JPH10325792A - Infrared microscope - Google Patents

Infrared microscope

Info

Publication number
JPH10325792A
JPH10325792A JP13310697A JP13310697A JPH10325792A JP H10325792 A JPH10325792 A JP H10325792A JP 13310697 A JP13310697 A JP 13310697A JP 13310697 A JP13310697 A JP 13310697A JP H10325792 A JPH10325792 A JP H10325792A
Authority
JP
Japan
Prior art keywords
sample
prism
atr prism
measurement
atr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13310697A
Other languages
Japanese (ja)
Inventor
Kiyoshi Wada
潔 和田
Katsuhiko Ichimura
克彦 市村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP13310697A priority Critical patent/JPH10325792A/en
Publication of JPH10325792A publication Critical patent/JPH10325792A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily verify a measurement position after measurement and easily release a sample from a prism, by forming the top of a contact surface with the sample of a prism (ATR prism) with a spherical contact surface in the shape of a raised surface. SOLUTION: The tip of an ATR prism 60 is cut, for example, by etching, thus forming a raised surface with a diameter of approximately 10-200 μm. When a sample 34 is to be measured, the ATR prism 60 is positioned at the upper portion of the measurement point of the sample 34, the sample stage is raised and the sample 34 is pressed against the bottom surface of the ATR prism 60. At this time, a recess (a mark on the raised surface) is given to the surface of the sample 34 by the raised surface (contact) on the bottom surface of the ATR prism 60. Therefore, even after a measurement ends, the mark remains at the measurement position, thus verifying the measurement position of the sample 34 easily. Also, since the contact surface between the ATR prism 60 and the sample 34 is small, the sample 34 can be easily released from the ATR prism 60.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、試料の表面に赤外
光を照射し、その反射光を測定することにより試料表面
の観察を行う赤外顕微鏡に関し、特に赤外顕微鏡を用い
て全反射測定法により試料の表面を分析する際に使用さ
れる全反射対物鏡に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an infrared microscope for irradiating a sample surface with infrared light and observing the sample surface by measuring the reflected light, and more particularly to a total reflection using an infrared microscope. The present invention relates to a total internal reflection objective used when analyzing the surface of a sample by a measurement method.

【0002】[0002]

【従来の技術】全反射吸収(Attenuated Total Reflect
ance)を利用した試料の分析法(ATR法)の原理につ
いて図5を参照しながら説明する。図5(a)におい
て、試料34よりも大きい屈折率を有するプリズム(AT
Rプリズム)27に試料34を圧着し、赤外光を試料34の表
面に向けて全反射臨界角以上の入射角で照射すると、赤
外光はATRプリズム27に入射した後、ATRプリズム
27と試料34との境界面35で全反射される。この全反射の
際、赤外光は図5(b)に示したように境界面35をわず
かに(測定赤外光の波長の数分の1)越えて試料側へ侵
入し、試料34の表面部分により固有の吸収を受ける。こ
のように試料表面で反射された赤外光の吸収スペクトル
を測定することにより、試料表面の分析を行うことがで
きる。
2. Description of the Related Art Attenuated Total Reflection
The principle of the sample analysis method (ATR method) using ance) will be described with reference to FIG. In FIG. 5A, a prism (AT) having a larger refractive index than the sample 34 is used.
When the sample 34 is pressed against the R prism 27 and the infrared light is directed toward the surface of the sample 34 at an incident angle equal to or greater than the total reflection critical angle, the infrared light is incident on the ATR prism 27, and then the ATR prism
The light is totally reflected at an interface 35 between the sample 27 and the sample 34. At the time of this total reflection, the infrared light slightly crosses the boundary surface 35 (a fraction of the wavelength of the measured infrared light) and enters the sample side as shown in FIG. It is inherently absorbed by the surface portion. By measuring the absorption spectrum of the infrared light reflected on the sample surface in this way, the sample surface can be analyzed.

【0003】図3は一般的な赤外顕微鏡の対物光学系の
構成を示す。対物光学系には、カセグレン式の対物鏡1
4、球面状接触面を有するATRプリズム60、ATRプ
リズム60を保持するプリズムホルダ62、試料34を載置す
るための試料ステージ36を含む。ATRプリズム60の直
径は2〜5mm程度である。プリズムホルダ62は水平方
向にスライドできるようになっている。また、試料ステ
ージ36の3次元空間(X、Y及びZ)上の位置は所定範
囲内で自由に移動することができる。更に、図示されて
いないが、赤外光源、可視光源、赤外光を検出するため
の測定光学系及び可視光を用いて試料を目視観察するた
めの目視光学系などが赤外顕微鏡の構成要素として含ま
れており、これらは周知の構成である。
FIG. 3 shows a configuration of an objective optical system of a general infrared microscope. Cassegrain type objective mirror 1
4. It includes an ATR prism 60 having a spherical contact surface, a prism holder 62 for holding the ATR prism 60, and a sample stage 36 for mounting a sample 34. The diameter of the ATR prism 60 is about 2 to 5 mm. The prism holder 62 can slide in the horizontal direction. The position of the sample stage 36 in the three-dimensional space (X, Y, and Z) can be freely moved within a predetermined range. Further, although not shown, an infrared light source, a visible light source, a measurement optical system for detecting infrared light, and a visual optical system for visually observing a sample using visible light are components of the infrared microscope. And these are well-known configurations.

【0004】[0004]

【発明が解決しようとする課題】このような構成の赤外
顕微鏡では、図4にその拡大図を示すように、ATRプ
リズムは下方に膨らんだ球面上であり、試料との接触面
は直径数100μmと比較的広く試料への圧力も少な
い。従って、試料表面に対する物理的ダメージはない
が、逆に測定後測定位置を点検することができないとい
う不都合があった。また、試料との接触面(密着面)が
比較的広いので、測定後試料をATRプリズムから離し
にくいという問題もあった。
In an infrared microscope having such a structure, as shown in an enlarged view of FIG. 4, the ATR prism is on a spherical surface which swells downward, and the contact surface with the sample has a diameter of a few. The pressure on the sample is relatively small, being as large as 100 μm. Therefore, there is no physical damage to the sample surface, but on the contrary, the measurement position cannot be checked after the measurement. Further, since the contact surface (contact surface) with the sample is relatively wide, there is also a problem that the sample is hard to separate from the ATR prism after the measurement.

【0005】本発明は、測定後に測定位置を目視により
容易に確認することができ、かつ、測定後試料を容易く
ATRプリズムから離すことができる赤外顕微鏡を提供
することを目的としている。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an infrared microscope in which a measurement position can be easily confirmed visually after measurement and a sample can be easily separated from an ATR prism after measurement.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明の赤外顕微鏡においては、ATRプリズムの
試料との接触面の頂部を突起面の形状にて形成したもの
である。
In order to achieve the above object, in the infrared microscope of the present invention, the top of the contact surface of the ATR prism with the sample is formed in the shape of a protruding surface.

【0007】突起面の大きさとしては直径数10〜20
0μm程度である。また、突起面形状の加工は、図2に
示すように、ATRプリズム先端をエッチングなどによ
り削り取って突起面を形成する。
[0007] The size of the projection surface is 10 to 20 in diameter.
It is about 0 μm. Further, as shown in FIG. 2, the projection surface shape is formed by shaving the tip of the ATR prism by etching or the like to form a projection surface.

【0008】このような接触面頂部に突起面を有するA
TRプリズムを試料に圧着することにより、試料には図
1に示すように窪みができ、これによって測定後にも容
易に測定位置を確認することができ、また、接触面が小
さいので容易にATRプリズムから試料を剥がすことも
できる。
An A having a projection surface on the top of such a contact surface
By pressing the TR prism on the sample, a depression is formed in the sample as shown in FIG. 1, whereby the measurement position can be easily confirmed even after the measurement, and since the contact surface is small, the ATR prism can be easily formed. The sample can be peeled off from the sample.

【0009】[0009]

【発明の実施の形態】以下、本発明の一実施例の赤外顕
微鏡を説明するに、ATRプリズム60の形状が相違する
点を除いて基本的構成は図3に示された一般的な赤外顕
微鏡と同様なので、再度図3を参照しながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an infrared microscope according to an embodiment of the present invention will be described. The basic structure of the infrared microscope is the same as that of the general red microscope shown in FIG. Since this is the same as the external microscope, it will be described again with reference to FIG.

【0010】図3(a)に示すように、プリズムホルダ
62をスライドさせてATRプリズム60を試料34の表面か
ら退避させる。この状態で可視光源(図示せず)からの
可視光を試料34に直接照射し、目視光学系により試料34
の像を目視観察しながら試料ステージ36を駆動して試料
34の位置を調節し、試料34の表面上の測定点を対物鏡の
焦点に位置させる。
[0010] As shown in FIG.
The ATR prism 60 is retracted from the surface of the sample 34 by sliding 62. In this state, the sample 34 is directly irradiated with visible light from a visible light source (not shown),
The sample stage 36 is driven while visually observing the image of
The position of 34 is adjusted so that the measurement point on the surface of the sample 34 is located at the focal point of the objective mirror.

【0011】このように試料34の位置を決定した後、図
3(b)に示すように、プリズムホルダ62を水平方向に
スライドさせてATRプリズム60が試料34の測定点の上
方に位置するようにし、更に試料ステージ36を上昇させ
てATRプリズム60の底面に試料34を圧着させる。
After determining the position of the sample 34, the prism holder 62 is slid horizontally so that the ATR prism 60 is positioned above the measurement point of the sample 34, as shown in FIG. Then, the sample stage 36 is further raised, and the sample 34 is pressed against the bottom surface of the ATR prism 60.

【0012】ここで、ATRプリズム60の底面、即ち、
試料34との接触面には図2に示されるように、直径数1
0〜200μm程度の小さな突起面(接点)が形成され
ており、試料34が圧着された際、試料34の表面には図1
に示されるように、窪み(跡)がつけられる。これによ
って測定後にも測定点を容易に確認することができる。
Here, the bottom surface of the ATR prism 60, that is,
As shown in FIG. 2, the contact surface with the sample 34 has a diameter of 1
A small projection surface (contact point) of about 0 to 200 μm is formed, and when the sample 34 is crimped, the surface of the sample 34
As shown in FIG. Thus, the measurement point can be easily confirmed even after the measurement.

【0013】このような状態で、赤外光源(図示せず)
からの赤外光がカセグレン式対物鏡14で集光されてAT
Rプリズム60の試料34との接触面における接点に照射さ
れ、試料34表面からの反射赤外光が再度カセグレン式対
物鏡14で集光され検出光学系により検出される。
In such a state, an infrared light source (not shown)
Is collected by the Cassegrain objective 14
Irradiation is made to the contact point of the contact surface of the R prism 60 with the sample 34, and the reflected infrared light from the surface of the sample 34 is collected again by the Cassegrain type objective mirror 14 and detected by the detection optical system.

【0014】[0014]

【発明の効果】本発明は、以上説明したように構成され
ているので、測定終了後も測定位置に跡が残り、容易に
測定点を確認することができる。また、ATRプリズム
の試料との接触面が小さいので、試料をATRプリズム
から容易く剥がすことができるという効果もある。
Since the present invention is configured as described above, a trace remains at the measurement position even after the measurement is completed, and the measurement point can be easily confirmed. Further, since the contact surface of the ATR prism with the sample is small, there is an effect that the sample can be easily peeled off from the ATR prism.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明実施例の赤外顕微鏡のATRプリズムの
形状を示す図である。
FIG. 1 is a diagram showing a shape of an ATR prism of an infrared microscope according to an embodiment of the present invention.

【図2】本発明実施例の赤外顕微鏡のATRプリズムの
加工法の一例を示す図である。
FIG. 2 is a diagram showing an example of a method for processing an ATR prism of the infrared microscope according to the embodiment of the present invention.

【図3】一般的な赤外顕微鏡の対物光学系を示す図であ
る。
FIG. 3 is a diagram showing an objective optical system of a general infrared microscope.

【図4】従来の赤外顕微鏡のATRプリズムの形状を示
す図である。
FIG. 4 is a diagram showing a shape of an ATR prism of a conventional infrared microscope.

【図5】全反射吸収を利用した試料の分析法の原理を説
明する図である。
FIG. 5 is a diagram illustrating the principle of a sample analysis method using total reflection absorption.

【符号の説明】[Explanation of symbols]

14…対物鏡 34…試料 36…試料ステージ 60
…ATRプリズム
14 ... objective mirror 34 ... sample 36 ... sample stage 60
… ATR prism

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 球面状接触面を有するプリズムを試料に
圧着し、赤外光を試料表面に向けて全反射臨界角以上の
入射角で照射して、試料表面で反射された赤外光の吸収
スペクトルを測定する赤外顕微鏡において、 前記プリズムの接触面頂部を突起面形状にて形成したこ
とを特徴とする赤外顕微鏡。
1. A prism having a spherical contact surface is pressed against a sample, and infrared light is directed toward the surface of the sample at an incident angle equal to or greater than a critical angle for total reflection. An infrared microscope for measuring an absorption spectrum, wherein an apex of a contact surface of the prism is formed in a projection shape.
JP13310697A 1997-05-23 1997-05-23 Infrared microscope Pending JPH10325792A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13310697A JPH10325792A (en) 1997-05-23 1997-05-23 Infrared microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13310697A JPH10325792A (en) 1997-05-23 1997-05-23 Infrared microscope

Publications (1)

Publication Number Publication Date
JPH10325792A true JPH10325792A (en) 1998-12-08

Family

ID=15096965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13310697A Pending JPH10325792A (en) 1997-05-23 1997-05-23 Infrared microscope

Country Status (1)

Country Link
JP (1) JPH10325792A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007078487A (en) * 2005-09-13 2007-03-29 Hokkaido Univ Electrochemical infrared spectroscope
JP2009063410A (en) * 2007-09-06 2009-03-26 Jasco Corp Near-field fiber probe, and near-field optical microscope
US8223430B2 (en) 2006-04-26 2012-07-17 Perkinelmer Singapore Pte Ltd. Accessory for attenuated total internal reflectance (ATR) spectroscopy

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007078487A (en) * 2005-09-13 2007-03-29 Hokkaido Univ Electrochemical infrared spectroscope
US8223430B2 (en) 2006-04-26 2012-07-17 Perkinelmer Singapore Pte Ltd. Accessory for attenuated total internal reflectance (ATR) spectroscopy
US8223429B2 (en) * 2006-04-26 2012-07-17 Perkinelmer Singapore Pte Ltd. Accessory for attenuated total internal reflective (ATR) spectroscopy
US8400711B2 (en) 2006-04-26 2013-03-19 Perkinelmer Singapore Pte Ltd. Accessory for attenuated total internal reflectance (ATR) spectroscopy
US8743456B2 (en) 2006-04-26 2014-06-03 Perkinelmer Singapore Pte Ltd. Systems and methods for attenuated total internal reflectance (ATR) spectroscopy
JP2009063410A (en) * 2007-09-06 2009-03-26 Jasco Corp Near-field fiber probe, and near-field optical microscope

Similar Documents

Publication Publication Date Title
KR101815325B1 (en) System for directly measuring the depth of a high aspect ratio etched feature on a wafer
JP2731590B2 (en) How to measure contact angle
US6356347B1 (en) Surface inspection using the ratio of intensities of s- and p-polarized light components of a laser beam reflected a rough surface
JPH0329318B2 (en)
CA2649592A1 (en) Accessory for attenuated total internal reflectance (atr) spectroscopy
KR100270009B1 (en) Method and apparatus for imaging surface topography of a wafer
JP5363199B2 (en) Microscopic total reflection measuring device
JPH11132728A (en) Method and device for measuring thickness of optical sample
JP2002148172A (en) Near field microscope
JPH10325792A (en) Infrared microscope
JP2010156557A (en) Incident optical system and raman scattering measurement apparatus
JPH11190694A (en) Atr mapping method
JPH10123429A (en) Slide glass and cover glass
JP4136911B2 (en) Infrared microscope and measuring position determination method thereof
JP3136575B2 (en) Total reflection absorption spectrum measurement device
JP3179136B2 (en) Microscopic infrared ATR measuring device
JPH04116452A (en) Microscopic infrared atr measuring apparatus
JPH08233562A (en) Micro-atr mapping measuring device
JP2597515Y2 (en) Total reflection absorption spectrum measurement device
JPH1010042A (en) Infrared microscope
JPH08233728A (en) Microscopic total reflection absorption spectrum measuring apparatus
JP3369268B2 (en) Defect detection method inside translucent object
JPH10293015A (en) Optical detection device
JP2943236B2 (en) Total reflection absorption spectrum measurement device
JP3174768U (en) Total reflection absorption measuring device