JPH03218917A - Production of boron trichloride - Google Patents

Production of boron trichloride

Info

Publication number
JPH03218917A
JPH03218917A JP27339389A JP27339389A JPH03218917A JP H03218917 A JPH03218917 A JP H03218917A JP 27339389 A JP27339389 A JP 27339389A JP 27339389 A JP27339389 A JP 27339389A JP H03218917 A JPH03218917 A JP H03218917A
Authority
JP
Japan
Prior art keywords
reaction
aluminum
trichloride
boron
vapor phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27339389A
Other languages
Japanese (ja)
Inventor
Tadahiro Omi
忠弘 大見
Masahiro Miki
三木 正博
Matagoro Maeno
前野 又五郎
Takashi Ishida
隆史 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HASHIMOTO KASEI KOGYO KK
Original Assignee
HASHIMOTO KASEI KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HASHIMOTO KASEI KOGYO KK filed Critical HASHIMOTO KASEI KOGYO KK
Priority to JP27339389A priority Critical patent/JPH03218917A/en
Publication of JPH03218917A publication Critical patent/JPH03218917A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To synthesize boron trichloride in high yield by continuously supplying aluminum trichloride and boron trichloride in a gas state to promote the reaction. CONSTITUTION:For example, an aluminum chloride generator 2 is charged with metal aluminum blocks and preheated at 200-400 deg.C with a heater 1. A vapor phase reactor 5 made of Ni, comprising a tubular hollow tower is preheated at 200-400 deg.C, while a separator 7 is cooled with air and a cooler 8 is cooled with a coolant. Boron trichloride is continuously synthesized by supplying predetermined amts. of chlorine and boron trifluoride to the generator 2 and the reactor 5, respectively. The reaction of vapor phase AlCl3 and vapor phase BF3 proceeds very fast with the stoichiometric mixing proportion at a temp. higher than the temp. at which AlCl3 can exist in a vapor phase, and the reaction completely terminates in a few seconds. Production of AlF3 in a powdery state affects nothing on the process of the reaction. AlF3 is stable under about 800 deg.C which is the sublimation temp. and can be easily separated from the vapor phase reaction system. Moreover, AlF3 shows no reactivity when mixed with the liquid phase of AlCl3 produced by cooling, and can be separated by distillation of AlCl3.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は半導体プロセス用のエッチンク剤及び千フ化ホ
ウ素の製造原料として利用される高純度な三塩化ホウ素
の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing highly pure boron trichloride, which is used as an etching agent for semiconductor processes and as a raw material for producing boron perfluoride.

〔従来技術〕[Prior art]

従来から三塩化ホウ素の製造方法については次の方法が
知られている。
Conventionally, the following method has been known for producing boron trichloride.

(1)例えば米国特許第3019089号又は第302
5138号明細書に記載の如く、三酸化ホウ素と炭素と
の混合物に500゜C以上で塩素を反応させる方法。
(1) For example, US Pat. No. 3,019,089 or 302
5138, in which a mixture of boron trioxide and carbon is reacted with chlorine at 500°C or higher.

(2)例えば特公昭58−57368号明細書に記載の
如《ホウ酸を活性炭に吸着させた後、高温で塩素を反応
させる方法。
(2) For example, as described in Japanese Patent Publication No. 58-57368, a method in which boric acid is adsorbed on activated carbon and then reacted with chlorine at a high temperature.

(3)  例えは特公昭51−39198号明at書に
記載の如くアルカリ土卸金属ホウ化物と塩化水素との反
応。
(3) For example, the reaction between an alkaline earth metal boride and hydrogen chloride as described in Japanese Patent Publication No. 51-39198.

(4)   J.  八m.  Chem.  Soc
.,    6  201  2  5  7N  (
1940)並びにInorganic Synthes
es 3巻 27〜30頁に記載の如く、固体のハロゲ
ン化アルミニウムを昇華温度で、三フッ化ホウ素と反応
させる方法。但しこの方法ではハロゲンは塩素と臭素で
ある。
(4) J. Eight meters. Chem. Soc.
.. , 6 201 2 5 7N (
1940) and Inorganic Synthes
A method of reacting solid aluminum halide with boron trifluoride at sublimation temperature, as described in Volume 3, pages 27-30 of ES. However, in this method, the halogens are chlorine and bromine.

(1)及び(2)の方法は酸化ホウ素・炭素・塩素系に
よる合成方法であり、反応温度は一般に1000〜13
00゜Cの高温であり、改善された方法に於いても30
0〜800゜Cである。反応系の材質は高温と塩素によ
る腐食に対し苛酷な条件に耐えねばならない。更にこの
方法ではホスゲン(COClz)等の塩素系不純物の生
成を避けることが出来ない。
Methods (1) and (2) are synthetic methods using boron oxide, carbon, and chlorine, and the reaction temperature is generally 1000 to 13
00°C, and even in the improved method
It is 0 to 800°C. The materials of the reaction system must withstand harsh conditions such as high temperatures and chlorine corrosion. Furthermore, this method cannot avoid the generation of chlorine-based impurities such as phosgene (COClz).

このホスゲンは三塩化ホウ素と沸点が4゜Cしか異なら
ず、蒸留では除去できない。
This phosgene differs in boiling point from boron trichloride by only 4°C and cannot be removed by distillation.

(3)の方法は合成が困ガであり高価なアルカリ土類ホ
ウ化物を使用するので犬¥生産の工業的製法に通さない
Method (3) is difficult to synthesize and uses expensive alkaline earth borides, so it cannot be applied to industrial manufacturing methods.

(4)の方法は三ハロゲン化アルミニウムをそのM.華
温度に加熱し、三フ,化ホウ素とk応させ三ハロゲン化
ホウ素が得られる方法である。
Method (4) uses aluminum trihalide with its M. This is a method in which boron trihalide is obtained by heating to a temperature at Fahrenheit temperature and reacting with boron trihalide.

この方法では0.5モルの三塩化アルミニウムを昇華さ
せて、反応当量より大過剰の2モルの三フッ化ホウ素を
用いて反応させ、三塩化アルミニウム当たりの収率は8
0%で三塩化ホウ素を得ているが、三フッ化ホウ素当た
りの収率は極めて低く20%である。この方法を用いる
と未反応の三フン化ホウ素を回収又は除外するための設
備が必要となる。しかし三フッ化ホウ素は極めて捕集の
困難なガスであり、又捕集液中のホウフッ化物イオンは
カルシウムイオンと反応し難く、廃水処理に特別な化学
処理が必要である。
In this method, 0.5 mol of aluminum trichloride is sublimed and reacted with 2 mol of boron trifluoride, which is in large excess over the reaction equivalent, and the yield per aluminum trichloride is 8.
Although boron trichloride is obtained at 0%, the yield per boron trifluoride is extremely low at 20%. Using this method requires equipment to recover or remove unreacted boron trifluoride. However, boron trifluoride is an extremely difficult gas to collect, and boron fluoride ions in the collection liquid are difficult to react with calcium ions, requiring special chemical treatment for wastewater treatment.

以上のような諸問題があるために、この反応は三塩化ホ
ウ素の工業的製法として用いられることなく今日に至っ
ている。発明者らはこの反応を種々な面から詳細に検討
した結果、工業的製法に用いられない原因は次の点にあ
ることを究明するに至った。即ち、三塩化アルミニウム
が三フッ化ホウ素と同一反応器内に固相として存在して
いるために、昇華表面で反応が進行し、生成するフン化
アルミニウムが固体の表面を被覆するために反応の継続
を妨げること。
Due to the problems mentioned above, this reaction has not been used as an industrial method for producing boron trichloride to this day. As a result of a detailed study of this reaction from various aspects, the inventors have found that the reason why it is not used in industrial production methods is as follows. In other words, since aluminum trichloride exists as a solid phase in the same reactor as boron trifluoride, the reaction proceeds on the sublimation surface, and the generated aluminum fluoride coats the solid surface, causing a reaction reaction. To prevent continuation.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は気相で三塩化アルミニウムと三フッ化ホウ素と
を連続的に供給して反応を進行させ高収率で三塩化ホウ
素を合成する製造方法及び装置を開発することである。
The purpose of the present invention is to develop a manufacturing method and apparatus for synthesizing boron trichloride in high yield by continuously supplying aluminum trichloride and boron trifluoride in a gas phase to advance the reaction.

〔課題を解決するための手段) 本発明者らは、固体又は溶融状態のアルミニウムに塩素
、塩化水素及び/又はアルミニウムと反応する塩素化合
物とを連続的に供給反応させて、発生機の気体三塩化ア
ルミニウムを合成するか、又は三塩化アルミニウムを加
熱昇華させて、気体三塩化アルミニウムを発生させ、こ
れを気相反応器に於いて三フ,化ホウ素と気相反応せし
める新しい原理を用いることにより、前記した諸障害を
完全に解決出来ることを明らかにし、発明を完成するこ
とが出来た。
[Means for Solving the Problems] The present inventors continuously supply and react solid or molten aluminum with chlorine, hydrogen chloride, and/or a chlorine compound that reacts with aluminum, thereby reducing the amount of gas in the generator. By using a new principle of synthesizing aluminum chloride or heating and sublimating aluminum trichloride to generate gaseous aluminum trichloride, which is reacted with trifluoride and boron in a gas phase reactor. , it was revealed that the above-mentioned obstacles could be completely solved, and the invention was completed.

〔発明の構成並ひに作用」 本発明は気体の三塩化アルミニウムと三フッ化ホウ素を
連続的に気相反応させて三塩化ホウ素を合成する新製造
方法である。
[Structure and Function of the Invention] The present invention is a new manufacturing method for synthesizing boron trichloride by subjecting gaseous aluminum trichloride and boron trifluoride to a continuous gas phase reaction.

即ち、気相三塩化アルミニウムと気相三フッ化ホウ素の
反応は化学量論比の混合比率(等モル組成)で、三塩化
アルミニウムが、気相として存在する温度(180゜C
)以上に於いて、極めて迅速であり、秒速で完全に反応
することを見出した。
That is, the reaction between vapor phase aluminum trichloride and vapor phase boron trifluoride occurs at a stoichiometric mixing ratio (equimolar composition) and at a temperature at which aluminum trichloride exists as a gas phase (180°C).
), it has been found that the reaction is extremely rapid and complete reaction occurs within seconds.

反応生成物としてフッ化アルミニウムが粉末状に生成す
ることは、反応進行に何等の障害とならない。フッ化ア
ルミニウムは約800゜C以上で昇華する化合物である
が、それ以下の温度では安定な化合物であり、気相反応
系から容易に分離でき、又生成する三塩化アルミニウム
の冷却液化相に混入しても何等反応性はなく三塩化アル
ミニウムの蒸留により完全に分離される。
The fact that aluminum fluoride is produced in powder form as a reaction product does not impede the progress of the reaction. Aluminum fluoride is a compound that sublimes at temperatures above about 800°C, but it is a stable compound at temperatures below that and can be easily separated from the gas phase reaction system, and can also be mixed into the cooled liquefied phase of aluminum trichloride that is produced. However, it has no reactivity and can be completely separated by distillation of aluminum trichloride.

従来、固体の三塩化アルミニウムの昇華と三フノ化ホウ
素との反応を同一反応器で行う方法は、本質的に固相表
面反応となり、生成フフ化アルミニウムが固相表面反応
を阻害するため、昇華速度と三フノ化ホウ素供給速度を
極めて小さくせざるを得す、三フッ化ホウ素を大過剰に
用いて、しかも低収率であることと比較すると、本発明
の気相合成原理は、全く反応様相を一変するものである
Conventionally, the method of sublimating solid aluminum trichloride and reacting with boron trifluoride in the same reactor is essentially a solid-phase surface reaction, and the produced aluminum fluoride inhibits the solid-phase surface reaction, so sublimation Compared to the use of a large excess of boron trifluoride, which necessitates extremely low feed rates and boron trifluoride feed rates, and which results in low yields, the gas phase synthesis principle of the present invention is completely reactive. This is a game-changer.

具体的方法を例示すれば、180〜700゜Cに加熱し
た固体アルミニウムに塩素、塩化水素及ひ/又はアルミ
ニウムと反応する塩素化合物を反応させると容易に三塩
化アルミニウムが反応率ほぼ100%で連続的に気体で
発生してくる。本発明に於いては、気体の三塩化アルミ
ニウムを上記の方法で製造し、これをそのまま使用する
態様ばかりでなく、予め通常の方法で製造された固体の
塩化アルミニウムを以下の様にして使用することも出来
る。即ち固体の三塩化アルミニウムを別途に昇華させて
気体とする。これを使用する態様である。更に詳しく説
明すると、塩化アルミニウムを昇華で使用する場合は、
昇華専用の容器内で加熱にまり連続昇華させ、気体の塩
化アルミニウムを三フ・7化ホウ素との反応容器に携入
することで?塩化ホウ素を製造する。このように昇華と
反応を分離させることにより、塩化アルミニウム上に三
7フ化ホウ素との反応生成物のフン化アルミニウムが生
成しないので反応が阻害されることなく、連続的に進行
する。即ちl:AIcL+(気体) 十BF3(気体)
〕気相反応方式によっているため不純物の含有は極めて
少なく、又炭素材料を用いる従来製法の如くホスゲンを
副生ずることもない。
To give an example of a specific method, when solid aluminum heated to 180 to 700°C is reacted with chlorine, hydrogen chloride, and/or a chlorine compound that reacts with aluminum, aluminum trichloride is easily continuously produced at a reaction rate of almost 100%. It is generated as a gas. In the present invention, not only gaseous aluminum trichloride is produced by the above method and used as it is, but also solid aluminum chloride previously produced by a conventional method is used in the following manner. You can also do that. That is, solid aluminum trichloride is separately sublimated to become a gas. This is the mode of using this. To explain in more detail, when using aluminum chloride by sublimation,
By heating and continuously sublimating in a container dedicated to sublimation, and then introducing gaseous aluminum chloride into a reaction container with boron trifluoride and boron heptaide? Manufacture boron chloride. By separating sublimation and reaction in this way, aluminum fluoride, which is a reaction product with boron trifluoride, is not produced on aluminum chloride, so the reaction proceeds continuously without being inhibited. That is, l: AIcL+ (gas) 10BF3 (gas)
] Since it uses a gas phase reaction method, the content of impurities is extremely small, and unlike conventional production methods using carbon materials, phosgene is not produced as a by-product.

本発明に於いて使用するアルミニウムと反応する塩素化
合物とは、CCI.、C2C].、C2C]6、CIF
3、SiHzCIz、SiHC]3、SiC14等を例
示出来る。この場合でも反応系全体を通して酸素が関与
することが全くないためBCI,から分離しにくいCO
C I■が混入することは全くない。
The chlorine compound that reacts with aluminum used in the present invention is CCI. , C2C]. ,C2C]6,CIF
3, SiHzCIz, SiHC]3, SiC14, etc. Even in this case, CO is difficult to separate from BCI because no oxygen is involved throughout the reaction system.
There is no contamination of CI■.

本発明法実施に際し、その代表的な装置を例示すれば、
第1図の通りである。即ち、加熱器(1)、発生器(2
)、塩素導入管(3)及び三塩化アルミニウム流出管(
4)から成る三塩化アルミニウム発生装置及び三塩化ア
ルミニウムと三フ,化ホウ素との気相反応器(5)、三
フノ化ホウ素導入管(6)、フ7・化7ルミニウム分離
器(7)と三塩化ホウ素冷却器(8)からなる反応装置
の組合せから成る三塩化ホウ素の製造装置である。(9
)は三塩化ホウ素受器である。尚この装置に於いて三塩
化アルミニウム流出管(4)にアルミニウム固体を充填
したカラムGO)を設けることが出来る。これによりア
ルミニウムと塩素との反応で未反応の塩素が残存しても
この残存塩素はアルミニウムと反応して三塩化アルミニ
ウムとなり、完全に三塩化アルミニウムに変換出来る。
Typical equipment for carrying out the method of the present invention is as follows:
As shown in Figure 1. That is, the heater (1), the generator (2
), chlorine inlet pipe (3) and aluminum trichloride outlet pipe (
4) Aluminum trichloride generator, gas phase reactor for aluminum trichloride, trifluoride, and boron trifluoride (5), boron trifluoride inlet tube (6), and aluminum trifluoride separator (7) This is a boron trichloride production device consisting of a combination of a reaction device consisting of a boron trichloride cooler (8) and a boron trichloride cooler (8). (9
) is a boron trichloride receiver. In this apparatus, a column (GO) filled with aluminum solid can be provided in the aluminum trichloride outflow pipe (4). As a result, even if unreacted chlorine remains due to the reaction between aluminum and chlorine, this remaining chlorine reacts with aluminum to become aluminum trichloride, and can be completely converted to aluminum trichloride.

また本発明に於いて固体の塩化アルミニウムを昇華させ
る場合には、第1図の装置に於いて、反応器(2)内で
三塩化アルミニウムを加熱蒸発させれば良い。
Further, in the case of sublimating solid aluminum chloride in the present invention, aluminum trichloride may be heated and evaporated in the reactor (2) in the apparatus shown in FIG.

〔実 施 例〕〔Example〕

以下に実施例を挙げて本発明を詳しく説明する。 The present invention will be explained in detail below with reference to Examples.

但し製造装置は第1図のものを使用した。However, the manufacturing equipment used was that shown in Figure 1.

実施例1 塩化アルミニウム発生器(2)に金属アルミニウム塊(
約50g  塊)を充填し、200〜400゜Cに加熱
器(1)で予熱する。二ノをル製気相反応器(5)は2
00〜400゜Cに予熱された内径52.5mm、長さ
400mmの管状空塔がらなる。フッ化アルミニウム分
離器(7)は空冷され、冷却器(8)は冷媒で−15〜
−25゜Cに冷却されている。発生器(2)に塩素を気
相反応器(5)に三フッ化ホウ素を夫々流量制御器を用
いて定量供給し、三塩化ホウ素を連続合成した結果、第
1表に示される合成条件に対応する収率で三塩化ホウ素
が合成された。
Example 1 Metal aluminum lump (
Fill the container with about 50g of chunks) and preheat to 200-400°C using a heater (1). The gas phase reactor (5) manufactured by Ninowo Ru is 2
It consists of a tubular column with an inner diameter of 52.5 mm and a length of 400 mm, which is preheated to 00 to 400°C. The aluminum fluoride separator (7) is air-cooled, and the cooler (8) is heated with a refrigerant of -15 to
It is cooled to -25°C. As a result of continuously synthesizing boron trichloride by supplying chlorine to the generator (2) and boron trifluoride to the gas phase reactor (5) using flow rate controllers, the synthesis conditions shown in Table 1 were met. Boron trichloride was synthesized with corresponding yield.

実施例2 塩化アルミニウム発生器(2)はロードセル(重量連続
検知)上に設置し、この中に固体の塩化アルミニウムを
充填する。電気熱加熱方式(外部加熱及ひ内挿ヒーター
に定電流を通じて加熱)又は赤外加熱方式(発生P,(
21に石英窓板を設け赤外線ランプ照射により加熱)の
何れかにより連続的に塩化アルミニウムを昇華させる。
Example 2 An aluminum chloride generator (2) is installed on a load cell (continuous weight detection), and solid aluminum chloride is filled therein. Electric heating method (heating through constant current to external heating and internal heater) or infrared heating method (generating P, (
A quartz window plate is provided at 21, and aluminum chloride is continuously sublimed by either heating by irradiation with an infrared lamp.

昇華した塩化アルミニウムは気相反応器(5)に導入し
三フフ化ホウ素と気相反応させる。三フフ化ホウ素は流
量制御器を用い、塩化アルミニウムの重¥滅少速度に対
応させながら、定量供給レ、三塩化ホウ素を連続的に合
成した。結果を第2表に示した。
The sublimated aluminum chloride is introduced into a gas phase reactor (5) and reacted with boron trifluoride in a gas phase. Boron trichloride was continuously synthesized using a flow rate controller, with a fixed amount of supply being made to correspond to the depletion rate of aluminum chloride. The results are shown in Table 2.

実施例3 実施例1の連続合成装置を用い、塩化アルミニウム発生
器{2}に、塩素に替えてCCI4又はSiCl4を気
相で連続供給し、金属アルミニウムと反応させて、塩化
アルミニウムを発生させ、その他の条件は実施例lに等
しく合成を行った。
Example 3 Using the continuous synthesis apparatus of Example 1, CCI4 or SiCl4 was continuously supplied in the gas phase instead of chlorine to the aluminum chloride generator {2}, and reacted with metal aluminum to generate aluminum chloride, Other conditions were the same as in Example 1 for synthesis.

CCI.、SiC14のガス供給は、夫々充填したシリ
ンダーの外部加熱方式によった。結果を第3表に示した
CCI. , SiC14 gas was supplied by external heating of the filled cylinders. The results are shown in Table 3.

比較例l 塩化アルミニウム昇華器と三フフ化ホウ素との反応器が
分離されていない、昇華・反応同時方式(従来技術4の
方法)に従って三フノ化ホウ素大過剰(4倍等量)導入
して三塩化ボウ素の合成を行った。反応装置は1!の丸
底%’lフラスコの上部に0.5Pの拡大部を有するガ
ラス容器でできており、フラスコと拡大部は内径30I
IIII1、長さ250mmのガラス管で結ばれており
、三フノ化ホウ素の導入管は1l丸底フラスコの中央部
に位置している。結果は第4表に示した。
Comparative Example 1 A large excess (4 times equivalent amount) of boron trifluoride was introduced according to the simultaneous sublimation and reaction method (method of prior art 4) in which the aluminum chloride sublimator and the boron trifluoride reactor were not separated. We synthesized boron trichloride. 1 reactor! It is made of a glass container with a 0.5P enlargement on the top of the round bottom %'l flask, and the flask and enlargement have an inner diameter of 30I.
III1 is connected by a glass tube with a length of 250 mm, and the boron trifluoride inlet tube is located in the center of the 1 L round bottom flask. The results are shown in Table 4.

(江)従来技術(4)に記載の合成方法による反応収率
はAIC]3基準の場合80%、BP.基準の場合20
%と報告されている。上記比較例】に示した如くその結
果は文献記載値によく一致した。
(E) The reaction yield according to the synthesis method described in Prior Art (4) is 80% based on AIC]3, BP. 20 for standard
It is reported that %. As shown in Comparative Example above, the results were in good agreement with the values described in the literature.

比較例2 昇華・反応同時方式に於いてAICIi仕込量に等モル
のBF,を一定流速で連続的に供給して合成を行った。
Comparative Example 2 In a simultaneous sublimation and reaction method, synthesis was performed by continuously supplying BF in an amount equal to the amount of AICIi charged at a constant flow rate.

反応装置はBP!導入口を有する100!の反応器上部
に201の加熱空塔を有する。反応器にAICI3粉末
を仕込み、外部加熱しながらAICI3に等量のBhを
連続導入して合成を行った。この反応容器に於ける空塔
速度は0.04〜0.2 cm/secと極めて小さい
。この様にBF,供給速度を極めて小さく維持しても収
率は低い。結果を第5表に示した。
The reactor is BP! 100 with an inlet! The reactor has 201 heating cavities above it. AICI3 powder was charged into a reactor, and synthesis was performed by continuously introducing an equal amount of Bh into AICI3 while externally heating the reactor. The superficial velocity in this reaction vessel is extremely small, 0.04 to 0.2 cm/sec. As described above, even if the BF supply rate is kept extremely low, the yield is low. The results are shown in Table 5.

〔発明の効果〕〔Effect of the invention〕

本発明法によlク高純度の三塩化ホウ素を極めて簡単に
しかも収率良く製造することが出来、この結果三塩化ホ
ウ素を安価にしかも高純度で各産業界に供給することが
出来る。元来三塩化ホウ素は半導体産業・光関連産業等
の新規産業の進展に関連する重要な化学材料であり、L
SIプロセスにおいてはアルミニウムその他のメタルの
ドライエソチング剤として微細加工回路配線プロセスに
用いられ、シリコン単結晶その他化学物半導体結晶引上
プロセスに於いて用いられるPBNルツボの構成材料と
しても重要であり、更に光ファイハー・太陽電池に於い
ても屈折率制御様ドウバントとしての需要も進展してお
り、その他ボロンナイトライド成型品原料などにもその
用途は拡張されつつある。
By the method of the present invention, highly pure boron trichloride can be produced extremely easily and with good yield, and as a result, boron trichloride can be supplied to various industries at low cost and in high purity. Originally, boron trichloride is an important chemical material related to the development of new industries such as semiconductor industry and optical-related industry.
In the SI process, it is used as a dry ethosing agent for aluminum and other metals in the microfabrication circuit wiring process, and it is also important as a constituent material of PBN crucibles used in the process of pulling silicon single crystals and other chemical semiconductor crystals. Furthermore, there is growing demand for it as a refractive index control doubant in optical fibers and solar cells, and its use is also expanding to other boron nitride molded product raw materials.

従ってこの様な多様な用途開発に本発明法は確実に寄与
するものであり、その産業上の効果は大きい。
Therefore, the method of the present invention definitely contributes to the development of such diverse applications, and its industrial effects are significant.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明法実施に際し用いられる装置の一例を示
す。 5 ・・・加熱器 ・・・発生器 ・・・塩素導入管 ・・・三塩化アルミニウム 流出管 ・・・気相反応器 6・・・三フソ化ホウ素 導入管 7・・・分離器 8・・・冷却器 9・・・受器 10・・・カラム (以 上)
FIG. 1 shows an example of an apparatus used in carrying out the method of the present invention. 5 ... Heater ... Generator ... Chlorine introduction pipe ... Aluminum trichloride outflow pipe ... Gas phase reactor 6 ... Boron trifluoride introduction pipe 7 ... Separator 8. ...Cooler 9...Receiver 10...Column (and above)

Claims (1)

【特許請求の範囲】 (1)気体の三塩化アルミニウムと三フッ化ホウ素を気
相反応器に連続的に供給して反応せしめることにより三
塩化ホウ素を合成することを特徴とする三塩化ホウ素の
製造方法。(2)アルミニウムと塩素及び/又は塩素化
合物との反応で生成する気体の三塩化アルミニウムを気
相反応器に連続的に供給して、連続的に供給される三フ
ッ化ホウ素と反応させることにより三塩化ホウ素を合成
することを特徴とする三塩化ホウ素の製造方法。 (3)塩素化合物が塩化水素及び/又はアルミニウムと
反応する塩素化合物であることを特徴とする請求項第1
項に記載の三塩化ホウ素の製造方法。 (4)固体塩化アルミニウムを連続的に昇華させ、気相
反応器に連続的に供給し、三フッ化ホウ素と反応させる
ことにより、三塩化ホウ素を合成することを特徴とする
三塩化ホウ素の製造方法。
[Claims] (1) Boron trichloride is synthesized by continuously supplying gaseous aluminum trichloride and boron trifluoride to a gas phase reactor and reacting them. Production method. (2) By continuously supplying gaseous aluminum trichloride produced by the reaction of aluminum with chlorine and/or chlorine compounds to a gas phase reactor, and reacting with continuously supplied boron trifluoride. A method for producing boron trichloride, which comprises synthesizing boron trichloride. (3) Claim 1, characterized in that the chlorine compound is a chlorine compound that reacts with hydrogen chloride and/or aluminum.
The method for producing boron trichloride as described in . (4) Production of boron trichloride, characterized in that boron trichloride is synthesized by continuously sublimating solid aluminum chloride, continuously supplying it to a gas phase reactor, and reacting it with boron trifluoride. Method.
JP27339389A 1989-10-19 1989-10-19 Production of boron trichloride Pending JPH03218917A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27339389A JPH03218917A (en) 1989-10-19 1989-10-19 Production of boron trichloride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27339389A JPH03218917A (en) 1989-10-19 1989-10-19 Production of boron trichloride

Publications (1)

Publication Number Publication Date
JPH03218917A true JPH03218917A (en) 1991-09-26

Family

ID=17527275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27339389A Pending JPH03218917A (en) 1989-10-19 1989-10-19 Production of boron trichloride

Country Status (1)

Country Link
JP (1) JPH03218917A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001006023A1 (en) * 1999-07-15 2001-01-25 Hatch Associates Ltd. Method and system of protecting easily oxidized metals melts like molten magnesium by 'in situ' generation of boron trifluoride gas
US7645340B2 (en) 2002-04-09 2010-01-12 Tokyo University Agriculture And Technology Tlo Co., Ltd. Vapor phase growth method for A1-containing III-V group compound semiconductor, and method and device for producing A1-containing III-V group compound semiconductor
JP2010111550A (en) * 2008-11-07 2010-05-20 Ube Ind Ltd High-purity boron trichloride and production method thereof
JP2013144644A (en) * 2013-04-30 2013-07-25 Ube Industries Ltd Method for producing high purity boron trichloride

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001006023A1 (en) * 1999-07-15 2001-01-25 Hatch Associates Ltd. Method and system of protecting easily oxidized metals melts like molten magnesium by 'in situ' generation of boron trifluoride gas
US7645340B2 (en) 2002-04-09 2010-01-12 Tokyo University Agriculture And Technology Tlo Co., Ltd. Vapor phase growth method for A1-containing III-V group compound semiconductor, and method and device for producing A1-containing III-V group compound semiconductor
JP2010111550A (en) * 2008-11-07 2010-05-20 Ube Ind Ltd High-purity boron trichloride and production method thereof
JP2013144644A (en) * 2013-04-30 2013-07-25 Ube Industries Ltd Method for producing high purity boron trichloride

Similar Documents

Publication Publication Date Title
US3252752A (en) Method for producing pure silane and chlorinated silanes
US4525334A (en) Process for the production of silicon
JPH0264006A (en) Production of solar silicon
US8974761B2 (en) Methods for producing silane
US4710369A (en) Oxidation method for production of special aluminas from pure aluminum chloride
CA2007271A1 (en) Process for preparation of silane
US9487406B2 (en) Systems for producing silane
JPH0222004B2 (en)
JPH03218917A (en) Production of boron trichloride
JPS60210515A (en) Silane manufacture
JP2000159505A (en) Production of halogen fluoride compound
US5147625A (en) Process for the preparation of phosphorous acid
US3342551A (en) Method and apparatus for producing a semiconducting compound of two or more components
CN103384640B (en) For the preparation of the method and system of silane
JPS59207830A (en) Production of silicon chloride
RU2519460C1 (en) Production of silicon with the use of aluminium subchloride
EP0213215B2 (en) Chlorosilane disproportionation catalyst and method for producing a silane compound by means of the catalyst
JP2536027B2 (en) Method for producing disilane
JPH0355409B2 (en)
WO2023088933A1 (en) Process for the production of silicon tetrachloride
JPH048364B2 (en)
JPH0336764B2 (en)
JPS5935017A (en) Preparation of trichlorosilane
JPH03177313A (en) Device for producing boron trichloride
JPS59156907A (en) Manufacture of silane