JP2007078487A - Electrochemical infrared spectroscope - Google Patents

Electrochemical infrared spectroscope Download PDF

Info

Publication number
JP2007078487A
JP2007078487A JP2005265859A JP2005265859A JP2007078487A JP 2007078487 A JP2007078487 A JP 2007078487A JP 2005265859 A JP2005265859 A JP 2005265859A JP 2005265859 A JP2005265859 A JP 2005265859A JP 2007078487 A JP2007078487 A JP 2007078487A
Authority
JP
Japan
Prior art keywords
prism
infrared
electrode
electrochemical
working electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005265859A
Other languages
Japanese (ja)
Other versions
JP4773168B2 (en
Inventor
Masatoshi Osawa
雅俊 大澤
Hideo Naohara
秀夫 猶原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido University NUC
Toyota Motor Corp
Original Assignee
Hokkaido University NUC
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido University NUC, Toyota Motor Corp filed Critical Hokkaido University NUC
Priority to JP2005265859A priority Critical patent/JP4773168B2/en
Publication of JP2007078487A publication Critical patent/JP2007078487A/en
Application granted granted Critical
Publication of JP4773168B2 publication Critical patent/JP4773168B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3577Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing liquids, e.g. polluted water

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrochemical infrared spectroscope capable of detecting/identifying a chemical seed having infrared absorption in a low wave number region where a prism itself has infrared absorption, especially a low wave number region of about 1,000 cm<SP>-1</SP>or below. <P>SOLUTION: An electrochemical surface increasing infrared absorbing spectroscope is equipped with a total reflection measuring prism (1), an acting electrode (2) comprising a metal thin film closely bonded to the base of the prism and supplied with an electrolyte (3) on the opposite face of a face, the counter electrode (4) forming a pair along with the acting electrode, a reference electrode (5) for prescribing the potential of the acting electrode and an optical system for condensing infrared rays to the interface of the prism and the acting electrode from this interior of the prism and guiding the infrared rays totally reflected from the interface to a detector to detect the intensity thereof. The prism has a dimension so that the maximum light passage length of infrared rays in the prism becomes 10 mm or below and the optical system has an infrared microscope and an infrared high sensitivity detector with D<SP>*</SP>of 10<SP>9</SP>or above. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電極表面をその場(in‐situ)測定することができる電気化学赤外分光装置に関する。   The present invention relates to an electrochemical infrared spectrometer capable of measuring an electrode surface in-situ.

赤外分光法による電極表面反応のその場測定は、電極表面上や電極表面近傍に存在する化学種を検出・同定することで、電極反応機構の解明が可能となることから、電気化学の発展に大きく貢献する技術として期待されている。具体的には、例えば、燃料電池における触媒反応機構を解明することによって、触媒利用率の向上や、長期間にわたる触媒性能の維持等の達成を実現することができる。   In-situ measurement of electrode surface reaction by infrared spectroscopy enables the elucidation of the electrode reaction mechanism by detecting and identifying the chemical species present on or near the electrode surface. It is expected as a technology that greatly contributes to Specifically, for example, by elucidating the catalytic reaction mechanism in a fuel cell, it is possible to achieve improvement in catalyst utilization, maintenance of catalyst performance over a long period of time, and the like.

赤外分光によって電極表面反応をその場測定する方法としては、高感度赤外吸収反射法(Infrared Reflection Absorption Spectroscopy:IRAS)が挙げられる。IRASは、電極と電解液との界面に赤外光を入射、反射させ、反射光の強度を測定することにより、電極表面を観察するものである(図5参照)。IRASにおいて、赤外光は上記界面への入射前、及び、該界面からの反射後に、電解液層内を通過する(図5参照)が、このとき電解液に強く吸収されてしまう。ゆえに、電解液による赤外光の吸収を抑制するため、電解液層を数μm程度に薄くする必要がある。   As a method for measuring the electrode surface reaction in situ by infrared spectroscopy, there is a highly sensitive infrared absorption reflection method (IRAS). In the IRAS, infrared light is incident and reflected on the interface between the electrode and the electrolyte, and the intensity of the reflected light is measured to observe the electrode surface (see FIG. 5). In IRAS, infrared light passes through the electrolyte layer before being incident on the interface and after being reflected from the interface (see FIG. 5), but at this time, it is strongly absorbed by the electrolyte. Therefore, in order to suppress absorption of infrared light by the electrolytic solution, the electrolytic solution layer needs to be thinned to about several μm.

しかし、電解液層を薄くすると、電極反応における反応種や反応生成物の拡散が行われにくくなり、電極反応がスムーズに進行しないという問題が生じる。特に、電極反応によりガスが生成する場合には、生成したガスが電極表面に滞ってしまい、分光測定が妨害されるため正確な測定が難しくなる。さらに、電解液層が薄いため、電極に電流が流れにくく、電極反応が妨げられやすい。また、電極に電流が流れ難いことから、電極電位を所望の値に制御することが困難である。
しかも、電解液層を薄くしても、電極表面近傍に存在し、検出・同定の目的とする化学種の吸収と比較して、電解液層の吸収(バックグラウンド吸収)は著しく大きいため、完全にバックグラウンド吸収を除去することは非常に難しく、電極表面の情報が得られにくい。
However, if the electrolyte layer is made thin, it becomes difficult for the reaction species and reaction products in the electrode reaction to diffuse, and the electrode reaction does not proceed smoothly. In particular, when a gas is generated by an electrode reaction, the generated gas stagnates on the electrode surface, and the spectroscopic measurement is disturbed, making accurate measurement difficult. Furthermore, since the electrolyte layer is thin, it is difficult for current to flow through the electrode, and the electrode reaction is likely to be hindered. In addition, since it is difficult for current to flow through the electrodes, it is difficult to control the electrode potential to a desired value.
Moreover, even if the electrolyte layer is thin, it exists near the electrode surface, and the absorption (background absorption) of the electrolyte layer is significantly larger than the absorption of the chemical species for detection and identification purposes. In addition, it is very difficult to remove background absorption, and information on the electrode surface is difficult to obtain.

上記のようなIRASの問題は、底面に金属薄膜を形成したプリズムを用い、全反射(Attenuated−Total−Reflection;ATR)法を適用することによって解決することが可能である(図1参照)。ATR法は、プリズムと電解液とを密着させ、プリズムから電解液内部へわずかに染み出す光(エバネッセント波)の反射を測定するものである。ATR法において、赤外光は電解液層内を通過しないので、電解液による赤外光の吸収が小さく、電解液層を厚くすることができる。従って、IRASのように電解液層が薄いために生じる諸問題が、ATR法では発生しにくい。   The problem of IRAS as described above can be solved by applying a total reflection (ATR) method using a prism having a metal thin film formed on the bottom surface (see FIG. 1). The ATR method measures the reflection of light (evanescent wave) that leaks slightly from the prism into the electrolytic solution by bringing the prism and the electrolytic solution into close contact with each other. In the ATR method, since infrared light does not pass through the electrolyte layer, the absorption of infrared light by the electrolyte is small and the electrolyte layer can be thickened. Therefore, various problems that occur because the electrolyte layer is thin like IRAS hardly occur in the ATR method.

さらに、このとき、プリズムに形成する金属薄膜(金属の種類、薄膜を形成する金属の粒径、膜厚等)によっては、金属薄膜の近傍に存在する化学種の赤外吸収が著しく増大し、該化学種を高感度で観察することができる。この金属薄膜による化学種の赤外吸収増強は、表面増強赤外吸収(Surface−Enhanced Infrared Absorption;SEIRA)と呼ばれている(非特許文献1、非特許文献2参照)。   Furthermore, at this time, depending on the metal thin film formed on the prism (the type of metal, the particle size of the metal forming the thin film, the film thickness, etc.), the infrared absorption of chemical species present in the vicinity of the metal thin film is significantly increased. The chemical species can be observed with high sensitivity. The infrared absorption enhancement of chemical species by this metal thin film is called surface-enhanced infrared absorption (SEIRA) (see Non-Patent Document 1 and Non-Patent Document 2).

このSEIRAをATR法と組み合わせたATR−SEIRAS法において、赤外吸収増強効果は、電極である金属薄膜と電解液との界面付近においてのみ得られるため、電解液層による赤外吸収は増大されることがなく、電極表面近傍に存在する化学種のみを高感度で観察することができる。   In the ATR-SEIRAS method in which this SEIRA is combined with the ATR method, the infrared absorption enhancement effect is obtained only in the vicinity of the interface between the metal thin film as an electrode and the electrolytic solution, so that the infrared absorption by the electrolytic solution layer is increased. And only the chemical species present in the vicinity of the electrode surface can be observed with high sensitivity.

M.Osawa “Dynamic Processes in Electrochemical Reactions Studied by Surface-Enhanced Infrared Absorption Spectroscopy (SEARA)” Bull.Chem.Soc.Jpn.,70,2681-2880(1997)M.Osawa “Dynamic Processes in Electrochemical Reactions Studied by Surface-Enhanced Infrared Absorption Spectroscopy (SEARA)” Bull.Chem.Soc.Jpn., 70,2681-2880 (1997) 「赤外分光法」(実用分光学シリーズ)、尾崎幸洋編、アイピーシー出版部、第4章6節(160−170頁)、大澤雅俊分担執筆"Infrared Spectroscopy" (Practical Spectroscopy Series), Yukihiro Ozaki, IP Publishing Department, Chapter 4: 6 (pp. 160-170), Masatoshi Osawa

ATR−SEIRA法のプリズムとしては、赤外光の透過性、屈折率、電気化学的安定性等の観点から、主にシリコン(Si)が用いられることが多い。しかしながら、シリコンは1000cm−1以下のような低波数域に赤外吸収を有しているため、このような低波数域に赤外吸収を有する化学種に対して感度が低いという問題がある。 As the prism of the ATR-SEIRA method, silicon (Si) is often used mainly from the viewpoints of infrared transmittance, refractive index, electrochemical stability, and the like. However, since silicon has infrared absorption in a low wavenumber region such as 1000 cm −1 or less, there is a problem that sensitivity is low with respect to chemical species having infrared absorption in such a low wavenumber region.

本発明は上記実情を鑑みて成し遂げられたものであり、プリズム自身が赤外吸収を有する波数域、特に、約1000cm−1以下のような低波数域に赤外吸収を有する化学種の検出・同定を可能にする電気化学赤外分光装置を提供することを目的とするものである。 The present invention has been accomplished in view of the above circumstances, and the detection and detection of chemical species having infrared absorption in a wave number range where the prism itself has infrared absorption, particularly in a low wave number range of about 1000 cm −1 or less. It is an object of the present invention to provide an electrochemical infrared spectroscopic device that enables identification.

本発明の電気化学赤外分光装置は、全反射測定用プリズムと、該プリズムの底面に密着した金属薄膜からなり、且つ、該プリズム底面と密着した面とは反対側の面に電解液が供給される作用電極と、前記作用電極と対をなす対極と、前記作用電極の電位規定用の参照電極と、赤外光を前記プリズムの内部から該プリズムと前記作用電極との界面に集光し、該界面で全反射する赤外光を検出器へと導いて強度を検出する光学系と、を備える電気化学表面増強赤外吸収分光装置であって、前記プリズムは、該プリズムにおける赤外光の最大光路長が10mm以下となる寸法を有し、前記光学系は、赤外顕微鏡と、Dが10以上の赤外高感度検出器を有することを特徴とするものである。 The electrochemical infrared spectroscopic device of the present invention comprises a total reflection measuring prism and a metal thin film in close contact with the bottom surface of the prism, and an electrolyte is supplied to a surface opposite to the surface in close contact with the prism bottom surface. A working electrode, a counter electrode paired with the working electrode, a reference electrode for regulating the potential of the working electrode, and infrared light from the inside of the prism to the interface between the prism and the working electrode. An electrochemical surface-enhanced infrared absorption spectroscopic device comprising: an optical system for detecting the intensity by introducing infrared light totally reflected at the interface to a detector, wherein the prism includes infrared light in the prism. The maximum optical path length is 10 mm or less, and the optical system has an infrared microscope and an infrared sensitive detector with D * of 10 9 or more.

本発明は、プリズム内における赤外光の最大光路長が10mm以下となるような寸法を有するプリズムを用いることによって、プリズム自身による赤外光の吸収を抑制するものである。このように、プリズムによる赤外分光測定の妨害を抑えることで、プリズム自身が赤外吸収を有する波数領域に赤外吸収を有する化学種の検出・同定が可能となる。
また、本発明の電気化学赤外分光装置は、最大光路長が10mm以下となるような小さなプリズムを用いる場合でも、高感度な赤外分光測定を可能とするために、赤外顕微鏡と高感度検出器を備える。
The present invention suppresses absorption of infrared light by the prism itself by using a prism having such a dimension that the maximum optical path length of infrared light within the prism is 10 mm or less. In this way, by suppressing the interference of the infrared spectroscopic measurement by the prism, it becomes possible to detect and identify the chemical species having infrared absorption in the wave number region where the prism itself has infrared absorption.
In addition, the electrochemical infrared spectroscopic device of the present invention has an infrared microscope and a high sensitivity in order to enable highly sensitive infrared spectroscopic measurement even when a small prism having a maximum optical path length of 10 mm or less is used. A detector is provided.

プリズムによる赤外吸収をさらに抑えるため、前記プリズムは、該プリズムにおける赤外光の最大光路長が6mm以下となる寸法を有することが好ましい。
プリズム内における赤外光の最大光路長が10mm以下になるような寸法を有するプリズムとして、具体的には、形状が半球状又は半円柱状であり、該プリズムの半円状断面の径が10mm以下であるものが挙げられる。
また、赤外光の透過性、屈折率、電気化学的安定性等の観点から、前記プリズムは、シリコン(Si)からなることが好ましい。
In order to further suppress infrared absorption by the prism, the prism preferably has a dimension such that the maximum optical path length of infrared light in the prism is 6 mm or less.
Specifically, as a prism having a dimension such that the maximum optical path length of infrared light within the prism is 10 mm or less, the shape is hemispherical or semicylindrical, and the diameter of the semicircular cross section of the prism is 10 mm. The following are mentioned.
The prism is preferably made of silicon (Si) from the viewpoints of infrared light transmittance, refractive index, electrochemical stability, and the like.

赤外分光測定の条件を安定に保持するためには、作用電極に供給される電解液の濃度を一定に保つことが好ましい。電解液の濃度を一定に保つ方法として、例えば、前記電解液が、前記作用電極と前記対極とを内壁の一部として有する空間内を流通させる方法を採用することができる。   In order to stably maintain the conditions of the infrared spectroscopic measurement, it is preferable to keep the concentration of the electrolytic solution supplied to the working electrode constant. As a method for keeping the concentration of the electrolytic solution constant, for example, a method in which the electrolytic solution circulates in a space having the working electrode and the counter electrode as part of an inner wall can be employed.

本発明によれば、プリズム自身が赤外吸収を示す波数領域においてもプリズムによる妨害が少ないので、高感度で測定することができる。すなわち、広範囲の波数領域における赤外スペクトルを高感度で観測することができ、あらゆる化学種の同定・検出が可能である。従って、本発明の電気化学赤外分光装置を用いることによって、電極表面における反応を詳細に解析することが可能である。   According to the present invention, since the interference by the prism is small even in the wave number region where the prism itself exhibits infrared absorption, measurement can be performed with high sensitivity. That is, the infrared spectrum in a wide wave number region can be observed with high sensitivity, and any chemical species can be identified and detected. Therefore, the reaction on the electrode surface can be analyzed in detail by using the electrochemical infrared spectrometer of the present invention.

本発明の電気化学赤外分光装置は、全反射測定用プリズムと、該プリズムの底面に密着した金属薄膜からなり、且つ、該プリズム底面と密着した面とは反対側の面に電解液が供給される作用電極と、前記作用電極と対をなす対極と、前記作用電極の電位規定用の参照電極と、赤外光を前記プリズムの内部から該プリズムと前記作用電極との界面に集光し、該界面で全反射する赤外光を検出器へと導いて強度を検出する光学系と、を備える電気化学表面増強赤外吸収分光装置であって、前記プリズムは、該プリズムにおける赤外光の最大光路長が10mm以下となる寸法を有し、前記光学系は、赤外顕微鏡と、Dが10以上の赤外高感度検出器を有することを特徴とするものである。 The electrochemical infrared spectroscopic device of the present invention comprises a total reflection measuring prism and a metal thin film in close contact with the bottom surface of the prism, and an electrolyte is supplied to a surface opposite to the surface in close contact with the prism bottom surface. A working electrode, a counter electrode paired with the working electrode, a reference electrode for regulating the potential of the working electrode, and infrared light from the inside of the prism to the interface between the prism and the working electrode. An electrochemical surface-enhanced infrared absorption spectroscopic device comprising: an optical system for detecting the intensity by introducing infrared light totally reflected at the interface to a detector, wherein the prism includes infrared light in the prism. The maximum optical path length is 10 mm or less, and the optical system has an infrared microscope and an infrared sensitive detector with D * of 10 9 or more.

プリズムを用いる分光測定において、測定する化学種が特定されている場合には、当該化学種の測定領域における吸収が小さいプリズムを用いれば、プリズムによる妨害を受けずに分光測定することが可能である。しかしながら、測定しようとする化学種が特定されていない場合や、目的とする化学種が特定されているものの、測定条件下における使用が可能であり、且つ、当該化学種の測定領域における吸収が充分小さいプリズム用光学材料が存在しない場合には、光学材料の選定以外の設計条件によって赤外光の吸収を小さくし、プリズムによる分光測定の妨害をできるだけ抑えることが望まれる。プリズムによる測定上の妨害は、プリズム内における赤外光の光路長が長ければ長いほど大きくなる。   In the spectroscopic measurement using a prism, when a chemical species to be measured is specified, if a prism having a small absorption in the measurement region of the chemical species is used, the spectroscopic measurement can be performed without being disturbed by the prism. . However, when the chemical species to be measured is not specified, or the target chemical species is specified, it can be used under measurement conditions and the chemical species is sufficiently absorbed in the measurement region. When there is no optical material for a small prism, it is desirable to reduce the absorption of infrared light by design conditions other than the selection of the optical material, and to suppress the interference of spectroscopic measurement by the prism as much as possible. The interference in measurement by the prism increases as the optical path length of the infrared light in the prism increases.

例えば、上述したように、シリコン(Si)は赤外光の透過性、屈折率、電気化学的安定性等の観点から、電気化学赤外分光装置用プリズムとして一般的に用いられているが、1000cm−1以下のような低波数領域に赤外吸収を有するため、プリズム内における光路長が長ければ長いほどプリズム自身による上記波数領域における吸収が大きくなり、当該波数領域に赤外吸収を有する化学種の検出・同定は困難となる。 For example, as described above, silicon (Si) is generally used as a prism for an electrochemical infrared spectrometer from the viewpoints of infrared light transmission, refractive index, electrochemical stability, etc. Since it has infrared absorption in a low wavenumber region such as 1000 cm −1 or less, the longer the optical path length in the prism, the larger the absorption in the wavenumber region by the prism itself, and the chemical having infrared absorption in the wavenumber region. Species detection / identification becomes difficult.

そこで、本発明者らは、従来使用されているプリズムと比較してプリズム内における光路長を短くする、すなわち、プリズムを小型化することによって、プリズムによる赤外吸収を抑えられることに着目した。従来のATR−SEIRAS法において使用されているプリズムは、例えば、半円柱状や半球状を有する場合、該プリズムの半円状断面の径(直径)が小さくても20〜25mm程度、すなわち、プリズム内における赤外光の光路長が短くても約20〜25mm以上はあった。従来、このようなサイズのプリズムが用いられてきた理由の一つとして、通常の赤外分光器では、赤外ビームのスポット径が5〜10mmであり、このようなスポット径の赤外ビームを効率良く利用するためには20〜25mm位の径を有するプリズムを用いる必要がある、ということが挙げられる。   Therefore, the present inventors have focused on the fact that the infrared absorption by the prism can be suppressed by shortening the optical path length in the prism as compared with the conventionally used prism, that is, by downsizing the prism. For example, when the prism used in the conventional ATR-SEIRAS method has a semi-cylindrical shape or a hemispherical shape, the diameter (diameter) of the semicircular cross section of the prism is about 20 to 25 mm, that is, the prism. Even if the optical path length of the infrared light inside was short, it was about 20 to 25 mm or more. Conventionally, one of the reasons why such a size prism has been used is that the spot diameter of an infrared beam is 5 to 10 mm in a normal infrared spectrometer, and an infrared beam having such a spot diameter is used. In order to use it efficiently, it is necessary to use a prism having a diameter of about 20 to 25 mm.

これに対し、本発明で用いるプリズムは、プリズム内での光路長が最大で10mm以下となるような寸法を有している。このように、プリズムによる赤外吸収の妨害をできるだけ小さくすることによって、プリズム自身が赤外吸収を示す波数領域を含む広範囲な波数領域において赤外分光測定を可能にし、また、目的とする化学種の検出・同定を容易に、且つ、より正確に行うことが可能となる。   On the other hand, the prism used in the present invention has such a dimension that the maximum optical path length in the prism is 10 mm or less. In this way, by reducing the interference of infrared absorption by the prism as much as possible, it is possible to perform infrared spectroscopic measurement in a wide range of wavenumbers including the wavenumber range in which the prism itself exhibits infrared absorption. Can be detected and identified easily and more accurately.

そして、本発明は、小型化したプリズムに効率良く赤外光を集光させるために赤外顕微鏡を、さらに、赤外顕微鏡によって絞られた赤外光を高感度で検出するためにDが10以上の高感度検出器を用いることによって、小型のプリズムを用いても充分に高い感度を実現した。 In the present invention, an infrared microscope is used to efficiently focus infrared light on a miniaturized prism, and further, D * is used to detect infrared light focused by the infrared microscope with high sensitivity. by using 10 9 or more sensitivity detectors, to achieve a sufficiently high sensitivity even using a small prism.

以下、本発明の電気化学赤外分光装置について、図1を用いて説明する。図1は、本発明の電気化学赤外分光装置に備えられる電気化学赤外分光セルの一形態例を示す模式図である。   Hereinafter, the electrochemical infrared spectrometer of the present invention will be described with reference to FIG. FIG. 1 is a schematic diagram showing an example of an electrochemical infrared spectroscopic cell provided in the electrochemical infrared spectroscopic apparatus of the present invention.

図1において、全反射測定用プリズム(以下、単にプリズムということがある)1の底面(測定面)には、金属薄膜からなる作用電極2が密着した状態で設けられている。この作用電極2は、プリズム1と接する面とは反対側の面に電解液3が供給される。すなわち、プリズム、金属薄膜、媒質(電解液)をプリズム/金属/電解液の順に配置するkretschmann配置である。   In FIG. 1, a working electrode 2 made of a metal thin film is provided in close contact with a bottom surface (measurement surface) of a total reflection measurement prism (hereinafter sometimes simply referred to as a prism) 1. The working electrode 2 is supplied with the electrolytic solution 3 on the surface opposite to the surface in contact with the prism 1. That is, it is a kretschmann arrangement in which a prism, a metal thin film, and a medium (electrolytic solution) are arranged in the order of prism / metal / electrolytic solution.

作用電極2と対をなし、作用電極2に電流を流す対極4も電解液3と接しており、作用電極2の電解液3との接触面において電極反応が進行する。電解液3には、さらに作用電極2の電位を制御する参照電極5が接触している。図1に示す電気化学赤外分光セルにおいては、電解液3を充填する容器6内に対極4及び参照電極5が配置され、電解液3と対極4及び参照電極5とが接するようになっている。   The counter electrode 4 that forms a pair with the working electrode 2 and flows current to the working electrode 2 is also in contact with the electrolytic solution 3, and the electrode reaction proceeds on the contact surface of the working electrode 2 with the electrolytic solution 3. A reference electrode 5 that controls the potential of the working electrode 2 is further in contact with the electrolytic solution 3. In the electrochemical infrared spectroscopic cell shown in FIG. 1, the counter electrode 4 and the reference electrode 5 are arranged in a container 6 filled with the electrolyte solution 3 so that the electrolyte solution 3 is in contact with the counter electrode 4 and the reference electrode 5. Yes.

プリズム1は、測定領域における赤外吸収が小さく、屈折率が大きなもの(通常は、水の屈折率1.33よりも大きいもの)であれば特に限定されず、赤外分光において一般的に用いられているもの、例えば、シリコン(Si)、ゲルマニウム(Ge)、KRS−5(臭化ヨウ化タリウム)、硫化亜鉛(ZnS)、セレン化亜鉛(ZnSe)、サファイア等を用いることができる。理論的には、プリズムの屈折率が大きいほど、バルクの電解液の赤外吸収による妨害をさらに抑制することができるため、屈折率の大きなプリズムを用いることが好ましい。   The prism 1 is not particularly limited as long as it has a small infrared absorption in the measurement region and has a large refractive index (usually a refractive index of water larger than 1.33), and is generally used in infrared spectroscopy. For example, silicon (Si), germanium (Ge), KRS-5 (thallium bromide iodide), zinc sulfide (ZnS), zinc selenide (ZnSe), sapphire, or the like can be used. Theoretically, the larger the refractive index of the prism, the more the interference caused by infrared absorption of the bulk electrolyte can be further suppressed. Therefore, it is preferable to use a prism having a large refractive index.

中でも、屈折率が大きく、電気化学安定性や、化学的安定性(耐酸性)に優れたシリコンが好適である。また、シリコンは電位窓が広く、さらには、金属薄膜との密着性にも優れるという観点から、ATR−SEIRA法のプリズムとして適している。ただし、シリコンは、1000cm−1以下のような低波数領域において赤外吸収を示すため、当該領域における感度があまりよくない。しかしながら、本発明によれば、プリズム自身による赤外吸収を抑制することが可能であることから、シリコンプリズムを用いても、1000cm−1のような低周波領域における感度の低下を抑えた赤外分光装置を提供することができる。 Among them, silicon having a large refractive index and excellent in electrochemical stability and chemical stability (acid resistance) is preferable. Silicon is suitable as a prism for the ATR-SEIRA method from the viewpoint of having a wide potential window and excellent adhesion to a metal thin film. However, since silicon exhibits infrared absorption in a low wavenumber region such as 1000 cm −1 or less, sensitivity in the region is not so good. However, according to the present invention, it is possible to suppress infrared absorption by the prism itself. Therefore, even if a silicon prism is used, infrared that suppresses a decrease in sensitivity in a low frequency region such as 1000 cm −1 is suppressed. A spectroscopic device can be provided.

また、例えば、ゲルマニウムは、屈折率が高く、且つ、1000cm−1以下のような低波数領域における赤外吸収が小さく、600cm−1まで赤外光を透過させることができるため、低波数領域の感度が高く優れた光学特性を示す。しかしながら、化学的安定性が低く、作用電極(金属薄膜)2を構成する金属の種類や金属薄膜の作製方法等によっては、プリズム1の底面に所望の形状を有する作用電極2を形成することが困難であるという問題がある。具体的には、プリズムから金属薄膜が剥離しやすくなったり、金属薄膜に比較的大きなサイズのクラックやピットが発生することにより、ゲルマニウムが電解液に晒され、ゲルマニウム自身が溶解してしまう場合もある。従って、ゲルマニウムを用いる場合には、後述の金属薄膜を構成する金属種や金属薄膜の作製方法並びに測定電位領域等を適宜選択することが好ましい。 In addition, for example, germanium has a high refractive index and has low infrared absorption in a low wavenumber region such as 1000 cm −1 or less, and can transmit infrared light up to 600 cm −1 . High sensitivity and excellent optical properties. However, since the chemical stability is low, the working electrode 2 having a desired shape may be formed on the bottom surface of the prism 1 depending on the type of metal constituting the working electrode (metal thin film) 2 and the method for producing the metal thin film. There is a problem that it is difficult. Specifically, when the metal thin film is easily peeled off from the prism, or when a relatively large size crack or pit is generated in the metal thin film, germanium is exposed to the electrolytic solution, and germanium itself is dissolved. is there. Therefore, when germanium is used, it is preferable to appropriately select the metal species constituting the metal thin film described later, the method for producing the metal thin film, the measurement potential region, and the like.

本発明の電気化学赤外分光装置は、上述したように、プリズム自身による赤外吸収を抑制するために、プリズムが、プリズムにおける赤外光の最大光路長が10mm以下となるような寸法を有している点に特徴を有している。ここでプリズムにおける赤外光の光路長とは、赤外光がプリズムの表面から入射し、作用電極と該プリズムとの界面において全反射し、プリズムの表面から出射するまでの光路の長さである。   As described above, the electrochemical infrared spectroscopic device of the present invention has a dimension such that the maximum optical path length of infrared light in the prism is 10 mm or less in order to suppress infrared absorption by the prism itself. It is characterized by Here, the optical path length of the infrared light in the prism is the length of the optical path from when the infrared light is incident from the surface of the prism, totally reflected at the interface between the working electrode and the prism, and emitted from the surface of the prism. is there.

プリズム内における赤外光の光路長は、プリズムの形状や赤外光の集光位置、入射角度等によって異なる。本発明においては、用いるプリズムの測定条件として想定される範囲内の集光位置、入射角度(全反射測定なので臨界角以上の範囲)における光路長のうち、最も長いものが10mm以下となるようなプリズムを用いる。プリズムによる赤外吸収の妨害をより小さくするためには、プリズム内における最大光路長が6mm以下となるようなプリズムを用いることが好ましい。
また、プリズムの寸法は小さいほど本発明には都合がよいが、作製又は入手の容易さという観点から、さらに、電解液漏れを防ぐためにプリズムとセルとの間にシリコンゴム等のO−リング又はシートを挟みこむことを考慮して、通常、その最大光路長が3mm以上のプリズムが用いられる。
The optical path length of the infrared light in the prism varies depending on the shape of the prism, the infrared light condensing position, the incident angle, and the like. In the present invention, the longest optical path length at a condensing position and an incident angle within a range assumed as a measurement condition of the prism to be used (total critical angle or more because of total reflection measurement) is 10 mm or less. Use a prism. In order to reduce the interference of infrared absorption by the prism, it is preferable to use a prism whose maximum optical path length in the prism is 6 mm or less.
In addition, the smaller the size of the prism is, the more convenient it is for the present invention. However, from the viewpoint of easy production or availability, an O-ring such as silicon rubber or the like between the prism and the cell is used in order to prevent electrolyte leakage. In consideration of sandwiching the sheet, a prism having a maximum optical path length of 3 mm or more is usually used.

プリズムの形状は、特に限定されず、赤外分光において用いられている一般的なものを用いることができる。例えば、半球状、半円柱状(かまぼこ状)、ピラミッド状、台形状等が挙げられる。中でも、赤外光のスポット径を焦点をぼかさずに微小領域に絞り込めるという観点から半球状が好ましい。   The shape of the prism is not particularly limited, and a general one used in infrared spectroscopy can be used. For example, a hemispherical shape, a semi-cylindrical shape (kamaboko shape), a pyramid shape, a trapezoidal shape and the like can be mentioned. Among these, a hemispherical shape is preferable from the viewpoint that the spot diameter of the infrared light can be narrowed down to a minute region without defocusing.

本発明において、半球状や半円柱状等の球面を有する形状のプリズムを用いる場合、最大光路長を10mm以下とするためには、該プリズムの半円状断面の径(直径)を10mm以下とすればよい。さらに、最大光路長を6mm以下とするためには、プリズムの半円状断面の径を6mm以下程度とすればよい。尚、ここでいう半球状又は半円柱状プリズムの半円状断面とは、半球状プリズムの底面となる円の中心を通り、且つ、該底面に対して垂直に交わる面における該プリズムの半円状断面、或いは、半円柱状プリズムの長手方向及び底面に対して垂直に交わる面における該プリズムの半円状断面のことをいう。   In the present invention, when a prism having a spherical shape such as a hemispherical shape or a semi-cylindrical shape is used, in order to set the maximum optical path length to 10 mm or less, the diameter (diameter) of the semicircular cross section of the prism is set to 10 mm or less. do it. Furthermore, in order to make the maximum optical path length 6 mm or less, the diameter of the semicircular cross section of the prism may be about 6 mm or less. The semicircular cross section of the hemispherical or semicylindrical prism referred to here means a semicircle of the prism in a plane passing through the center of the circle that is the bottom surface of the hemispherical prism and perpendicular to the bottom surface. It refers to a semi-circular cross section of a prism in a cross section or a plane perpendicular to the longitudinal direction and the bottom surface of the semi-cylindrical prism.

作用電極2は、表面増強赤外吸収(SEIRA)を示す金属薄膜からなり、作用電極2として機能すると共に、当該作用電極2と電解液との界面近傍に存在する化学種の赤外吸収を増大させるものである。
SEIRAを示す金属薄膜としては、通常、数十nm程度の径を有する金属微粒子が島状に分散した島状薄膜や、20〜100nm程度の薄い金属連続膜上に数十nm程度の径を有する金属微粒子が島状に分散したものが挙げられる。ここで、金属連続膜上に金属微粒子が島状に分散した金属薄膜は、金属連続膜と当該金属連続膜上に存在する金属微粒子の金属種が異なっていてもよいし、同一であってもよい。
或いは、SEIRAを示す金属薄膜として、表面に深さ10〜100nm程度の微細凹凸を有する薄い金属連続膜でもよい。
The working electrode 2 is made of a metal thin film exhibiting surface enhanced infrared absorption (SEIRA), functions as the working electrode 2, and increases the infrared absorption of chemical species existing in the vicinity of the interface between the working electrode 2 and the electrolytic solution. It is something to be made.
The metal thin film showing SEIRA usually has an island-like thin film in which metal fine particles having a diameter of about several tens of nanometers are dispersed in an island shape, or a diameter of about several tens of nanometers on a thin metal continuous film of about 20 to 100 nm. The thing which metal fine particles disperse | distributed to the island form is mentioned. Here, in the metal thin film in which the metal fine particles are dispersed in the form of islands on the metal continuous film, the metal species of the metal continuous film and the metal fine particles present on the metal continuous film may be different or the same. Good.
Alternatively, the metal thin film showing SEIRA may be a thin metal continuous film having fine irregularities with a depth of about 10 to 100 nm on the surface.

SEIRAを発現する金属としては、例えば、Ag、Au、Cu、In、Li、Sn、Pt、Pd、Ni、Al、Pb、Fe、Ir、Rh、Ruやこれら金属の合金(例えば、Pt−Fe合金)等が挙げられるが、これらに限定されず、理論的にはほとんどの金属で同程度の増強効果が期待される。上記にて例示した金属のうち、特にAg、Au、Cu、Ptは、高い赤外吸収増強効果を示すことが実験的に示されている。   Examples of metals that express SEIRA include Ag, Au, Cu, In, Li, Sn, Pt, Pd, Ni, Al, Pb, Fe, Ir, Rh, Ru, and alloys of these metals (for example, Pt-Fe Alloys) and the like, but are not limited to these, and theoretically, almost all metals are expected to have the same enhancement effect. Among the metals exemplified above, it has been experimentally shown that Ag, Au, Cu, and Pt, in particular, show a high infrared absorption enhancing effect.

作用電極2を形成する金属薄膜は、SEIRAを示し、且つ、エバネッセント波が電解液に到達する膜厚であって、電気導電性を確保できる膜厚を有するものであれば、金属微粒子の径や、金属薄膜の膜厚等は特に限定されない。充分なSEIRA強度を発現するためには、金属微粒子が表面に存在する金属薄膜の場合、金属微粒子の平均粒径が5〜100nm程度、特に50〜100nm程度が好ましい。金属微粒子の平均粒径が100nmを超えるような大きさになると、赤外吸収増強効果が減少する場合がある。   The metal thin film forming the working electrode 2 exhibits SEIRA and has a film thickness that allows evanescent waves to reach the electrolyte and has a film thickness that can ensure electrical conductivity. The film thickness of the metal thin film is not particularly limited. In order to develop sufficient SEIRA strength, in the case of a metal thin film having metal fine particles on the surface, the average particle size of the metal fine particles is preferably about 5 to 100 nm, particularly about 50 to 100 nm. When the average particle size of the metal fine particles exceeds 100 nm, the infrared absorption enhancing effect may be reduced.

また、表面に微細な凹凸形状を有する金属連続膜の場合、充分なSEIRA強度を発現するためには、微細凹凸の表面からの深さが50〜100nm程度であることが好ましい。原子レベルで平滑な表面では、SEIRA効果が低くなるおそれがあるからである。
金属薄膜のプリズム側表面の形状(金属微粒子の大きさや形状、連続膜上の凹凸サイズや形状等)によっては、得られるスペクトルが大きく歪む場合があることを考慮して、金属薄膜の表面構造を適宜設計することが好ましい。
Further, in the case of a metal continuous film having a fine uneven shape on the surface, the depth of the fine unevenness from the surface is preferably about 50 to 100 nm in order to develop sufficient SEIRA strength. This is because the SEIRA effect may be lowered on a smooth surface at the atomic level.
Considering that the surface of the metal thin film may be greatly distorted depending on the shape of the surface of the metal thin film on the prism side (the size and shape of the metal fine particles, the size and shape of the irregularities on the continuous film, etc.) It is preferable to design appropriately.

また、金属薄膜の膜厚は5〜100nm程度、十分な電気導電性を確保するためには特に20〜100nm程度であることが好ましい。金属薄膜の膜厚が100nmを超えると、金属微粒子の分散性が低下し、金属微粒子の融合が生じて島状に金属微粒子が分散した金属薄膜が形成されにくい。その結果、SEIRA強度が低下してしまう場合がある。但し、金属微粒子同士が互いに融合しあった金属薄膜でも、金属薄膜表面には多くのピットやクラック等の凹凸が存在し、これら金属薄膜の凹凸により赤外吸収の増強が生じる場合がある。従って、金属薄膜として、表面に金属微粒子が島状に分散していること、或いは、表面に上記したような微細凹凸があることは必ずしも必要なことではないが、赤外吸収増強効果が高いことから、クラックやピット等の比較的大きな凹凸を有する金属薄膜よりも、島状に分散した金属微粒子が存在している金属薄膜や上記したような微細凹凸を有する金属薄膜が好ましい。   Further, the thickness of the metal thin film is preferably about 5 to 100 nm, and particularly about 20 to 100 nm in order to ensure sufficient electric conductivity. When the film thickness of the metal thin film exceeds 100 nm, the dispersibility of the metal fine particles is lowered, the metal fine particles are fused, and it is difficult to form a metal thin film in which the metal fine particles are dispersed in an island shape. As a result, the SEIRA intensity may decrease. However, even in a metal thin film in which metal fine particles are fused with each other, there are many irregularities such as pits and cracks on the surface of the metal thin film, and the infrared absorption may be enhanced by the irregularities of these metal thin films. Therefore, it is not always necessary for the metal thin film to have metal fine particles dispersed on the surface, or to have fine irregularities as described above on the surface, but the infrared absorption enhancing effect is high. Therefore, a metal thin film having metal fine particles dispersed in islands or a metal thin film having fine irregularities as described above is preferable to a metal thin film having relatively large irregularities such as cracks and pits.

尚、金属薄膜の膜厚とは、金属薄膜の膜全体の厚みであり、連続膜上に金属微粒子が存在するものや、微細凹凸を有するものは、これら金属微粒子や微細凹凸を含めた厚みを金属薄膜の厚みとする。   The film thickness of the metal thin film is the thickness of the entire metal thin film, and those having metal fine particles on a continuous film or those having fine irregularities have a thickness including these metal fine particles and fine irregularities. The thickness of the metal thin film.

作用電極としての充分な電気導電性と、高いSEIRA効果とを同時に確保するためには、金属連続膜上に金属微粒子が島状に密に分散したもの、或いは、金属連続膜上に微細凹凸を有する金属薄膜が好ましい。   In order to ensure sufficient electrical conductivity as a working electrode and a high SEIRA effect at the same time, metal fine particles are densely dispersed in an island shape on the metal continuous film, or fine irregularities are formed on the metal continuous film. A metal thin film is preferable.

以上のようなSEIRAを示す金属薄膜は、エバネッセント波がプリズムと接する面とは反対側の面(電極表面)まで十分に染み込むことができる薄さであり、電極の裏側から赤外光を当てることによって電極表面を観察することが可能である。   The metal thin film showing SEIRA as described above is thin enough to allow the evanescent wave to penetrate to the surface (electrode surface) opposite to the surface in contact with the prism, and is irradiated with infrared light from the back side of the electrode. It is possible to observe the electrode surface.

ここで金属微粒子の平均粒径とは、金属微粒子の長径、短径の平均値であって、走査電子顕微鏡(SEM)、走査型トンネル顕微鏡(STM)、走査型原子間力顕微鏡(AFM)等による観察によって測定することができる。また、金属薄膜の膜厚は、水晶微量天秤による重量測定から換算したり、SEM、STM、AFM等によって測定することができる。   Here, the average particle diameter of the metal fine particles is an average value of the long and short diameters of the metal fine particles, and includes a scanning electron microscope (SEM), a scanning tunneling microscope (STM), a scanning atomic force microscope (AFM), and the like. Can be measured by observation. Moreover, the film thickness of a metal thin film can be converted from the weight measurement by a quartz crystal microbalance, or can be measured by SEM, STM, AFM, etc.

上記のような金属薄膜の作製方法は特に限定されず、例えば、真空蒸着法や電解メッキ、無電解メッキ、スパッタ法等が挙げられる。真空蒸着法は、SEIRAを発現する金属薄膜を作製しやすく、金属種の選択性が広い。また、無電解メッキは、充分な電気導電性とSEIRA効果を同時に確保する金属薄膜を形成することができる。しかも、無電解メッキは、最も簡便な方法であり、且つ、プリズムとの密着性に優れた金属薄膜を形成することができる。無電解メッキによる金属薄膜形成条件が確立されているものとしては、例えば、Ag、Au、Cu、Pt、Pd等が挙げられる。
金属薄膜作製時の条件(例えば、真空蒸着法における蒸着速度、無電解めっき法におけるめっき液の組成とめっき温度、など)によって、SEIRA効果が大きく左右されるため、適宜条件設定することが好ましい。
The method for producing the metal thin film as described above is not particularly limited, and examples thereof include vacuum deposition, electrolytic plating, electroless plating, and sputtering. The vacuum deposition method is easy to produce a metal thin film that expresses SEIRA, and has a wide selection of metal species. Electroless plating can form a metal thin film that ensures sufficient electrical conductivity and SEIRA effect at the same time. In addition, electroless plating is the simplest method and can form a metal thin film having excellent adhesion to the prism. Examples of established conditions for forming a metal thin film by electroless plating include Ag, Au, Cu, Pt, and Pd.
Since the SEIRA effect is greatly influenced by conditions (for example, the deposition rate in the vacuum deposition method, the composition of the plating solution and the plating temperature in the electroless plating method) at the time of forming the metal thin film, it is preferable to appropriately set the conditions.

また、金属薄膜とプリズムとの密着状態が悪いと、測定中に金属薄膜がプリズムから剥離する等の問題が生じるため、金属薄膜とプリズムの密着性は重要である。プリズムと金属薄膜との密着性を向上させるために、金属薄膜を形成する前に、例えば、プリズム底面に表面処理を施してもよい。プリズムと金属薄膜との密着性を向上させることによって、測定の感度を高めることができる。例えば、シリコンプリズムを用いる場合の表面処理としては、メルカプトシラン処理等が挙げられる。
電極表面は、電解液中で電位による酸化還元(酸化物形成域−水素発生域)を繰り返すことで洗浄しておくことが好ましい。電極表面の汚染は、電極反応の観察を著しく妨げるためである。
尚、SEIRAについては、上記した非特許文献1、非特許文献2等を参考にすることができる。
In addition, if the adhesion between the metal thin film and the prism is poor, problems such as peeling of the metal thin film from the prism during measurement occur, so the adhesion between the metal thin film and the prism is important. In order to improve the adhesion between the prism and the metal thin film, for example, surface treatment may be performed on the bottom surface of the prism before the metal thin film is formed. Measurement sensitivity can be increased by improving the adhesion between the prism and the metal thin film. For example, as a surface treatment when a silicon prism is used, a mercaptosilane treatment or the like can be given.
The electrode surface is preferably cleaned by repeating oxidation-reduction (oxide formation region-hydrogen generation region) by electric potential in the electrolytic solution. This is because contamination of the electrode surface significantly hinders the observation of the electrode reaction.
Regarding SEIRA, Non-Patent Document 1, Non-Patent Document 2, and the like described above can be referred to.

プリズム1の内部からプリズム1と作用電極2との界面に集光された赤外光は、臨界角より大きい入射角で当該界面に入射し、全反射される。このとき、エバネッセント波が作用電極2である金属薄膜の反対側の面(電極表面)まで染み込み、反射の際に作用電極2と電解液3との界面近傍に存在する化学種による吸収を受ける。ゆえに、プリズム1と作用電極2との界面から出射する反射光の強度を測定し、吸収スペクトルを解析することによって、作用電極2と電解液3との界面近傍に存在する化学種の検出や同定ができる。このときの化学種の赤外吸収は、作用電極2である金属薄膜の赤外吸収増強効果によって、著しく増大されるため、高感度で検出・同定が可能である。   Infrared light collected from the inside of the prism 1 to the interface between the prism 1 and the working electrode 2 enters the interface at an incident angle larger than the critical angle and is totally reflected. At this time, the evanescent wave penetrates to the opposite surface (electrode surface) of the metal thin film which is the working electrode 2 and is absorbed by chemical species existing in the vicinity of the interface between the working electrode 2 and the electrolytic solution 3 at the time of reflection. Therefore, by detecting the intensity of the reflected light emitted from the interface between the prism 1 and the working electrode 2 and analyzing the absorption spectrum, detection and identification of the chemical species existing in the vicinity of the interface between the working electrode 2 and the electrolytic solution 3 are performed. Can do. At this time, the infrared absorption of the chemical species is remarkably increased by the effect of enhancing the infrared absorption of the metal thin film that is the working electrode 2, so that detection and identification can be performed with high sensitivity.

尚、ここでいう作用電極2と電解液3の界面近傍に存在する化学種とは、作用電極の表面に吸着している吸着種のみならず、作用電極2の表面に吸着することなく作用電極2と電極液3の界面近傍に浮遊しているものも含まれ、電極反応における反応生成物や反応中間体、反応副生成物等が挙げられる。   Here, the chemical species present near the interface between the working electrode 2 and the electrolytic solution 3 are not only the adsorbing species adsorbed on the surface of the working electrode, but also the working electrode without adsorbing on the surface of the working electrode 2. Those floating in the vicinity of the interface between 2 and the electrode liquid 3 are also included, and examples include reaction products, reaction intermediates, and reaction byproducts in electrode reactions.

本発明の電気化学赤外分光装置は、SEIRAによる赤外吸収の増大効果を利用したものであり、電極表面の高感度なその場測定が可能である。また、ATR配置を利用することによって、IRASとは異なり、赤外光をプリズム側からプリズムと作用電極との界面に入射させるため、電解液による赤外光の吸収が小さく、電極表面近傍に存在する化学種測定の妨害がほとんどない。
また、電解液層を1〜2μm程度に薄くする必要があるIRASに対して、ATR配置を利用する本発明の赤外分光装置は、電解液層の厚みに制限がないため、電解液内における成分の拡散が妨げられず、電極反応がスムーズに進行する。特に、電極反応によりガスが生成する場合でも、IRASに比べて、生成ガスが電極表面に滞りにくいため、生成ガスによる赤外分光測定の妨害が少ない。さらに、IRASのように、電流が流れ難いことによる電極反応の妨害や、電極電位の制御が困難であるといった問題が生じない。
The electrochemical infrared spectroscopic apparatus of the present invention utilizes the effect of increasing infrared absorption by SEIRA, and enables highly sensitive in-situ measurement of the electrode surface. Also, by using the ATR arrangement, unlike IRAS, infrared light is incident from the prism side to the interface between the prism and the working electrode, so the absorption of infrared light by the electrolyte is small and it exists near the electrode surface. There is almost no interference with the measurement of chemical species.
In addition, for the IRAS where the electrolyte layer needs to be thinned to about 1 to 2 μm, the infrared spectroscopic device of the present invention using the ATR arrangement has no limitation on the thickness of the electrolyte layer. The diffusion of components is not hindered and the electrode reaction proceeds smoothly. In particular, even when a gas is generated by an electrode reaction, compared to IRAS, the generated gas is less likely to stay on the electrode surface, so that there is less interference with infrared spectroscopic measurement by the generated gas. Furthermore, unlike IRAS, problems such as interference of electrode reaction due to difficulty in current flow and difficulty in controlling electrode potential do not occur.

電解液3は、作用電極2・対極4間に電流を流すための媒体となるものであって、作用電極2において酸化又は還元反応する反応種を含むものである。電解液としては、例えば、酸化反応種又は還元反応種、或いは、酸化反応種又は還元反応種を生成する電解質を溶解した電解質溶液や、酸化反応種又は還元反応種とイオン伝導を行う成分とを含むもの等が挙げられる。ここで、酸化反応種又は還元反応種には、測定条件下の電解液中において、酸化反応種又は還元反応種を生成する前駆体も含まれる。具体的には、酸素ガスと水素ガスを溶解させた酸性水溶液や、メタノールと酸性溶液との混合液等が挙げられる。
電解液は、酸素の還元反応の測定等の目的がある場合を除けば、再現性の確保や反応の複雑化を避けるために、ArガスやNガス等を用いて、電解液中の酸素を除く必要がある。
The electrolytic solution 3 serves as a medium for passing a current between the working electrode 2 and the counter electrode 4, and contains a reactive species that undergoes an oxidation or reduction reaction at the working electrode 2. Examples of the electrolytic solution include an oxidation reaction species or a reduction reaction species, an electrolyte solution in which an electrolyte that generates an oxidation reaction species or a reduction reaction species is dissolved, and a component that conducts ion conduction with an oxidation reaction species or a reduction reaction species. And the like. Here, the oxidation reaction species or the reduction reaction species include a precursor that generates an oxidation reaction species or a reduction reaction species in the electrolyte under measurement conditions. Specifically, an acidic aqueous solution in which oxygen gas and hydrogen gas are dissolved, a mixed solution of methanol and an acidic solution, or the like can be given.
Except for the purpose of measuring the reduction reaction of oxygen, etc., the electrolytic solution uses Ar gas, N 2 gas, or the like in order to ensure reproducibility and avoid complicated reactions. It is necessary to exclude.

対極4は、観察しようとする作用電極2に電流を流すことができれば、材質、形状等は特に限定されない。また、参照電極5は、使用する電解液内において作用電極の電位の基準となる安定な電位を示すものであればよく、標準水素電極(SHE又はNHE)や、飽和カロメル電極(SCE)、可逆水素電極(RHE)、銀−塩化銀電極(Ag/AgCl)等を用いることができる。   The material and shape of the counter electrode 4 are not particularly limited as long as a current can be passed through the working electrode 2 to be observed. Moreover, the reference electrode 5 should just show the stable electric potential used as the reference | standard of the electric potential of a working electrode in the electrolyte solution to be used, a standard hydrogen electrode (SHE or NHE), a saturated calomel electrode (SCE), a reversible. A hydrogen electrode (RHE), a silver-silver chloride electrode (Ag / AgCl), or the like can be used.

作用電極2に供給される電解液3の濃度は、電極表面の観察条件として、一定に保たれることが好ましい。このような観点から、電解液3は、図2に示すようなフローシステムにより供給されることが好ましい。
図2においては、電解液3を収容した容器7と連通する導管8を電解質3が流通するようになっており、作用電極2の表面で電解液3が滞留しないようになっている。また、図2においては、作用電極2と共に対極4が導管8の内壁を構成し、且つ、対峙した構造となっている。このとき、参照電極5は容器7内に配置することができる。
The concentration of the electrolytic solution 3 supplied to the working electrode 2 is preferably kept constant as an observation condition of the electrode surface. From such a viewpoint, the electrolytic solution 3 is preferably supplied by a flow system as shown in FIG.
In FIG. 2, the electrolyte 3 flows through a conduit 8 communicating with the container 7 containing the electrolytic solution 3, and the electrolytic solution 3 is not retained on the surface of the working electrode 2. Further, in FIG. 2, the counter electrode 4 together with the working electrode 2 constitutes the inner wall of the conduit 8 and is opposed to each other. At this time, the reference electrode 5 can be disposed in the container 7.

このように作用電極に電解液を供給する手段として、作用電極及び対極を内壁の一部として有する空間内(導管8)に電解液を流通させるフローシステムを採用することによって、電極表面における物質の拡散性を向上させる他、電気化学赤外分光セルをコンパクト化することができ、プリズムの小型化に伴う電気化学赤外分光セルのコンパクト化設計が容易となる。尚、フローシステムを採用してセルを小型化する場合、ArガスやNガス等を用いて電解液から酸素を除く処理をセル内において行うことが難しいため、予め酸素を除いた電解液をフローさせることになる。 As a means for supplying the electrolytic solution to the working electrode in this way, by adopting a flow system for circulating the electrolytic solution in the space (conduit 8) having the working electrode and the counter electrode as part of the inner wall, Besides improving the diffusibility, the electrochemical infrared spectroscopic cell can be made compact, and the compact design of the electrochemical infrared spectroscopic cell accompanying the miniaturization of the prism becomes easy. In addition, when the cell is downsized by adopting the flow system, it is difficult to perform the process of removing oxygen from the electrolyte solution using Ar gas, N 2 gas, or the like in the cell. It will flow.

電気化学赤外分光セルの小型化、電解液の高流速化が可能であることから、フローシステムにおける電解質層の高さ(導管の高さ、作用電極−該作用電極と対向する壁の距離)は、0.1〜5mm程度とすることが好ましい。電解液の高流速化は、物質の拡散の影響を低減できるという利点がある。
また、フローシステムを採用することにより、反応生成物を高速液体クロマトグラフィー(HLPC)や質量分析器に導いて分析することも可能となる。
Since the electrochemical infrared spectroscopic cell can be downsized and the electrolyte flow rate can be increased, the height of the electrolyte layer in the flow system (the height of the conduit, the working electrode-the distance of the wall facing the working electrode) Is preferably about 0.1 to 5 mm. Increasing the flow rate of the electrolyte has the advantage that the influence of substance diffusion can be reduced.
In addition, by adopting a flow system, the reaction product can be led to high performance liquid chromatography (HLPC) or a mass analyzer for analysis.

本発明のような小型のプリズムを用いる場合、赤外光をプリズム底面の寸法に見合ったスポット径に絞って集光させないと、光のロスが生じ、赤外分光測定を実行することが難しい。そのため、赤外顕微鏡を用いて赤外光を絞り込む必要がある。赤外光のスポット径の絞込みは、用いるプリズムの形状や寸法、観察したい電極領域の大きさによって適宜調節すればよいが、本発明の赤外分光装置に備えられるプリズムの寸法では、通常、2mm以下に絞り込む必要がある。赤外顕微鏡を用いれば、原理的には10〜20μm程度まで赤外光のスポット径を絞り込むことが可能である。赤外顕微鏡としては、赤外顕微分光器に用いられる一般的なものを用いればよい。   When using a small prism as in the present invention, unless infrared light is focused to a spot diameter that matches the size of the prism bottom surface, light loss occurs and it is difficult to perform infrared spectroscopic measurement. Therefore, it is necessary to narrow down infrared light using an infrared microscope. The narrowing of the spot diameter of the infrared light may be appropriately adjusted according to the shape and size of the prism used and the size of the electrode region to be observed. However, the size of the prism provided in the infrared spectroscopic device of the present invention is usually 2 mm. It is necessary to narrow down to the following. If an infrared microscope is used, the spot diameter of infrared light can be narrowed down to about 10 to 20 μm in principle. What is necessary is just to use the general thing used for an infrared microspectroscope as an infrared microscope.

以上のように小型のプリズム底面、すなわち、微小領域に赤外顕微鏡を用いて赤外光を集光させる場合には、反射光の検出には微弱光を検出することができるD10以上の高感度検出器を用いる必要がある。Dは検出器の感度を表すパラメータであり、値が大きいほど検出器の感度が高いことを示す。目安としては、FT−IR分光器に標準設置されている焦電型検出器DTGS或いはTGSよりも高感度な半導体検出器が挙げられる。高感度検出器は、通常、液体窒素若しくはヘリウムで冷却しながら用いる。
が10以上の高感度検出器としては、一般的に用いられているもの、例えば、800〜4000cm−1の波数領域では液体窒素冷却高感度MCT検出器、2000cm−1以上の波数領域における測定ではInSb検出器、1000cm−1以下の波数領域における測定ではボロメータ、等を用いることができる。
As described above, when infrared light is condensed on the bottom surface of a small prism, that is, in a minute region by using an infrared microscope, D * 10 9 or more capable of detecting weak light for detecting reflected light. It is necessary to use a highly sensitive detector. D * is a parameter representing the sensitivity of the detector, and the larger the value, the higher the sensitivity of the detector. As a standard, a pyroelectric detector DTGS or a semiconductor detector with higher sensitivity than TGS, which is installed as standard in the FT-IR spectrometer, can be used. The high-sensitivity detector is usually used while being cooled with liquid nitrogen or helium.
D * is The 10 9 or more sensitivity detector, which is generally used, for example, 800~4000Cm liquid nitrogen-cooled high in the wave number region of -1 sensitivity MCT detector, 2000 cm -1 or more wavenumber region In measurement, an InSb detector can be used, and a bolometer, etc. can be used in measurement in the wavenumber region below 1000 cm −1 .

本発明において、赤外光をプリズムの内部から該プリズムと作用電極との界面に集光し、且つ、該界面で全反射する赤外光を検出器へと導き、該全反射赤外光の強度を検出する光学系には、上記赤外顕微鏡及び高感度検出器の他、赤外光の光源、放射光から平行光や収束光を生成、抽出するためのレンズや反射鏡、スリット等、その他の部材が適宜組み合わされて含まれる。光源として、シンクロトロンの高輝度光源を用いることで、より高いS/N比が得られることが期待できる。   In the present invention, the infrared light is condensed from the inside of the prism to the interface between the prism and the working electrode, and the infrared light totally reflected at the interface is guided to the detector. In addition to the infrared microscope and high-sensitivity detector, the optical system for detecting the intensity includes a light source for infrared light, a lens and a reflecting mirror for generating and extracting parallel light and convergent light from the emitted light, a slit, etc. Other members are included in appropriate combinations. It is expected that a higher S / N ratio can be obtained by using a synchrotron high-intensity light source as the light source.

図4に、本発明の電気化学赤外分光装置の形態例(FT−IR分光器)を示す。図4の(4A)において、光源から照射された赤外光は、ビームスプリッターや反射鏡により、試料室内の作用電極とプリズムの界面へと導かれ、当該界面で反射した反射光が検出器へと導かれる。赤外顕微鏡へは平面鏡を用いて赤外光を分光器から赤外顕微鏡へと導く(図4(4B)参照)。また、イメージ測定の場合には、平面鏡を用いて、赤外光をイメージ測定用の外部光学系(図示せず)へと導く。   FIG. 4 shows a form example (FT-IR spectrometer) of the electrochemical infrared spectrometer of the present invention. In FIG. 4 (4A), the infrared light irradiated from the light source is guided to the interface between the working electrode and the prism in the sample chamber by a beam splitter or a reflecting mirror, and the reflected light reflected at the interface is sent to the detector. It is guided. To the infrared microscope, a plane mirror is used to guide infrared light from the spectroscope to the infrared microscope (see FIG. 4 (4B)). In the case of image measurement, infrared light is guided to an external optical system (not shown) for image measurement using a plane mirror.

本発明の電気化学赤外分光装置による電極表面のその場測定は、一般的な方法に順じて行うことができる。
また、必要に応じて、電位制御用ポテンショスタットを用いて、作用電極の電位を制御し、電位を一定に保ったり、電位を走査して電流を測定しながら、赤外吸収スペクトルを測定してもよい。また、本発明のようにSEIRAを利用した電気化学赤外分光装置は、マイクロ秒からミリ秒オーダーで変化する赤外吸収スペクトルを測定する時間分解測定に有効である。時間分解測定はシグナルが十分に大きい必要があるが、SEIRAを利用した電気化学赤外分光装置はシグナルを大きくすることができるからである。時間分解測定により、寿命の短い反応中間体の検出・同定が可能となる。
The in-situ measurement of the electrode surface by the electrochemical infrared spectrometer of the present invention can be performed in accordance with a general method.
If necessary, control the potential of the working electrode using a potentiostat for potential control, keep the potential constant, or measure the infrared absorption spectrum while measuring the current by scanning the potential. Also good. In addition, an electrochemical infrared spectrometer using SEIRA as in the present invention is effective for time-resolved measurement for measuring an infrared absorption spectrum that changes in the order of microseconds to milliseconds. This is because time-resolved measurement requires a sufficiently large signal, but an electrochemical infrared spectrometer using SEIRA can increase the signal. Time-resolved measurement enables detection and identification of reaction intermediates with a short lifetime.

本発明の電気化学赤外分光装置は、電極表面、例えば、燃料電池の触媒表面等における電極反応機構の詳細な解明を可能にするものである。さらに、メッキ過程、金属腐食、各種表面処理等の観察に好適に用いることもできる。   The electrochemical infrared spectroscopic apparatus of the present invention enables detailed elucidation of the electrode reaction mechanism on the electrode surface, for example, the catalyst surface of a fuel cell. Furthermore, it can also be suitably used for observation of plating processes, metal corrosion, various surface treatments, and the like.

(参考実験例)
半円状断面の半径が10mm(すなわち、光路長20mm)の半球状Siプリズムと、半円状断面の半径が5mm(すなわち、光路長10mm)の半球状Siプリズムのシングルビームスペクトルを測定した。結果を図3に示す。
(Reference experiment example)
Single beam spectra of a hemispherical Si prism having a semicircular cross-section radius of 10 mm (ie, optical path length of 20 mm) and a hemispherical Si prism having a semicircular cross-section radius of 5 mm (ie, optical path length of 10 mm) were measured. The results are shown in FIG.

光路長が20mmである半径10mmのプリズムでは、1000cm−1以下の波数領域において、信号強度がゼロになり、スペクトルが得られなかった。
一方、光路長が10mmである半径5mmのプリズムでは、630cm−1まで赤外光が透過し、スペクトルを得ることができた。ゆえに、プリズムをさらに小さくし、赤外顕微鏡で赤外光のスポット径を絞り込めば、信号強度がさらに大きくなり、その結果得られるスペクトルの信号−雑音比が大きくなって、精度の高い赤外分光測定が可能となることがわかる。
In a prism with a radius of 10 mm and an optical path length of 20 mm, the signal intensity became zero in the wave number region of 1000 cm −1 or less, and a spectrum was not obtained.
On the other hand, with a 5 mm radius prism with an optical path length of 10 mm, infrared light was transmitted up to 630 cm −1 and a spectrum could be obtained. Therefore, if the prism is made smaller and the spot diameter of the infrared light is narrowed down with an infrared microscope, the signal intensity is further increased, and the resulting signal-to-noise ratio of the spectrum is increased, resulting in highly accurate infrared light. It can be seen that spectroscopic measurement is possible.

本発明の電気化学赤外分光装置に備えられる電気化学赤外分光セルの一形態を示す模式図である。It is a schematic diagram which shows one form of the electrochemical infrared spectroscopy cell with which the electrochemical infrared spectroscopy apparatus of this invention is equipped. 本発明の電気化学赤外分光装置に備えられる電気化学赤外分光セルの一形態を示す模式図である。It is a schematic diagram which shows one form of the electrochemical infrared spectroscopy cell with which the electrochemical infrared spectroscopy apparatus of this invention is equipped. 半径5mm(プリズム内光路長10mm)のプリズム及び半径10mm(プリズム内光路長20mm)のプリズムのシングルビームスペクトルである。It is a single beam spectrum of a prism having a radius of 5 mm (optical path length in the prism of 10 mm) and a prism having a radius of 10 mm (optical path length in the prism of 20 mm). 本発明の電気化学赤外分光装置の一形態例を示す概略図である。It is the schematic which shows the example of 1 form of the electrochemical infrared spectroscopy apparatus of this invention. 従来の電気化学赤外分光(IRAS)法に用いられる電気化学赤外分光セルの一形態を示す模式図である。It is a schematic diagram which shows one form of the electrochemical infrared spectroscopy cell used for the conventional electrochemical infrared spectroscopy (IRAS) method.

符号の説明Explanation of symbols

1…全反射測定用プリズム
2…作用電極(金属薄膜)
3…電解液
4…対極
5…参照電極
6…容器
7…容器
8…導管
1 ... Total reflection measuring prism 2 ... Working electrode (metal thin film)
3 ... Electrolyte 4 ... Counter electrode 5 ... Reference electrode 6 ... Vessel 7 ... Vessel 8 ... Conduit

Claims (5)

全反射測定用プリズムと、該プリズムの底面に密着した金属薄膜からなり、且つ、該プリズム底面と密着した面とは反対側の面に電解液が供給される作用電極と、前記作用電極と対をなす対極と、前記作用電極の電位規定用の参照電極と、赤外光を前記プリズムの内部から該プリズムと前記作用電極との界面に集光し、該界面で全反射する赤外光を検出器へと導いて強度を検出する光学系と、を備える電気化学表面増強赤外吸収分光装置であって、
前記プリズムは、該プリズムにおける赤外光の最大光路長が10mm以下となる寸法を有し、前記光学系は、赤外顕微鏡と、Dが10以上の赤外高感度検出器を有することを特徴とする電気化学赤外分光装置。
A total reflection measuring prism, a working electrode made of a metal thin film in close contact with the bottom surface of the prism, and an electrolyte supplied to a surface opposite to the surface in close contact with the prism bottom surface; A counter electrode that defines the potential of the working electrode, a reference electrode for regulating the potential of the working electrode, and infrared light that is condensed from the inside of the prism to the interface between the prism and the working electrode, and the infrared light that is totally reflected at the interface. An electrochemical surface-enhanced infrared absorption spectroscopic device comprising: an optical system that detects the intensity by leading to a detector;
The prism has a dimension in which the maximum optical path length of infrared light in the prism is 10 mm or less, and the optical system has an infrared microscope and an infrared high-sensitivity detector with D * of 10 9 or more. An electrochemical infrared spectrometer characterized by
前記プリズムは、該プリズムにおける赤外光の最大光路長が6mm以下となる寸法を有する、請求項1に記載の電気化学赤外分光装置。   The electrochemical infrared spectroscopic apparatus according to claim 1, wherein the prism has a dimension in which a maximum optical path length of infrared light in the prism is 6 mm or less. 前記プリズムの形状が半球状又は半円柱状であり、該プリズムの半円状断面の径が10mm以下である、請求項1又は2に記載の電気化学赤外分光装置。   The electrochemical infrared spectroscopic apparatus according to claim 1 or 2, wherein the prism has a hemispherical shape or a semi-cylindrical shape, and a semicircular cross section of the prism has a diameter of 10 mm or less. 前記プリズムがシリコン(Si)からなる、請求項1乃至3のいずれかに記載の電気化学赤外分光装置。   The electrochemical infrared spectrometer according to any one of claims 1 to 3, wherein the prism is made of silicon (Si). 前記電解液が、前記作用電極と前記対極とを内壁の一部として有する空間内を流通している、請求項1乃至4のいずれかに記載の電気化学赤外分光装置。
5. The electrochemical infrared spectrometer according to claim 1, wherein the electrolytic solution circulates in a space having the working electrode and the counter electrode as part of an inner wall.
JP2005265859A 2005-09-13 2005-09-13 Electrochemical infrared spectrometer Expired - Fee Related JP4773168B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005265859A JP4773168B2 (en) 2005-09-13 2005-09-13 Electrochemical infrared spectrometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005265859A JP4773168B2 (en) 2005-09-13 2005-09-13 Electrochemical infrared spectrometer

Publications (2)

Publication Number Publication Date
JP2007078487A true JP2007078487A (en) 2007-03-29
JP4773168B2 JP4773168B2 (en) 2011-09-14

Family

ID=37938972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005265859A Expired - Fee Related JP4773168B2 (en) 2005-09-13 2005-09-13 Electrochemical infrared spectrometer

Country Status (1)

Country Link
JP (1) JP4773168B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007078488A (en) * 2005-09-13 2007-03-29 Hokkaido Univ Electrochemical infrared spectroscope
JP2010204011A (en) * 2009-03-05 2010-09-16 Honda Motor Co Ltd Specimen holder
JP2013124862A (en) * 2011-12-13 2013-06-24 Ube Scientific Analysis Laboratory Inc Infrared spectroscopic device and method
JP2015515011A (en) * 2012-04-27 2015-05-21 サーモ エレクトロン サイエンティフィック インストルメンツ リミテッド ライアビリティ カンパニー Spectrometer with built-in ATR and accessory compartment
JP2019045295A (en) * 2017-09-01 2019-03-22 国立大学法人山梨大学 Flow cell
CN112114015A (en) * 2020-08-10 2020-12-22 华中师范大学 In-situ characterization method and device for electrochemical infrared spectrum combination of pollutant interface reaction

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62132132A (en) * 1985-12-04 1987-06-15 Hitachi Ltd Measurement of total reflection infrared spectrum and measuring prism therefor
JPH0815088A (en) * 1994-06-28 1996-01-19 Hitachi Ltd Instrument for measuring nonlinear optical constant
JPH10325792A (en) * 1997-05-23 1998-12-08 Shimadzu Corp Infrared microscope
JP2001194298A (en) * 1999-10-28 2001-07-19 Nippon Telegr & Teleph Corp <Ntt> Surface plasmon resonance enzyme sensor and method for measuring surface plasmon resonance
JP2002174591A (en) * 2000-12-07 2002-06-21 Jasco Corp Total reflection measuring apparatus
JP2005156385A (en) * 2003-11-27 2005-06-16 Shimadzu Corp Infrared microscope and its measuring position decision method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62132132A (en) * 1985-12-04 1987-06-15 Hitachi Ltd Measurement of total reflection infrared spectrum and measuring prism therefor
JPH0815088A (en) * 1994-06-28 1996-01-19 Hitachi Ltd Instrument for measuring nonlinear optical constant
JPH10325792A (en) * 1997-05-23 1998-12-08 Shimadzu Corp Infrared microscope
JP2001194298A (en) * 1999-10-28 2001-07-19 Nippon Telegr & Teleph Corp <Ntt> Surface plasmon resonance enzyme sensor and method for measuring surface plasmon resonance
JP2002174591A (en) * 2000-12-07 2002-06-21 Jasco Corp Total reflection measuring apparatus
JP2005156385A (en) * 2003-11-27 2005-06-16 Shimadzu Corp Infrared microscope and its measuring position decision method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007078488A (en) * 2005-09-13 2007-03-29 Hokkaido Univ Electrochemical infrared spectroscope
JP2010204011A (en) * 2009-03-05 2010-09-16 Honda Motor Co Ltd Specimen holder
JP2013124862A (en) * 2011-12-13 2013-06-24 Ube Scientific Analysis Laboratory Inc Infrared spectroscopic device and method
JP2015515011A (en) * 2012-04-27 2015-05-21 サーモ エレクトロン サイエンティフィック インストルメンツ リミテッド ライアビリティ カンパニー Spectrometer with built-in ATR and accessory compartment
JP2019045295A (en) * 2017-09-01 2019-03-22 国立大学法人山梨大学 Flow cell
JP7025628B2 (en) 2017-09-01 2022-02-25 国立大学法人山梨大学 Flow cell
CN112114015A (en) * 2020-08-10 2020-12-22 华中师范大学 In-situ characterization method and device for electrochemical infrared spectrum combination of pollutant interface reaction
CN112114015B (en) * 2020-08-10 2022-09-06 华中师范大学 In-situ characterization method and device for electrochemical infrared spectrum combination of pollutant interface reaction

Also Published As

Publication number Publication date
JP4773168B2 (en) 2011-09-14

Similar Documents

Publication Publication Date Title
Handoko et al. Understanding heterogeneous electrocatalytic carbon dioxide reduction through operando techniques
Pérez-Jiménez et al. Surface-enhanced Raman spectroscopy: benefits, trade-offs and future developments
Kas et al. In‐situ infrared spectroscopy applied to the study of the electrocatalytic reduction of CO2: theory, practice and challenges
Huang et al. Probing nanoscale spatial distribution of plasmonically excited hot carriers
JP4773168B2 (en) Electrochemical infrared spectrometer
Li et al. Combining localized surface plasmon resonance with anodic stripping voltammetry for heavy metal ion detection
US7656525B2 (en) Fiber optic SERS sensor systems and SERS probes
US9658163B2 (en) Assaying substrate with surface-enhanced raman scattering activity
US7515269B1 (en) Surface-enhanced-spectroscopic detection of optically trapped particulate
Giallongo et al. Silver nanoparticle arrays on a DVD-derived template: an easy&cheap SERS substrate
US20200088679A1 (en) Methods and systems for analysis
Wang et al. Enhance fluorescence study of grating structure based on three kinds of optical disks
US9494465B2 (en) Raman spectroscopic apparatus, raman spectroscopic method, and electronic apparatus
US20140071447A1 (en) Raman spectrometry method and raman spectrometry apparatus
JP2007078488A (en) Electrochemical infrared spectroscope
JP2005195441A (en) Raman spectroscopy, and device for raman spectroscopy
Janotta et al. Direct analysis of oxidizing agents in aqueous solution with attenuated total reflectance mid-infrared spectroscopy and diamond-like carbon protected waveguides
Kurouski et al. Surface-enhanced Raman spectroscopy: From concept to practical application
Su et al. Surface-enhanced vibrational spectroscopies in electrocatalysis: Fundamentals, challenges, and perspectives
Li et al. Sixty years of electrochemical optical spectroscopy: a retrospective
Chao et al. Recent Advancements of Electrochemical Attenuated Total Reflection Surface-enhanced Infrared Absorption Spectroscopy
JP6245664B2 (en) Surface-enhanced Raman scattering spectroscopic substrate and apparatus using the same
Sharma et al. Lossy Mode Resonance-Based Fiber Optic Sensor for the Detection of As (III) Using $\alpha $-Fe 2 O 3/SnO 2 Core–Shell Nanostructures
JP2013096939A (en) Optical device and detector
Socol et al. Enhanced gas sensing of Au nanocluster-doped or-coated zinc oxide thin films

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110614

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110623

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120704

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20121030

LAPS Cancellation because of no payment of annual fees