形成する有機溶媒
が、エタノール、プロパノール、ブタノールのうちの1
種もしくは2種以上の組合わせである請求項3記載の有
機シラン類の不均化方法。
5. The organic solvent which forms the lowest azeotrope with water is one of ethanol, propanol and butanol.
4. The method for disproportionation of organosilanes according to claim 3, wherein the method is a combination of two or more species.
【請求項6】 加水分解性物質が、一般式Mt(O
R)[式中Mtは金属、mは金属の価数を示す正数で
あり、Rはアルキル基もしくはアリール基を示す]で表
される金属アルコキサイドである請求項4記載の有機シ
ラン類の不均化方法。
6. The hydrolyzable substance has a general formula Mt (O
R) m [where Mt is a metal, m is a positive number representing the valence of the metal, and R represents an alkyl group or an aryl group], and is a metal alkoxide represented by the formula: Disproportionation method.
【請求項7】 加水分解性物質が、一般式Si(O
R)[式中Rはアルキル基もしくはアリール基を示
す]で表される有機シラン類である請求項4記載の有機
シラン類の不均化方法。
7. The hydrolyzable substance represented by the general formula Si (O
The method for disproportionation of organosilanes according to claim 4, wherein the organosilanes are represented by R) 4 wherein R represents an alkyl group or an aryl group.
JP14150097A 1997-05-30 1997-05-30 Disproportionation of organosilanes Pending JPH10330385A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14150097A JPH10330385A (en) 1997-05-30 1997-05-30 Disproportionation of organosilanes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14150097A JPH10330385A (en) 1997-05-30 1997-05-30 Disproportionation of organosilanes

Publications (1)

Publication Number Publication Date
JPH10330385A true JPH10330385A (en) 1998-12-15

Family

ID=15293399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14150097A Pending JPH10330385A (en) 1997-05-30 1997-05-30 Disproportionation of organosilanes

Country Status (1)

Country Link
JP (1) JPH10330385A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000178018A (en) * 1998-12-16 2000-06-27 Jgc Corp Production of polycrystalline silicon and high purity silica
JP2000239284A (en) * 1999-02-22 2000-09-05 Nippon Unicar Co Ltd Joint production of both alkoxysilane and polysiloxane

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000178018A (en) * 1998-12-16 2000-06-27 Jgc Corp Production of polycrystalline silicon and high purity silica
JP4542209B2 (en) * 1998-12-16 2010-09-08 日揮株式会社 Method for producing polycrystalline silicon and method for producing high-purity silica
JP2000239284A (en) * 1999-02-22 2000-09-05 Nippon Unicar Co Ltd Joint production of both alkoxysilane and polysiloxane

Similar Documents

Publication Publication Date Title
US7495120B2 (en) Nanosized copper catalyst precursors for the direct synthesis of trialkoxysilanes
US20120128568A1 (en) Production of silanes from silicon alloys and alkaline earth metals or alkaline earth metal silicides
CN106946259A (en) A kind of non-crystalline silicon raw powder's production technology
US8513449B2 (en) Nanosized copper catalyst precursors for the direct synthesis of trialkoxysilanes
EP2754664B1 (en) Method for preparing trialkoxysilane
JPH10330385A (en) Disproportionation of organosilanes
CN114314596B (en) Method and system for continuously synthesizing higher-order silane by utilizing microwave heating fixed bed
KR20140093946A (en) A method for preparing a diorganodihalosilane
JP3658901B2 (en) Method for producing alkoxysilane
JP6014771B2 (en) Monosilane production method using trialkoxysilane
JPH1121288A (en) Production of alkoxysilane
JP3676515B2 (en) Method for producing silicon trichloride
JPH03218917A (en) Production of boron trichloride
JP2523123B2 (en) Silane gas manufacturing method
JP2914089B2 (en) Method for producing trialkoxysilane
JP2615798B2 (en) Method for producing monosilane
JPH11189408A (en) Production of silicon for solar battery
JP4446675B2 (en) Method for producing alkylsilane or alkylgermane
CN104610336A (en) Method for preparing silicon hydrides
CN109663602A (en) A kind of Preparation method and use of nanometer of CuCl catalyst
JPS63195107A (en) Production of silane
Kim et al. Kim et al.(45) Date of Patent: Mar. 8, 2016
JPH06312992A (en) Production of trialkoxysilane
JP2001031683A (en) Production of alkoxysilane
JPH06312994A (en) Production of trialkoxysilane