JPH0336764B2 - - Google Patents

Info

Publication number
JPH0336764B2
JPH0336764B2 JP14579385A JP14579385A JPH0336764B2 JP H0336764 B2 JPH0336764 B2 JP H0336764B2 JP 14579385 A JP14579385 A JP 14579385A JP 14579385 A JP14579385 A JP 14579385A JP H0336764 B2 JPH0336764 B2 JP H0336764B2
Authority
JP
Japan
Prior art keywords
silicic acid
sicl
powder
reaction
acid powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14579385A
Other languages
Japanese (ja)
Other versions
JPS627623A (en
Inventor
Kuniaki Wakabayashi
Shigeyuki Manabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP14579385A priority Critical patent/JPS627623A/en
Publication of JPS627623A publication Critical patent/JPS627623A/en
Publication of JPH0336764B2 publication Critical patent/JPH0336764B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は高純度のケイ酸を低温で容易に製造し
うる製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Field of Application> The present invention relates to a manufacturing method for easily manufacturing high-purity silicic acid at low temperatures.

<従来技術およびその問題点> 現在LSIの製造においては最終的にLSIを封止
するためにエポキシ樹脂が用いられている。無水
ケイ酸はこのエポキシ樹脂に含有され、その補強
ならびに熱伝導性を高めるために使用される。こ
の無水ケイ酸は高純度であることが求められ、特
にLSIをα線障害から守るため放射線を生ずるウ
ラン、トリウムの含有量が少ないことが要求され
る。
<Prior art and its problems> Currently, in the manufacture of LSIs, epoxy resin is used to finally seal the LSIs. Silicic anhydride is contained in this epoxy resin and is used to reinforce it and increase its thermal conductivity. This anhydrous silicic acid is required to be highly pure, and in particular, it is required to have a low content of uranium and thorium, which generate radiation, in order to protect LSIs from α-ray damage.

従来、無水ケイ酸には比較的純度の高い天然の
ケイ石が用いられているが、上記LSIの封止剤に
混入されるものとしては純度が低く不適当であ
る。一方、高純度のケイ酸を人工的に製造する方
法としては、SiCl4を水に加え加水分解すること
で一部水酸基の含まれたケイ酸が得られ、更にこ
れを加熱脱水してSiO2を得ることが出来る。と
ころがこの方法は、水中で生成するケイ酸がゲル
状になり、その後の取扱が難しく、更に加熱して
脱水する際に水分や塩素が残留し易い。
Conventionally, natural silica stone with relatively high purity has been used as silicic anhydride, but its purity is low and it is inappropriate to be mixed into the sealant of the LSI. On the other hand, as a method for artificially producing high-purity silicic acid, SiCl 4 is added to water and hydrolyzed to obtain silicic acid containing some hydroxyl groups, which is then heated and dehydrated to form SiO 2 can be obtained. However, in this method, the silicic acid produced in water becomes gel-like, making subsequent handling difficult, and furthermore, moisture and chlorine tend to remain when dehydrating by heating.

又、他方SiCl4ガスを700〜1400℃の酸水素炎中
に導入してケイ酸粒子を得る方法も知られてい
る。然しこの方法によつて得られるケイ酸粒子は
0.1μm以下の微粉末であり、そのままでは微細に
過ぎ上記封止剤の添加剤としては不向きである。
このため再度加熱し粒度を大きくする必要があ
る。
On the other hand, a method for obtaining silicic acid particles by introducing SiCl 4 gas into an oxyhydrogen flame at 700 to 1400°C is also known. However, the silicic acid particles obtained by this method are
It is a fine powder of 0.1 μm or less, and as it is, it is too fine to be used as an additive for the above-mentioned sealant.
Therefore, it is necessary to heat it again to increase the particle size.

<問題点を解決するための手段> SiCl4を原料として人工的にケイ酸を製造する
ことが知られている。この場合金属シリコンと
HClガスを反応させて生成したSiCl4は蒸留工程
を経て得られるので高純度であり、これを原料と
すれば高純度のケイ酸が得られる。本発明は上記
SiCl4を用いかつケイ酸粉末の存在下で反応させ
ることにより高純度のケイ酸を容易に製造できる
ようにしたものである。
<Means for solving the problem> It is known to artificially produce silicic acid using SiCl 4 as a raw material. In this case metal silicon and
SiCl 4 produced by reacting HCl gas has high purity because it is obtained through a distillation process, and if this is used as a raw material, high purity silicic acid can be obtained. The present invention is as described above.
By using SiCl 4 and reacting it in the presence of silicic acid powder, it is possible to easily produce high-purity silicic acid.

<発明の構成> 本発明によれば、SiCl4と水蒸気とを5〜200℃
の温度範囲で、かつケイ酸粉末の存在下で反応さ
せて高純度ケイ酸を生成する製造方法が提供され
る。さらにその好適な実施態様として上記ケイ酸
粉末が40〜1000μmであることを特徴とする製造
方法が提供される。
<Structure of the invention> According to the invention, SiCl 4 and water vapor are heated at 5 to 200°C.
A manufacturing method is provided in which high purity silicic acid is produced by reacting at a temperature range of 100 to 100 ml and in the presence of silicic acid powder. Furthermore, as a preferred embodiment thereof, there is provided a manufacturing method characterized in that the silicic acid powder has a diameter of 40 to 1000 μm.

反応容器に内部にケイ酸粉末を充填し、該反応
容器の内部を5〜200℃に保持し、SiCl4ガスと水
蒸気とを導入し該ケイ酸粉末の存在下で反応させ
る。上記ケイ酸粉末はSiCl4を高温で加水分解し
て得た粉末を40〜1000μmに造粒したものが良
い。該ケイ酸粉末の粒子は細か過ぎるとガスの流
通が悪く、又大き過ぎると反応効率が悪くなるの
で上記粒度が好ましい。SiCl4と水蒸気とを反応
させる際は、該粉体を上記ガスあるいは他のキヤ
リアガスにより流動させ、また撹拌装置により該
粉末を撹拌すると良い。又該粉体の充填量は反応
容器に充填した該粉体が流動化され、導入した
SiCl4と水蒸気が該粉体の表面で効率良く反応す
るために必要な最少限の充填量であればよい。
尚、上記ケイ酸粉末として、本発明において用い
たケイ酸粉末の既反応分を繰り返し用いることも
できる。
A reaction vessel is filled with silicic acid powder, the interior of the reaction vessel is maintained at a temperature of 5 to 200°C, and SiCl 4 gas and water vapor are introduced to react in the presence of the silicic acid powder. The above-mentioned silicic acid powder is preferably one obtained by hydrolyzing SiCl 4 at high temperature and granulating the powder to a size of 40 to 1000 μm. If the particles of the silicic acid powder are too small, gas flow will be poor, and if too large, the reaction efficiency will be poor, so the above particle size is preferred. When reacting SiCl 4 with water vapor, it is preferable to fluidize the powder with the above gas or another carrier gas and stir the powder with a stirring device. In addition, the amount of the powder filled in the reaction vessel is determined by the amount that the powder filled in the reaction vessel is fluidized and introduced.
The filling amount may be the minimum amount necessary for SiCl 4 and water vapor to react efficiently on the surface of the powder.
Incidentally, as the silicic acid powder, an already reacted portion of the silicic acid powder used in the present invention can be repeatedly used.

次に、上記SiCl4は金属シリコンにHCIガスを
反応させて生成したものが好適である。該SiCl4
はポリシリコンの製造工程における生成物として
得られ、純度が高い。該SiCl4および水蒸気を上
記ケイ酸粉末が充填された反応容器に導入するに
は、例えば窒素ガスをキヤリアガスとしてSiCl4
液の貯蔵槽および水槽に供給してバブリグさせ上
記反応容器に導入するとよい。勿論他の適当な方
法によつても良い。
Next, the SiCl 4 described above is preferably produced by reacting HCI gas with metallic silicon. The SiCl4
is obtained as a product in the polysilicon manufacturing process and has high purity. In order to introduce the SiCl 4 and water vapor into the reaction vessel filled with the silicic acid powder, for example, SiCl 4 is introduced using nitrogen gas as a carrier gas.
It is preferable to supply it to a liquid storage tank and a water tank, bubble it, and introduce it into the reaction vessel. Of course, other suitable methods may also be used.

反応温度は5℃〜200℃の範囲で行う。200℃を
越えるとSiCl4の分解効率が悪く、また、5℃よ
り低いと反応装置全体を冷却することになり煩わ
しい。装置を簡便に構成するためには室温〜100
℃の範囲が好ましい。尚、SiCl4の流量等は装置
の容量などに応じて適宜選択すればよい。
The reaction temperature is 5°C to 200°C. If the temperature exceeds 200°C, the decomposition efficiency of SiCl 4 will be poor, and if it is lower than 5°C, the entire reactor will have to be cooled, which is troublesome. Room temperature ~ 100℃ to easily configure the device
A range of 0.degree. C. is preferred. Note that the flow rate of SiCl 4 and the like may be appropriately selected depending on the capacity of the apparatus and the like.

<発明の効果> 本発明の製造方法によれば、ケイ酸粉末の存在
下でSiCl4と水蒸気とを反応させる。このため予
め反応容器に充填したケイ酸粉末の表面にケイ酸
が析出し、SiCl4と水蒸気との反応が促進され、
低温度でも容易にSiCl4が分解され、容易にケイ
酸粉末を得ることが出来る。因に、ケイ酸粉末が
存在しない状態でSiCl4と水蒸気とを反応させる
と上記温度範囲では反応がわずかしか進行せず、
所定のケイ酸粉末を得ることが出来ない。
<Effects of the Invention> According to the production method of the present invention, SiCl 4 and water vapor are reacted in the presence of silicic acid powder. For this reason, silicic acid precipitates on the surface of the silicic acid powder filled in the reaction vessel in advance, promoting the reaction between SiCl 4 and water vapor.
SiCl 4 is easily decomposed even at low temperatures, and silicic acid powder can be easily obtained. Incidentally, when SiCl 4 is reacted with water vapor in the absence of silicic acid powder, the reaction progresses only slightly in the above temperature range.
It is not possible to obtain the specified silicic acid powder.

また、本発明で得られるケイ酸は微粉末のケイ
酸粒子にSiCl4の分解によつて生成したケイ酸が
その表面を被覆するように析出するので適度な粒
径を有する。さらに本発明は気相反応であるので
高純度のSiCl4を用いることにより純度の高いケ
イ酸を得ることが出来る。
Furthermore, the silicic acid obtained in the present invention has an appropriate particle size because the silicic acid produced by decomposition of SiCl 4 is precipitated on the finely powdered silicic acid particles so as to cover the surface thereof. Furthermore, since the present invention is a gas phase reaction, high purity silicic acid can be obtained by using high purity SiCl 4 .

本発明によつて得られるケイ酸粉末は以上のよ
うに純度が高くかつ適度な粒径を有するので造粒
せずに前記LSIの封止剤として用いるエポキシ樹
脂の添加剤等として好適に用いることができ、ま
たその他の用途に幅広く用いることが出来る。
As described above, the silicic acid powder obtained by the present invention has high purity and an appropriate particle size, so it can be suitably used as an additive for the epoxy resin used as a sealant in the LSI without granulation. It can also be used for a wide range of other purposes.

<実施例および比較例> 実施例 1 図示するように、純水貯留槽2およびSiCl4
留槽3にキヤリアガス貯留槽1が連通し、これら
のキヤリアガスが夫々反応管5に導入され、反応
管5にはケイ酸粉末4が充填され、反応後のガス
は塩酸トラツプ槽6に導かれる装置構成におい
て、直径24mmφの反応管5にケイ酸粉末10gを充
填し、20℃の温度に保つた。一方、40℃に保持し
た純水にキヤリアガスとして窒素を800ml/分の
割合で供給し、また15℃に保持した特級SiCl4
上記キヤリアガスを90ml/分の割合で流し、夫々
上記反応管に導いて7時間反応させた。純粋は
18.5g、SiCl4は70.6gキヤリアされ、回収したケ
イ酸は34.2gで24.2g増量しており、次の反応式
から求めた重量バランスにより回収率は97.2%で
あつた。
<Examples and Comparative Examples> Example 1 As shown in the figure, a carrier gas storage tank 1 communicates with a pure water storage tank 2 and a SiCl 4 storage tank 3, and these carrier gases are introduced into reaction tubes 5, respectively. was filled with silicic acid powder 4, and the gas after the reaction was introduced into a hydrochloric acid trap tank 6. In this apparatus configuration, a reaction tube 5 having a diameter of 24 mm was filled with 10 g of silicic acid powder and maintained at a temperature of 20°C. On the other hand, nitrogen was supplied as a carrier gas at a rate of 800 ml/min to pure water held at 40°C, and the carrier gas was flowed at a rate of 90 ml/min through special grade SiCl 4 held at 15°C, which were introduced into the reaction tubes. The mixture was allowed to react for 7 hours. Purity is
18.5g and 70.6g of SiCl 4 were carried, and the recovered silicic acid was 34.2g, an increase of 24.2g, and the recovery rate was 97.2% based on the weight balance determined from the following reaction formula.

SiCl4+2H2O→SiO2+4HCl 比較例 1 実施例1と同様の装置において、ケイ酸粉末を
充填しない直径24mmφの反応管を30℃の温度に保
ち、一方、40℃の純水にキヤリアガスを800ml/
分の割合で供給し、また15℃のSiCl4にキヤリア
ガス90ml/分の割合で流し、夫々上記反応管に導
いて3時間反応させた。その結果、純水が8g、
SiCl4が22.3gキヤリアされたが反応管にSiO2
生成しなかつた。
SiCl 4 +2H 2 O→SiO 2 +4HCl Comparative Example 1 In the same apparatus as in Example 1, a reaction tube with a diameter of 24 mmφ that was not filled with silicic acid powder was kept at a temperature of 30°C, while a carrier gas was added to pure water at 40°C. 800ml/
A carrier gas was supplied at a rate of 90 ml/min to SiCl 4 at 15° C., and the mixture was introduced into the above reaction tubes and reacted for 3 hours. As a result, 8g of pure water,
Although 22.3 g of SiCl 4 was carried, no SiO 2 was produced in the reaction tube.

比較例 2 実施例1と同様の装置において、直径24mmφの
反応管にケイ酸10gを充填し、250℃の温度に保
つた。一方、45℃に保持した純水にキヤリアガス
を800ml/分の割合で供給し、また30℃に保持し
たSiCl4にキヤリアガスを90ml/分の割合で流し、
夫々上記反応管に導いて1時間反応させた。キヤ
リアされた水は3g、SiCl4は14.7gであつた。
回収したケイ酸は11.8gで1.8g増量しており、
収率は35%であつた。
Comparative Example 2 In the same apparatus as in Example 1, 10 g of silicic acid was filled into a reaction tube with a diameter of 24 mm and maintained at a temperature of 250°C. On the other hand, carrier gas was supplied at a rate of 800 ml/min to pure water held at 45°C, and carrier gas was flowed at a rate of 90 ml/min to SiCl 4 held at 30°C.
Each was introduced into the above reaction tube and reacted for 1 hour. 3 g of water and 14.7 g of SiCl 4 were carried.
The recovered silicic acid was 11.8g, an increase of 1.8g.
The yield was 35%.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の方法を実施する装置構成を示す概
略図である。図面中、1……キヤリアガス貯留
槽、2……純水貯留槽、3……SiCl4貯留槽、4
……ケイ酸粉末、5……反応管、6……塩酸トラ
ツプ槽である。
The figure is a schematic diagram showing the configuration of an apparatus for carrying out the method of the present invention. In the drawing, 1...Carrier gas storage tank, 2...Pure water storage tank, 3...SiCl 4 storage tank, 4
... Silicic acid powder, 5 ... Reaction tube, 6 ... Hydrochloric acid trap tank.

Claims (1)

【特許請求の範囲】 1 四塩化ケイ素と水蒸気とを5〜200℃の温度
範囲で、かつケイ酸粉末の存在下で反応させて高
純度ケイ酸を生成することを特徴とする高純度ケ
イ酸の製造方法。 2 上記ケイ酸粉末の粒度が40〜1000μmである
ことを特徴とする特許請求の範囲第1項の製造方
法。
[Claims] 1. A high-purity silicic acid characterized by producing high-purity silicic acid by reacting silicon tetrachloride and steam at a temperature range of 5 to 200°C in the presence of silicic acid powder. manufacturing method. 2. The manufacturing method according to claim 1, wherein the silicic acid powder has a particle size of 40 to 1000 μm.
JP14579385A 1985-07-04 1985-07-04 Production of high-purity silicic acid Granted JPS627623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14579385A JPS627623A (en) 1985-07-04 1985-07-04 Production of high-purity silicic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14579385A JPS627623A (en) 1985-07-04 1985-07-04 Production of high-purity silicic acid

Publications (2)

Publication Number Publication Date
JPS627623A JPS627623A (en) 1987-01-14
JPH0336764B2 true JPH0336764B2 (en) 1991-06-03

Family

ID=15393285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14579385A Granted JPS627623A (en) 1985-07-04 1985-07-04 Production of high-purity silicic acid

Country Status (1)

Country Link
JP (1) JPS627623A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4542209B2 (en) * 1998-12-16 2010-09-08 日揮株式会社 Method for producing polycrystalline silicon and method for producing high-purity silica
JP2006131473A (en) * 2004-11-09 2006-05-25 Sumitomo Titanium Corp Method for color developing surface of silicon

Also Published As

Publication number Publication date
JPS627623A (en) 1987-01-14

Similar Documents

Publication Publication Date Title
US4676967A (en) High purity silane and silicon production
CA1228220A (en) Process for the production of silicon
WO2018006694A1 (en) Method for producing silicon tetrachloride
White et al. Staff-industry collaborative report vapor-phase production of colloidal silica
JPH0264006A (en) Production of solar silicon
JPH01188414A (en) Method for converting polymer to trichlorosilane in production of polycrystalline silicon
JPH0222004B2 (en)
JP2001220157A (en) Amorphous synthetic silica powder and glass compact using the same
JP2001220126A (en) Crystalline synthetic silica powder and glass compact using the same
JPH0336764B2 (en)
US3674431A (en) Generation of silicon tetrafluoride
JPS62143813A (en) Production of silicon tetrachloride
US3043664A (en) Production of pure silane
US3016291A (en) Pure silicon by hydrogen reduction
JP3026371B2 (en) Method for producing alkoxysilane
JPH02172811A (en) Production of trichlorosilane
JPH0413282B2 (en)
JPH0297415A (en) Method for increasing amount of silicon tetrachloride in reaction of hydrogen chloride or mixture of hydrogen chloride and chlorine with metal silicon-containing substance
JPS6259515A (en) Production of high-purity silicic acid hydrate
US3681036A (en) Method of making silicon halides
EP0045600B1 (en) Improved method for producing semiconductor grade silicon
SU865790A1 (en) Method of producing dichlorosilane
JPH03218917A (en) Production of boron trichloride
CN103626184B (en) A kind of preparation method of high-purity liquid polysilicon
JPS61186215A (en) Production of spherical silica