JPH048364B2 - - Google Patents

Info

Publication number
JPH048364B2
JPH048364B2 JP20346386A JP20346386A JPH048364B2 JP H048364 B2 JPH048364 B2 JP H048364B2 JP 20346386 A JP20346386 A JP 20346386A JP 20346386 A JP20346386 A JP 20346386A JP H048364 B2 JPH048364 B2 JP H048364B2
Authority
JP
Japan
Prior art keywords
gas
aluminum nitride
purity
flow rate
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP20346386A
Other languages
Japanese (ja)
Other versions
JPS6360102A (en
Inventor
Akira Yamane
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOSOO AKUZO KK
Original Assignee
TOSOO AKUZO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOSOO AKUZO KK filed Critical TOSOO AKUZO KK
Priority to JP20346386A priority Critical patent/JPS6360102A/en
Publication of JPS6360102A publication Critical patent/JPS6360102A/en
Publication of JPH048364B2 publication Critical patent/JPH048364B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/072Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with aluminium

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は高純度窒化アルミニウム粉末の製造法
に関するものである。窒化アルミニウムは高熱伝
導性、高絶縁性等を有し、各種産業用及び民生用
の機械、機器材料或いは電子機器材料用セラミツ
クとして注目されているものであるが、熱的特製
がカチオン不純物や酸素により大きく影響を受け
ることから高純度窒化アルミニウムの開発が望ま
れている。 本発明は気相反応によるカチオン不純物や酸素
を含まない高純度窒化アルミニウム粉末の製造法
に関するものである。 〔従来の技術〕 窒化アルミニウム粉末の製造法には下記の方法
がある。 (1) 金属アルミニウム粉末に窒素またはアンモニ
アを直接反応させ、後焼成する方法。(特開昭
50−160199) (2) アルミナとカーボンとの混合粉末を窒素雰囲
気中で加熱する方法。(特開昭60−180906) (3) 有機アルミニウム化合物をアンモニアまたは
一級あるいは二級アミン類と反応させ窒化アル
ミニウム前駆体を調製した後、不活性ガス、真
空下或いはアンモニア気流中400℃以上で加熱
する方法。(特開昭53−68700) (4) 塩化アルミニウムもしくは臭化アルミニウム
ガスのいずれか或いは両者の混合ガスとアンモ
ニアガスを気相反応させる方法。(特開昭61−
91008) 上記のうち(1)、(2)は原料に起因するカチオン不
純物及び酸素が混在し(2)、(3)の方法ではカーボン
分を除去することは出来ない。 また(4)の方法ではカーボン分のない窒化アルミ
ニウム粉末は得られるが、副生するハロゲン化水
素ガスのため装置の腐食、廃ガス処理等の問題が
残されている。 以上の公知技術の他に有機アルミニウム化合物
ガスとアンモニアガスとの気相反応による窒化ア
ルミニウムの合成法が知られている。例えば
ManasevitらはJournal of the Electrochemical
Society Vol.118 No.11 1864〜1868ページ
(1971)でトリメチルアルミニウムとアンモニア
とを気相反応させ基板上に窒化アルミニウムの結
晶を成長させることを報告している。また特開昭
61−113771号公報には前例と同一原料を使用し、
光化学反応を用いた気相法により基板上に窒化ア
ルミニウムの薄膜を形成させる方法が開示されて
いる。しかしこの方法で得られた窒化アルミニウ
ムのカーボン含有量は1%と高く高純度とは言い
難い。 以上述べた如くいずれも基板上への蒸着が目的
であり窒化アルミニウム粉末が製造された例はな
い。 〔発明が解決すべき問題点〕 そこで本発明者は、高純度有機アルミニウムガ
スとアンモニアガスとを気相反応により作用せし
め高純度窒化アルミニウム粉末を製造する方法に
ついて種々検討した結果、新規な製造法を見い出
し本発明に至つたものである。 〔問題点を解決するための手段〕 本発明は気相反応により高純度有機アルミニウ
ムガスとアンモニアガスとを作用せしめ収率良く
高純度窒化アルミニウム粉末を製造する方法であ
り、その要旨とする所は高純度有機アルミニウム
化合物ガスとアンモニアガスを気相反応させ窒化
アルミニウム粉末を製造する方法において、アン
モニアガスの流量対有機アルミニウム化合物ガス
の流量のモル比が5以上で、しかも200℃以下で
混合したのち、600〜1300℃で気相反応させるこ
とを特徴とする高純度窒化アルミニウム粉末の製
造法に存する。 〔作用〕 以下詳しく説明すると有機アルミニウム化合物
としてはトリアルキルアルミニウムおよびジアル
キルアルミニウムモノハイドライド(但し炭素数
1〜10のアルキル基をいう)であり具体的にはト
リメチルアルミニウム、トリエチルアルミニウ
ム、トリイソブチルアルミニウム、ジメチルアル
ミニウムハイドライド、ジエチルアルミニウムハ
イドライド、ジイソブチルアルミニウムハイドラ
イド等であるが経済面からしてトリイソブチルア
ルミニウムの使用が有利である。 上記の有機アルミニウム化合物にはN2、Ar、
He、H2等の非酸化性ガスもしくはこれらの混合
ガスがキヤリアーガスとして装入されるが、カー
ボン分の汚染をなくすためにはH2ガスが望まし
い。キヤリアーガスとしてH2以外のガスを使用
する場合は外部から適当量のH2ガスを反応系に
導入することも可能である。 有機アルミニウム化合物ガスの流量対キヤリア
ーガスの流量のモル比は生成する窒化アルミニウ
ムの粒径等の粉末特性を考慮すると、使用する有
機アルミニウム化合物の種類にもよるが通常1×
10-2以上が望ましい。更にアンモニアガスの流量
対有機アルミニウム化合物ガスの流量のモル比は
5以上であることが必要であり、これ以下のモル
比では窒化アルミニウムが安定に生成しないばか
りかカーボン分の混入を抑制することが困難であ
る。 混合温度及び反応温度であるが先に述べたアン
モニアガスの流量対有機アルミニウム化合物ガス
の流量のモル比が5以上において混合温度は200
℃以下、また反応温度は600〜1300℃であること
が必要である。 混合温度が200℃以上では有機アルミニウム化
合物が熱分解し、窒化アルミニウムの収率の低下
を招き10℃以下では本質的な問題はないものの冷
却設備等が必要になることから経済上得策ではな
い。 また反応温度は600℃以下では未分解のアルキ
ル基が残存し、1300℃以上では副生する炭化水素
ガスが熱分解するためいずれもカーボン分の汚染
の原因となる。 上記のごとくして得られる窒化アルミニウムは
非晶質又は殆ど非晶質に近い粉末であり、これを
更に高温度例えば1400℃以上で焼成することによ
り結晶化させることができる。 〔実施例及び発明の効果〕 次に実施例を示して具体的に説明するが、これ
に限定されるものではない。 実施例 1 第1図は反応装置の概略を示したものである。
60℃に加熱した混合帯1及び1100℃に加熱した反
応帯2に純度99.999%のアンモニアガスを導入口
8を通して反応管3へ導入した。 一方、容器5中のトリイソブチルアルミニウム
(Al純度99.999%)を60℃に加熱すると共に純度
99.9999%のH2ガスを980ml/分の速度で容器5
中に吹き込み、このトリイソブチルアルミニウム
ガスを導入口9を通して反応管3へ装入した。ア
ンモニアガスとトリイソブチルアルミニウムガス
とのモル比は10で実施した。4は窒化アルミニウ
ム粉末補集器、6は流量調節計、7は熱電対であ
る。 反応終了後回収した粉は白色の微粉末で、X線
回折の結果非晶質であつたが、元素分析値Al=
65.8%、N=34.1%であり、赤外分光分析の結果
が窒化アルミニウムと一致することから窒化アル
ミニウムと同定された。更にこのものをグラフア
イト製ボートにとり純度99.9999%以上の窒素ガ
ス気流下400℃/時の速度で1400℃まで加熱し、
結晶化の高い窒化アルミニウムを得た。この粉末
は白色で元素分析を行つた結果C=<0.1%、N
=33.5%、O=0.6%、Si=5ppm、Fe未検出で平
均粒径は0.05μmであり高純度かつ微細な窒化ア
ルミニウム粉末であつた。このように平均粒径
0.05μmと超微粉のため焼結にとつて有利であつ
た。 実施例 2〜5 反応温度とアンモニアガスの流量対トリイソブ
チルアルミニウムの流量のモル比を変化させて、
実施例1にならい窒化アルミニウム粉末を製造し
た。その結果を表1に示す。
[Industrial Application Field] The present invention relates to a method for producing high-purity aluminum nitride powder. Aluminum nitride has high thermal conductivity, high insulation properties, etc., and is attracting attention as a ceramic material for various industrial and consumer machines, equipment materials, and electronic device materials. Therefore, the development of high-purity aluminum nitride is desired. The present invention relates to a method for producing high-purity aluminum nitride powder free of cationic impurities and oxygen using a gas phase reaction. [Prior Art] There are the following methods for producing aluminum nitride powder. (1) A method in which metal aluminum powder is directly reacted with nitrogen or ammonia and then post-fired. (Tokukai Akira
50−160199) (2) A method of heating a mixed powder of alumina and carbon in a nitrogen atmosphere. (JP 60-180906) (3) After preparing an aluminum nitride precursor by reacting an organoaluminium compound with ammonia or primary or secondary amines, it is heated at 400°C or higher under an inert gas, vacuum, or in an ammonia stream. how to. (Japanese Unexamined Patent Publication No. 53-68700) (4) A method of causing a vapor phase reaction between aluminum chloride gas, aluminum bromide gas, or a mixture of both gases and ammonia gas. (Unexamined Japanese Patent Publication 1986-
91008) Among the above methods (1) and (2), cationic impurities and oxygen caused by the raw materials are mixed, and the carbon content cannot be removed by methods (2) and (3). In addition, although the method (4) yields carbon-free aluminum nitride powder, problems such as equipment corrosion and waste gas treatment remain due to hydrogen halide gas produced as a by-product. In addition to the above known techniques, a method for synthesizing aluminum nitride by a gas phase reaction between organoaluminum compound gas and ammonia gas is known. for example
Manasevit et al. Journal of the Electrochemistry
Society Vol. 118 No. 11 pages 1864-1868 (1971) reports that trimethylaluminum and ammonia are reacted in a gas phase to grow aluminum nitride crystals on a substrate. Also Tokukai Akira
Publication No. 61-113771 uses the same raw materials as the previous example,
A method of forming a thin film of aluminum nitride on a substrate by a vapor phase method using a photochemical reaction is disclosed. However, the carbon content of aluminum nitride obtained by this method is as high as 1%, and it cannot be said to have high purity. As mentioned above, the purpose of all of these methods is to vapor-deposit them onto a substrate, and there is no example in which aluminum nitride powder has been manufactured. [Problems to be Solved by the Invention] Therefore, the inventor of the present invention has investigated various methods for producing high-purity aluminum nitride powder by reacting high-purity organoaluminum gas and ammonia gas through a gas phase reaction, and has developed a new production method. This discovery led to the present invention. [Means for solving the problems] The present invention is a method for producing high-purity aluminum nitride powder with high yield by reacting high-purity organoaluminum gas and ammonia gas through a gas phase reaction, and the gist thereof is as follows. In a method for producing aluminum nitride powder by causing a vapor phase reaction between high-purity organoaluminum compound gas and ammonia gas, the molar ratio of the flow rate of ammonia gas to the flow rate of organoaluminum compound gas is 5 or more and after mixing at 200°C or less. , a method for producing high-purity aluminum nitride powder, characterized by carrying out a gas phase reaction at 600 to 1300°C. [Function] To explain in detail below, organoaluminum compounds include trialkylaluminum and dialkylaluminium monohydride (however, refers to an alkyl group having 1 to 10 carbon atoms), and specifically trimethylaluminum, triethylaluminum, triisobutylaluminum, dimethyl Aluminum hydride, diethylaluminum hydride, diisobutylaluminum hydride, etc. are used, but triisobutylaluminum is advantageous from an economic standpoint. The above organoaluminum compounds include N 2 , Ar,
A non-oxidizing gas such as He, H 2 or a mixture thereof is charged as a carrier gas, but H 2 gas is preferable in order to eliminate carbon contamination. When using a gas other than H 2 as the carrier gas, it is also possible to introduce an appropriate amount of H 2 gas into the reaction system from the outside. The molar ratio of the flow rate of the organoaluminum compound gas to the flow rate of the carrier gas is usually 1×, although it depends on the type of the organoaluminum compound used, considering the powder characteristics such as the particle size of the aluminum nitride to be produced.
10 -2 or higher is desirable. Furthermore, the molar ratio of the flow rate of ammonia gas to the flow rate of organoaluminum compound gas needs to be 5 or more, and if the molar ratio is lower than this, not only will aluminum nitride not be stably generated, but it will also be difficult to suppress the incorporation of carbon components. Have difficulty. Regarding the mixing temperature and reaction temperature, when the molar ratio of the flow rate of ammonia gas to the flow rate of organoaluminum compound gas is 5 or more, the mixing temperature is 200.
It is necessary that the reaction temperature is 600 to 1300°C. If the mixing temperature is higher than 200°C, the organoaluminum compound will thermally decompose, leading to a decrease in the yield of aluminum nitride.If the mixing temperature is lower than 10°C, there will be no essential problem, but cooling equipment will be required, which is not economically advantageous. Furthermore, if the reaction temperature is below 600°C, undecomposed alkyl groups will remain, and if the reaction temperature is above 1300°C, the by-product hydrocarbon gas will be thermally decomposed, both of which will cause carbon contamination. The aluminum nitride obtained as described above is an amorphous or almost amorphous powder, which can be crystallized by firing at a higher temperature, for example, 1400° C. or higher. [Examples and Effects of the Invention] Next, the present invention will be specifically explained with reference to Examples, but the present invention is not limited thereto. Example 1 FIG. 1 schematically shows a reaction apparatus.
Ammonia gas with a purity of 99.999% was introduced into the reaction tube 3 through the inlet 8 into the mixing zone 1 heated to 60°C and the reaction zone 2 heated to 1100°C. Meanwhile, triisobutylaluminum (Al purity 99.999%) in container 5 is heated to 60°C and the purity is
99.9999% H2 gas at a rate of 980ml/min in container 5
This triisobutylaluminum gas was introduced into the reaction tube 3 through the inlet 9. The molar ratio of ammonia gas and triisobutylaluminum gas was 10. 4 is an aluminum nitride powder collector, 6 is a flow rate controller, and 7 is a thermocouple. The powder recovered after the reaction was a white fine powder, and X-ray diffraction showed that it was amorphous, but the elemental analysis value Al=
65.8%, N=34.1%, and the results of infrared spectroscopic analysis were consistent with aluminum nitride, so it was identified as aluminum nitride. Further, this material was placed in a graphite boat and heated to 1400°C at a rate of 400°C/hour under a stream of nitrogen gas with a purity of 99.9999% or higher.
Highly crystallized aluminum nitride was obtained. This powder is white in color and elemental analysis shows that C=<0.1%, N
= 33.5%, O = 0.6%, Si = 5 ppm, Fe was not detected, and the average particle size was 0.05 μm, making it a highly pure and fine aluminum nitride powder. In this way the average particle size
It was advantageous for sintering because it was an ultrafine powder with a diameter of 0.05 μm. Examples 2 to 5 By changing the reaction temperature and the molar ratio of the flow rate of ammonia gas to the flow rate of triisobutylaluminum,
Aluminum nitride powder was produced according to Example 1. The results are shown in Table 1.

【表】 実施例 6〜9 混合温度を変化させ窒化アルミニウム粉末を製
造した。その結果を表2に示す。
[Table] Examples 6 to 9 Aluminum nitride powder was produced by changing the mixing temperature. The results are shown in Table 2.

【表】 実施例 10〜11 有機アルミニウム化合物をトリイソブチルアル
ミニウムからジメチルアルミニウムハイドライド
に変え窒化アルミニウム粉末を製造した。その結
果を表3に示す。
[Table] Examples 10 to 11 Aluminum nitride powder was produced by changing the organic aluminum compound from triisobutylaluminum to dimethylaluminum hydride. The results are shown in Table 3.

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の製造法を実施するための反応
装置の概略を示したものである。 1……混合帯、2……反応帯、3……反応管、
4……窒化アルミニウム粉末補集器、5……有機
アルミニウム化合物容器、6……流量調節計、7
……熱電対、8……アンモニアガス導入管、9…
…有機アルミニウム化合物導入管。
FIG. 1 schematically shows a reaction apparatus for carrying out the production method of the present invention. 1...Mixing zone, 2...Reaction zone, 3...Reaction tube,
4... Aluminum nitride powder collector, 5... Organic aluminum compound container, 6... Flow rate controller, 7
...Thermocouple, 8...Ammonia gas introduction pipe, 9...
...Organic aluminum compound introduction tube.

Claims (1)

【特許請求の範囲】 1 高純度有機アルミニウム化合物ガスとアンモ
ニアガスを気相反応させ窒化アルミニウム粉末を
製造する方法において、アンモニアガスの流量対
有機アルミニウム化合物ガスの流量のモル比が5
以上で、しかも200℃以下で混合したのち、600〜
1300℃で気相反応させることを特徴とする高純度
窒化アルミニウム粉末の製造法。 2 高純度有機アルミニウム化合物がトリアルキ
ルアルミニウムおよびジアルキルアルミニウムモ
ノハイドライド(但し炭素数1〜10のアルキル基
をいう)である特許請求の範囲第1項記載の製造
法。
[Claims] 1. A method for producing aluminum nitride powder by causing a gas phase reaction between a high-purity organoaluminum compound gas and ammonia gas, wherein the molar ratio of the flow rate of ammonia gas to the flow rate of organoaluminum compound gas is 5.
After mixing above and below 200℃, 600~
A method for producing high-purity aluminum nitride powder, which is characterized by a gas phase reaction at 1300℃. 2. The production method according to claim 1, wherein the high-purity organoaluminum compound is a trialkylaluminum and a dialkylaluminum monohydride (provided that it refers to an alkyl group having 1 to 10 carbon atoms).
JP20346386A 1986-08-29 1986-08-29 Production of high-purity aluminum nitride powder Granted JPS6360102A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20346386A JPS6360102A (en) 1986-08-29 1986-08-29 Production of high-purity aluminum nitride powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20346386A JPS6360102A (en) 1986-08-29 1986-08-29 Production of high-purity aluminum nitride powder

Publications (2)

Publication Number Publication Date
JPS6360102A JPS6360102A (en) 1988-03-16
JPH048364B2 true JPH048364B2 (en) 1992-02-14

Family

ID=16474544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20346386A Granted JPS6360102A (en) 1986-08-29 1986-08-29 Production of high-purity aluminum nitride powder

Country Status (1)

Country Link
JP (1) JPS6360102A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2812473B2 (en) * 1989-02-16 1998-10-22 三井化学株式会社 Method for producing aluminum nitride powder
TW200607754A (en) 2004-07-08 2006-03-01 Mitsui Chemicals Inc Aluminum nitride powder, method for producing the same and use thereof

Also Published As

Publication number Publication date
JPS6360102A (en) 1988-03-16

Similar Documents

Publication Publication Date Title
US3933985A (en) Process for production of polycrystalline silicon
JP2007526203A (en) Method for producing silicon
JP4038110B2 (en) Method for producing silicon
JPS6112844B2 (en)
US5356608A (en) Preparation of a high purity aluminum nitride antenna window by organometallic pyrolysis
JPS6126487B2 (en)
EP0334469B1 (en) Gas phase preparation of aluminium nitride or a mixture of aluminium and boron nitrides
CN1318293C (en) Method for solid-phase double decomposition to synthesize nanometer aluminium nitride
KR19990067143A (en) Method for producing organic indium chloride
JPH048364B2 (en)
US3773899A (en) Manufacture of silicon carbide
JPH0542364B2 (en)
US3342551A (en) Method and apparatus for producing a semiconducting compound of two or more components
US3900660A (en) Manufacture of silicon metal from a mixture of chlorosilanes
JPH0535084B2 (en)
Kalyoncu BN powder synthesis at low temperatures
JP3325344B2 (en) Method for producing aluminum nitride powder
JP2726703B2 (en) Method for producing aluminum nitride powder
JP2670331B2 (en) Method for producing aluminum nitride powder
JP2619888B2 (en) Manufacturing method of aluminum nitride
EP0225412B1 (en) Production of silicon imides and of silicon nitride thereof
JP2812473B2 (en) Method for producing aluminum nitride powder
JPH03218917A (en) Production of boron trichloride
US4959200A (en) Process for manufacturing silane
JPS59121109A (en) Production of high purity silicon