JP7025628B2 - Flow cell - Google Patents

Flow cell Download PDF

Info

Publication number
JP7025628B2
JP7025628B2 JP2017168476A JP2017168476A JP7025628B2 JP 7025628 B2 JP7025628 B2 JP 7025628B2 JP 2017168476 A JP2017168476 A JP 2017168476A JP 2017168476 A JP2017168476 A JP 2017168476A JP 7025628 B2 JP7025628 B2 JP 7025628B2
Authority
JP
Japan
Prior art keywords
flow path
measured
flow
main body
flow cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017168476A
Other languages
Japanese (ja)
Other versions
JP2019045295A (en
Inventor
潤治 犬飼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Yamanashi NUC
Original Assignee
University of Yamanashi NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Yamanashi NUC filed Critical University of Yamanashi NUC
Priority to JP2017168476A priority Critical patent/JP7025628B2/en
Publication of JP2019045295A publication Critical patent/JP2019045295A/en
Application granted granted Critical
Publication of JP7025628B2 publication Critical patent/JP7025628B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、フローセルに関するものであり、特に、電磁波解析用フローセルに関するものである。 The present invention relates to a flow cell, and more particularly to a flow cell for electromagnetic field analysis.

従来より、様々な技術分野で化学反応や生体反応などに伴う現象の理解や技術の向上のため様々な測定が行われている。被測定部材(試料)の「機能と構造・状態との関連」を明らかにすることにより、構造や電子構造を含めた状態の設計が可能になり、これを対象物質の機能にフィードバックすることが可能となる。例えば、発電性能と耐久性の向上が不可欠な燃料電池の技術の分野ではその実用化に向けた研究が進められている。燃料電池内部の「膜電極接合体(membrane electrode assembly (MEA))」は、高分子電解質膜、アノード触媒層、カソード触媒層、ガス拡散層から構成される。アノード触媒層は、厚さが約10μmであり、厚さ約30μmの高分子電解質膜の一方の側に形成され、カソード触媒層は、厚さが約10μmであり、上記高分子電解質膜の他方の側に形成されている。ガス拡散層は、厚さ約200μm以下の集電材を兼ねる多孔質のカーボン基材から作製され、アノードおよびカソード触媒層の外側に形成されている。MEAは、カーボン又は金属で作製された、ガス流路を備えたセパレーターまたはエンドプレートで挟まれている。 Conventionally, various measurements have been made in various technical fields in order to understand phenomena associated with chemical reactions and biological reactions and to improve the technology. By clarifying the "relationship between function and structure / state" of the member (sample) to be measured, it is possible to design the state including the structure and electronic structure, and this can be fed back to the function of the target substance. It will be possible. For example, in the field of fuel cell technology, where improvement in power generation performance and durability is indispensable, research is underway for its practical application. The "membrane electrode assembly (MEA)" inside the fuel cell is composed of a polymer electrolyte membrane, an anode catalyst layer, a cathode catalyst layer, and a gas diffusion layer. The anode catalyst layer is about 10 μm thick and is formed on one side of the polyelectrolyte membrane with a thickness of about 30 μm, and the cathode catalyst layer is about 10 μm thick and is the other of the above-mentioned polyelectrolyte membranes. It is formed on the side of. The gas diffusion layer is made of a porous carbon substrate having a thickness of about 200 μm or less and also serves as a current collector, and is formed on the outside of the anode and cathode catalyst layers. The MEA is sandwiched between separators or end plates with gas channels made of carbon or metal.

このように、MEAは、閉じた構造をしているため、発電中の燃料電池内部における流体の反応はブラックボックス化されている。 As described above, since the MEA has a closed structure, the reaction of the fluid inside the fuel cell during power generation is black-boxed.

液体中の反応をoperando測定(作用中に実際何が起こっているかを見る測定)する方法として、例えばシリコン薄膜で液体を封じた小型容器を用いてXPS測定を行なう方法が発表されている(非特許文献1)。 As a method of operando measurement (measurement to see what is actually happening during action) in a liquid, for example, a method of performing XPS measurement using a small container in which the liquid is sealed with a silicon thin film has been announced (non-). Patent Document 1).

T. Masuda, H. Yoshikawa, H. Noguchi, T. Kawasaki, M. Kobata, K. Kobayashi, K. Uosaki: "in situ X-ray Photoelectron Spectroscopy for Electrochemical Reactions in Ordinary Solvents" Appl. Phys. Lett. 103[11] (2013) 111605-1 DOI:10.1063/1.4821180T. Masuda, H. Yoshikawa, H. Noguchi, T. Kawasaki, M. Kobata, K. Kobayashi, K. Uosaki: "in situ X-ray Photoelectron Spectroscopy for Electrochemical Reactions in Ordinary Solvents" Appl. Phys. Lett. 103 [11] (2013) 111605-1 DOI: 10.1063 / 1.4821180

しかしながら、上記した従来文献を含め、従来技術では反応速度を規定しながらoperando測定されたものはなかった。 However, in the prior art, including the above-mentioned conventional literature, there was no operand measurement while defining the reaction rate.

本発明は上記事情に鑑みてなされたものであり、生体反応や化学反応などに伴う現象の理解や技術の向上のため様々な測定を、反応速度を規定しながらoperando測定が可能なセルを提供するものである。 The present invention has been made in view of the above circumstances, and provides a cell capable of performing various measurements in order to understand phenomena associated with biological reactions and chemical reactions and to improve technology, and to perform operatoro measurement while defining the reaction rate. It is something to do.

本発明によれば、流路を有する本体と、上記流路の内面に設けられた被測定部材の搭載部を備え、上記流路は、上記流路内の流体が層流となるように構成されている、フローセルが提供される。 According to the present invention, a main body having a flow path and a mounting portion of a member to be measured provided on the inner surface of the flow path are provided, and the flow path is configured such that the fluid in the flow path becomes a laminar flow. The flow cell is provided.

従来は、フローセルの流路内に流体の層流環境が維持されていなかったが、本発明では流路内の流体が層流となるように構成されているので、任意の時点又は経時的な反応速度の測定が可能になる。 Conventionally, the laminar flow environment of the fluid was not maintained in the flow path of the flow cell, but in the present invention, the fluid in the flow path is configured to be a laminar flow, so that the fluid flows at any time or over time. The reaction rate can be measured.

上記本体は、X線が透過可能な薄肉部を備えていてもよい。上記搭載部は、上記薄肉部の内面に設けられていてもよい。 The main body may have a thin portion through which X-rays can pass. The mounting portion may be provided on the inner surface of the thin-walled portion.

上記本体は、上記流路を挟んで対向する一対の薄肉部を備えていてもよい。上記一対の薄肉部は、それぞれ、X線が透過可能であってもよい。上記搭載部は、上記一対の薄肉部の一方に設けられていてもよい。 The main body may include a pair of thin-walled portions facing each other across the flow path. Each of the pair of thin-walled portions may be capable of transmitting X-rays. The mounting portion may be provided on one of the pair of thin-walled portions.

この構成によれば、被測定部材対する透過電磁波解析と共に任意の時点又は経時的な反応速度の測定が可能になる。 According to this configuration, it is possible to measure the reaction rate at an arbitrary time point or over time together with the transmitted electromagnetic field analysis for the member to be measured.

上記薄肉部は、上記流路に向かって上記本体に形成された凹部によって構成されていてもよい。上記凹部は、上記流路に近づくにつれて狭まるテーパー形状を有していてもよい。 The thin-walled portion may be formed of recesses formed in the main body toward the flow path. The recess may have a tapered shape that narrows as it approaches the flow path.

上記本体は、上記流路に繋がる開口部を有していてもよい。上記開口部には赤外線透過部材が設けられていてもよい。上記赤外線透過部材は、上記流路に対抗する面に被測定部材の搭載部を備えていてもよい。 The main body may have an opening connected to the flow path. An infrared ray transmitting member may be provided in the opening. The infrared transmissive member may be provided with a mounting portion of the member to be measured on a surface facing the flow path.

この構成によれば、被測定部材に対する赤外線解析と共に任意の時点又は経時的な反応速度の測定が可能になる。 According to this configuration, it is possible to measure the reaction rate at an arbitrary time point or over time as well as infrared analysis for the member to be measured.

上記搭載部の上記被測定部材の搭載面には、金膜が施されていてもよい。 A gold film may be applied to the mounting surface of the mounted member of the mounting portion.

上記被測定部材よりも下流の流路上に位置する参照電極と、上記参照電極よりも下流の流路上に位置する対極と、を備えていてもよい。上記参照電極と対極は、上記本体とは電気的に絶縁されていてもよい。 It may include a reference electrode located on the flow path downstream of the member to be measured and a counter electrode located on the flow path downstream of the reference electrode. The reference electrode and the counter electrode may be electrically isolated from the main body.

この構成によれば、被測定部材に対する解析と共に任意の時点又は経時的な反応速度の測定を1つのフローセルにおいて同時に行うことができる。 According to this configuration, it is possible to simultaneously measure the reaction rate at any time point or over time in one flow cell together with the analysis of the member to be measured.

上記参照電極と対極は、上記流路の内面にコーティングされた絶縁材料によって絶縁されていてもよい。上記絶縁材料は、ポリテトラフルオロエチレンであってもよい。 The reference electrode and the counter electrode may be insulated by an insulating material coated on the inner surface of the flow path. The insulating material may be polytetrafluoroethylene.

上記本体は、導電性を有していてもよい。上記搭載部に上記被測定部材が搭載されていてもよい。上記被測定部材は、導電性被測定部材であってもよい。 The main body may have conductivity. The member to be measured may be mounted on the mounting portion. The member to be measured may be a conductive member to be measured.

上記導電性被測定部材は、上記本体と接触していてもよい。 The conductive measured member may be in contact with the main body.

この構成によれば、被測定部材と必要に応じて接続する電気配線によって電磁波照射が妨げられず、且つ液体又は気体を流しながら、任意の時点又は経時的な反応速度の測定することができる。 According to this configuration, electromagnetic wave irradiation is not hindered by the electrical wiring connected to the member to be measured as needed, and the reaction rate can be measured at any time point or over time while flowing a liquid or gas.

上記本体は、カーボンでできていてもよい。 The main body may be made of carbon.

図1は、本実施形態によるフローセルの概略図を示している。FIG. 1 shows a schematic diagram of a flow cell according to the present embodiment. 図2Aは、搭載部に被測定部材が搭載されていないX線吸収微細構造(XAFS)用フローセルの断面図を示している。図2Bは、搭載部に被測定部材を搭載しているXAFS用フローセルの断面図を示している。FIG. 2A shows a cross-sectional view of a flow cell for X-ray absorption fine structure (XAFS) in which the member under test is not mounted on the mounting portion. FIG. 2B shows a cross-sectional view of a flow cell for XAFS in which the member to be measured is mounted on the mounting portion. 図3は、X線回折(XRD)及び小角X線散乱(SAXS)用フローセルの断面図を示している。FIG. 3 shows a cross-sectional view of a flow cell for X-ray diffraction (XRD) and small-angle X-ray scattering (SAXS). 図4は、反射赤外分光法(IRAS)用のフローセルの断面図を示している。FIG. 4 shows a cross-sectional view of a flow cell for reflected infrared spectroscopy (IRAS). 図5Aは、別の形態のXAFS、XRD及びSAXS用のフローセルの断面図を示している。図5Bは、別の形態のIRAS用のフローセルの断面図を示している。FIG. 5A shows a cross-sectional view of a flow cell for another form of XAFS, XRD and SAXS. FIG. 5B shows a cross-sectional view of a flow cell for another form of IRAS. 図6は、本実施形態によるXAFS用フローセルを用いたXAFS解析の概略図である。FIG. 6 is a schematic diagram of XAFS analysis using the flow cell for XAFS according to the present embodiment. 図7は、本実施形態によるXAFS用フローセルを用いての白金触媒上での酸素還元電流測定の結果を示している。図7Aは、室温(27℃)での結果を示している。図7Bは、50℃での結果を示している。図7Cは、70℃での結果を示している。FIG. 7 shows the results of oxygen reduction current measurement on a platinum catalyst using the flow cell for XAFS according to the present embodiment. FIG. 7A shows the results at room temperature (27 ° C). FIG. 7B shows the results at 50 ° C. Figure 7C shows the results at 70 ° C. 図8は、図7Aのデータに基づく「(流速)1/3と限界電流の値」の関係に関するグラフを示している。FIG. 8 shows a graph regarding the relationship between “(flow velocity) 1/3 and the value of the critical current” based on the data of FIG. 7A. 図9は、本実施形態によるXAFS用フローセルを用いての酸素還元反応中の白金触媒に関するフーリエ変換したXAFSスペクトルとその数値フィティングカーブを示している。FIG. 9 shows the Fourier transformed XAFS spectrum and its numerical fitting curve for the platinum catalyst during the oxygen reduction reaction using the flow cell for XAFS according to the present embodiment. 図10は、本実施形態によるX線回折(XRD)及び小角X線散乱(SAXS)用フローセルを用いたXRD測定及びSAXS測定の概略図である。FIG. 10 is a schematic diagram of XRD measurement and SAXS measurement using a flow cell for X-ray diffraction (XRD) and small-angle X-ray scattering (SAXS) according to the present embodiment. 図11は、本実施形態によるXRD及びSAXS用フローセルを用いた白金コバルト触媒の劣化試験に関する条件を示している。FIG. 11 shows the conditions for the deterioration test of the platinum cobalt catalyst using the flow cells for XRD and SAXS according to the present embodiment. 図12は、本実施形態によるXRD及びSAXS用フローセルを用いて測定した触媒の表面積を示している。FIG. 12 shows the surface area of the catalyst measured using the flow cells for XRD and SAXS according to this embodiment. 図13は、本実施形態によるXRD及びSAXS用フローセルを用いて測定した、劣化測定中の触媒のoperando XRDデータを示している。FIG. 13 shows the operando XRD data of the catalyst during the deterioration measurement measured by using the flow cell for XRD and SAXS according to the present embodiment. 図14は、本実施形態によるXRD及びSAXS用フローセルを用いてSAXS解析の結果を示している。FIG. 14 shows the results of SAXS analysis using the flow cells for XRD and SAXS according to this embodiment.

被測定部材の「機能と構造・状態との関連」を明らかにするためには、反応速度を一定に制御した環境で且つ構造や状態のoperando測定を行う必要がある。非特許文献1の方法は、反応速度を一定に制御した環境で構造や状態のoperando測定をしていない。非特許文献1はあくまで静止した液体での測定方法であり、本発明のフローセルとは異なるものである。ここで反応速度を一定に制御した環境で構造や状態のoperando測定について以下に説明する。 In order to clarify the "relationship between the function and the structure / state" of the member to be measured, it is necessary to perform the operand operation of the structure and the state in an environment where the reaction rate is controlled to be constant. The method of Non-Patent Document 1 does not perform operando measurement of the structure or state in an environment in which the reaction rate is controlled to be constant. Non-Patent Document 1 is a measurement method using a stationary liquid to the last, and is different from the flow cell of the present invention. Here, the operando measurement of the structure and state in an environment in which the reaction rate is controlled to be constant will be described below.

1. 反応速度ならびに反応速度を一定に制御した環境での構造や状態のoperando測定
所定の物理・化学条件(温度・湿度・流速・電場・磁場等)下で、反応を起こす対象(触媒・生体等)単位量当たり(面積・体積・個数など)且つ単位時間当たりでどれぐらいの量の反応物が対象に衝突するかが規定された時、生成物の単位時間当たりの出現個数で反応速度が規定される。「単位時間当たりどれぐらいの量の反応物が衝突し反応するか」という問題を解決するのは、実は容易ではない。ガスや溶液では乱流が起こりやすく、単位時間・単位体積に対象物に衝突する分子の数を求めるのは極めて困難である。
1. Operando measurement of structure and state in an environment where the reaction rate and reaction rate are controlled to be constant Under the specified physical and chemical conditions (temperature, humidity, flow velocity, electric field, magnetic field, etc.), the object (catalyst, living body) that causes the reaction. Etc.) When the amount of reactants colliding with the target per unit amount (area, volume, number, etc.) and the amount of reactants colliding with the target are specified, the reaction rate is determined by the number of products appearing per unit time. It is stipulated. In fact, it is not easy to solve the problem of "how many reactants collide and react per unit time". Turbulence is likely to occur in gas and solution, and it is extremely difficult to determine the number of molecules that collide with an object in a unit time and unit volume.

反応を起こす対象(触媒・生体等)単位量当たり(面積・体積・個数など)、単位時間当たりでどれぐらいの量の反応物が衝突するかを規定することによって、対象の反応速度が測定される。逆に、所定の物理・化学条件を制御して反応速度を任意の値にすることを「反応速度を規定する」と称する。このように、所定の物理・化学条件下で、反応を起こす対象単位量当たりかつ単位時間当たりでどれぐらいの量の反応物が対象に衝突するかが規定された測定環境に与えることにより、理想的な測定環境(即ち、どこのだれが行っても同一の結果が得られる環境)となる。すなわち反応速度を一定に制御した環境での構造や状態のoperando測定とは、この理想的な測定環境で被測定部材での生体反応や化学反応をoperando測定することである。 The reaction rate of a target is measured by specifying the amount of reactants that collide with each other (catalyst, living body, etc.) per unit amount (area, volume, number, etc.) and per unit time. To. On the contrary, controlling the predetermined physical and chemical conditions to set the reaction rate to an arbitrary value is called "defining the reaction rate". In this way, it is ideal to give to a measurement environment in which the amount of reactants that collide with the target per unit amount of reaction and per unit time under predetermined physical and chemical conditions is specified. It becomes a typical measurement environment (that is, an environment where the same result can be obtained no matter who does it). That is, the operando measurement of the structure and state in an environment in which the reaction rate is controlled to be constant is to perform an operando measurement of a biological reaction or a chemical reaction in the member to be measured in this ideal measurement environment.

この理想的環境を構築するためには、フローセル内部での層流が必要となる。層流とすることによって一意に反応を起こす対象(触媒・生体等)単位量当たり(面積・体積・個数など)、単位時間当たり供給される反応物が衝突するかの条件を決めることが可能となる。 In order to build this ideal environment, laminar flow inside the flow cell is required. By using laminar flow, it is possible to determine the conditions for a unique reaction target (catalyst, living body, etc.) per unit amount (area, volume, number, etc.) and whether the reactants supplied per unit time collide. Become.

2. 実施形態
以下に添付の図面を参照して、本発明の実施の形態について詳しく説明するが、この実施形態に限定されるものではない。図面中の点線は、本来は見えない各要素の境界線を表す。
2. Embodiment The embodiment of the present invention will be described in detail with reference to the accompanying drawings, but the embodiment is not limited to this embodiment. The dotted line in the drawing represents the boundary line of each element that is not originally visible.

図1は、本実施形態にかかるフローセル100の概略図を示している。図1において、フローセル100は、流路150を有する本体110と、流路150の内面に設けられた被測定部材140の搭載部170を備える。図1では搭載部170は、凹部120の薄肉部121の流路側面側に位置する被測定部材140を設置する部分である。なお、図1は当該搭載部170に被測定部材140を搭載した例を示している。本体100は、導電性であってもよい。流路150は、流路150内の流体が層流(即ち、電気化学的測定に影響を及ぼす乱流が生じていない流体の状態)となるように構成されている。また、フローセル100は、本体110の平面部から流路150に近づくにつれて狭まるテーパー形状を有する凹部120を備える。本体110が導電性である場合、電源(不図示)に接続された本体100を通じて被測定部材140に電流を流すことができる。本願明細書において説明を容易にする目的で、流路150の長手方向(流体が流れる方向)を幅(W)、凹部120から流路150の方向を高さ(H)、残りの方向を縦(D)と称する。 FIG. 1 shows a schematic diagram of the flow cell 100 according to the present embodiment. In FIG. 1, the flow cell 100 includes a main body 110 having a flow path 150 and a mounting portion 170 of a member to be measured 140 provided on the inner surface of the flow path 150. In FIG. 1, the mounting portion 170 is a portion where the measured member 140 located on the side surface side of the flow path of the thin-walled portion 121 of the recess 120 is installed. Note that FIG. 1 shows an example in which the member to be measured 140 is mounted on the mounting portion 170. The main body 100 may be conductive. The flow path 150 is configured such that the fluid in the flow path 150 becomes a laminar flow (that is, a state of the fluid in which no turbulence that affects the electrochemical measurement occurs). Further, the flow cell 100 includes a recess 120 having a tapered shape that narrows as it approaches the flow path 150 from the flat surface portion of the main body 110. When the main body 110 is conductive, a current can be passed through the main body 100 connected to a power source (not shown) to the member to be measured 140. For the purpose of facilitating the description in the present specification, the longitudinal direction of the flow path 150 (the direction in which the fluid flows) is the width (W), the direction from the recess 120 to the flow path 150 is the height (H), and the remaining direction is the vertical direction. Called (D).

2-1. X線吸収微細構造(XAFS)用のフローセル
図2A及びBのフローセル100は、X線を斜めに凹部120へ入射することによって、放出された蛍光X線を凹部120の正面に配置した検出器(不図示)によって検出するX線吸収微細構造(XAFS)用のフローセルとして用いることができる。
2-1. Flow cell for X-ray absorption fine structure (XAFS) In the flow cell 100 of FIGS. 2A and 2B, X-rays are obliquely incident on the recess 120, and the emitted fluorescent X-rays are arranged in front of the recess 120. It can be used as a flow cell for X-ray absorption fine structure (XAFS) detected by the detector (not shown).

図2A及びBは、図1の詳細な断面図である。図2A及びBは図1に示すフローセル110を流路150の部分を図1のWの方向に切った部分を示す断面図である。図2Aは、搭載部170に被測定部材140が搭載されていないフローセル100を示している。図2Bは、搭載部170に被測定部材140を搭載しているフローセル100を示している。図2A及びBにおいて、流体(液体又は気体)は、本体110の内部に形成された流路150の下から上に流れる。本体110は、一体成形であってもよく、複数のパーツから構成されていてもよい。図2A及びBは、流路150を中心に分割した2つのパーツ(第一本体部111と第二本体部112)から構成された本体110を示している。本体110の素材は、導電性を有する任意の素材を用いることができ、例えば、カーボン、導電性セラミックス及び導電性高分子材料を挙げることができる。 2A and 2B are detailed cross-sectional views of FIG. 2A and 2B are cross-sectional views showing a portion of the flow cell 110 shown in FIG. 1 in which the portion of the flow path 150 is cut in the direction of W in FIG. FIG. 2A shows a flow cell 100 in which the member to be measured 140 is not mounted on the mounting portion 170. FIG. 2B shows a flow cell 100 in which the member to be measured 140 is mounted on the mounting portion 170. In FIGS. 2A and 2B, the fluid (liquid or gas) flows from the bottom to the top of the flow path 150 formed inside the body 110. The main body 110 may be integrally molded or may be composed of a plurality of parts. 2A and 2B show a main body 110 composed of two parts (first main body portion 111 and second main body portion 112) divided around the flow path 150. As the material of the main body 110, any material having conductivity can be used, and examples thereof include carbon, conductive ceramics, and a conductive polymer material.

第一本体部111は、流路150に近づくにつれて狭まるテーパー形状を有する凹部120と、上記流路150に向かって上記本体110(第一本体部111)に形成された凹部によって構成される薄肉部121と、を備える。図2A及びBにおいて、凹部120は、流路150に向かって直線状のテーパー形状であるが、階段状のテーパー形状であってもよい。また、凹部120は、テーパー形状の代わりに円柱形でも角柱形であってもよい。凹部のテーパー角は、実験条件によって任意の角度に設定することができ、例えば、角度60、90、120及び150℃であってもよい。被測定部材140は、薄肉部121の内面に設けられた被測定部材の搭載部170に設けることができる。図2A及び2Bにおいて、搭載部170は、後述する絶縁材料160と薄肉部121の内面とで形成されているが、薄肉部121の内面から凹部120に向かって形成された窪みであってもよい。薄肉部121は、X線が透過可能である。薄肉部121がカーボンで出来ている場合、薄肉部121の厚さは、X線が透過し且つ流体のリークを防げる厚さであれば特に限定しないが、例えば、2.0mm、3.0mm、3.5mm、4.0mm、4.5mm、5.0mm又は6.0mm厚であってもよく、これらのうちの任意の2点間の範囲の厚さであってもよい。この厚さであれば、薄肉部121の形状は、四角形でも円形でもよい。薄肉部の成形方法は、当業者にとって公知の方法(例えば、切削加工)を採用することができる。 The first main body portion 111 is a thin-walled portion composed of a recess 120 having a tapered shape that narrows as it approaches the flow path 150, and a recess formed in the main body 110 (first main body portion 111) toward the flow path 150. It is equipped with 121. In FIGS. 2A and 2B, the recess 120 has a linear tapered shape toward the flow path 150, but may have a stepped tapered shape. Further, the concave portion 120 may have a cylindrical shape or a prismatic shape instead of the tapered shape. The taper angle of the recess can be set to any angle depending on the experimental conditions, and may be, for example, angles 60, 90, 120 and 150 ° C. The member to be measured 140 can be provided on the mounting portion 170 of the member to be measured provided on the inner surface of the thin-walled portion 121. In FIGS. 2A and 2B, the mounting portion 170 is formed of the insulating material 160 described later and the inner surface of the thin-walled portion 121, but may be a recess formed from the inner surface of the thin-walled portion 121 toward the recess 120. .. The thin-walled portion 121 is capable of transmitting X-rays. When the thin-walled portion 121 is made of carbon, the thickness of the thin-walled portion 121 is not particularly limited as long as it is thick enough to allow X-rays to pass through and prevent fluid leakage, and is, for example, 2.0 mm, 3.0 mm, and 3.5 mm. , 4.0 mm, 4.5 mm, 5.0 mm or 6.0 mm, and may be in the range between any two of these points. With this thickness, the shape of the thin portion 121 may be a quadrangle or a circle. As a method for forming a thin portion, a method known to those skilled in the art (for example, cutting) can be adopted.

流路150は、本体100内部に形成された流体が通過する通路である。本体100が第一本体部111と第二本体部112から構成されている場合は、流路150は、第一本体部111か第二本体部112のいずれかに溝が形成された構成であってもよく、第一本体部111と第二本体部112の両方に溝が形成された構成であってもよい。また、第一本体部111と第二本体部112との間にパッキンを挟むことで、流路150を形成してもよい。図2A及びBの流路150は、直線路であるが、後述する電極(参照電極130及び対極131)と被測定部材140との間において流体の層流環境が維持されれば、湾曲路やクランク路を有していてもよい。好ましくは、流路150は、電極(参照電極130及び対極131)と被測定部材140との間は、少なくとも直線路である。第一本体部111と第二本体部112は、任意の固定具を使用して結合させることができ、例えば、ネジ止め、クランプ及び接着剤を挙げることができる。 The flow path 150 is a passage through which the fluid formed inside the main body 100 passes. When the main body 100 is composed of the first main body portion 111 and the second main body portion 112, the flow path 150 has a configuration in which a groove is formed in either the first main body portion 111 or the second main body portion 112. The structure may be such that grooves are formed in both the first main body portion 111 and the second main body portion 112. Further, the flow path 150 may be formed by sandwiching the packing between the first main body portion 111 and the second main body portion 112. The flow path 150 in FIGS. 2A and 2B is a straight path, but if the laminar flow environment of the fluid is maintained between the electrode (reference electrode 130 and counter electrode 131) described later and the member 140 to be measured, a curved path or a curved path or It may have a crank path. Preferably, the flow path 150 is at least a straight path between the electrodes (reference electrode 130 and counter electrode 131) and the member to be measured 140. The first body portion 111 and the second body portion 112 can be joined using any fixture, such as screwing, clamps and adhesives.

本実施形態の本体110は、電気化学的測定用の複数の電極を備えることができる。かかる複数の電極は、電気化学測定器(不図示)に接続される。かかる電極は、被測定部材140よりも下流に位置する参照電極130と、参照電極130よりも下流に位置する対極131であり、必要に応じて更なる電極を含んでいてもよい。図2A及びBでは、参照電極130と対極131は、第二本体部112に備わっているが、第一本体部111に備わっていてもよい。また、参照電極130と対極131は、本フローセル外に配置することもできる。参照電極130と対極131の電極面は、流路150内に露出している。参照電極130と対極131は、上記流路150の内面にコーティングされた絶縁材料160によって絶縁することができる。この場合、参照電極130と対極131の電極面は、各電極面と絶縁材料160との間の段差によって流体に乱流が生じないように(層流が形成されるように)、絶縁材料160の表面と同一平面(同一水準)となることが好ましい。各電極を前後させることによって、各電極面は、絶縁材料160の表面と同一平面(同一水準)にすることができる。各電極は、本体110とは電気的に絶縁している一方で、各電極の電極面は、流体と電気的に接続可能に流路150内に露出している。 The main body 110 of the present embodiment can include a plurality of electrodes for electrochemical measurement. The plurality of electrodes are connected to an electrochemical measuring instrument (not shown). Such electrodes are a reference electrode 130 located downstream of the member to be measured 140 and a counter electrode 131 located downstream of the reference electrode 130, and may include additional electrodes as needed. In FIGS. 2A and 2B, the reference electrode 130 and the counter electrode 131 are provided in the second main body 112, but may be provided in the first main body 111. Further, the reference electrode 130 and the counter electrode 131 can be arranged outside the flow cell. The electrode surfaces of the reference electrode 130 and the counter electrode 131 are exposed in the flow path 150. The reference electrode 130 and the counter electrode 131 can be insulated by the insulating material 160 coated on the inner surface of the flow path 150. In this case, the electrode surfaces of the reference electrode 130 and the counter electrode 131 are provided with the insulating material 160 so that the fluid does not turbulently flow (so that a laminar flow is formed) due to the step between each electrode surface and the insulating material 160. It is preferable that the surface is flush with the surface (same level). By moving each electrode back and forth, each electrode surface can be made in the same plane (same level) as the surface of the insulating material 160. While each electrode is electrically insulated from the main body 110, the electrode surface of each electrode is exposed in the flow path 150 so as to be electrically connectable to the fluid.

流路150の内面は、X線が通過する必要がある内面を除いて絶縁材料160がコーティングされていてもよい。絶縁材料160は、流体の層流環境を形成可能であれば、流路150の内面の一部分にだけコーティングされていてもよい。絶縁材料160は、絶縁性能を有し且つ層流環境を形成可能であれば任意の材料を用いることができ、例えば、PTFEを挙げることができる。絶縁材料160の厚さは、本体110に対する絶縁性を発揮し且つ流体の層流環境が維持されれば特に限定しないが、例えば、1μm、2μm、3μm、4μm、5μm、6μm、7μm、8μm、9μm又は10μm厚であってもよく、これらのうちの任意の2点間の範囲の厚さであってもよい。流路150の中を流れる流体(液体又は気体)が層流を形成するため、好ましくは被測定部材140の部材表面と流路150の内面(流体に接する流路の表面/コーティング材がある場合はコーティングされた表面)との間に段差が生じないように構成するとよい。なお絶縁材料は一実施形態に過ぎず、測定対象に応じて導電性材料を有するようにしてもよい。また流路150の材料そのものだけでよい場合は、コーティング材を省略できるがこの場合も流路内面と被測定部材140表面との間に段差を生じないように(同一平面となるように)第一本体部111に被測定部材(試料)140の搭載部170を試料厚分掘り下げる又は搭載部170周辺を試料厚突出させるように形成するとよい。絶縁材料160を流路の内面にコーティングする方法は、当業者にとって公知の方法(例えば、スプレーコート法及び直接塗布法)を採用することができる。 The inner surface of the flow path 150 may be coated with an insulating material 160 except for the inner surface through which X-rays need to pass. The insulating material 160 may be coated only on a part of the inner surface of the flow path 150 as long as it can form a laminar flow environment of the fluid. As the insulating material 160, any material can be used as long as it has insulating performance and can form a laminar flow environment, and examples thereof include PTFE. The thickness of the insulating material 160 is not particularly limited as long as it exhibits insulation to the main body 110 and the laminar flow environment of the fluid is maintained, but for example, 1 μm, 2 μm, 3 μm, 4 μm, 5 μm, 6 μm, 7 μm, 8 μm, It may be 9 μm or 10 μm thick, and may be in the range between any two of these points. Since the fluid (liquid or gas) flowing in the flow path 150 forms a laminar flow, it is preferable that there is a member surface of the member to be measured 140 and an inner surface of the flow path 150 (the surface / coating material of the flow path in contact with the fluid). It is advisable to configure it so that there is no step between it and the coated surface). The insulating material is only one embodiment, and may have a conductive material depending on the measurement target. If only the material of the flow path 150 is sufficient, the coating material can be omitted, but in this case as well, the first step is to prevent a step from being formed between the inner surface of the flow path and the surface of the member to be measured 140 (so that they are flush with each other). (1) The mounting portion 170 of the member (sample) 140 to be measured may be formed in the main body portion 111 so as to be dug down by the sample thickness or to project the sample thickness around the mounting portion 170. As a method of coating the inner surface of the flow path with the insulating material 160, a method known to those skilled in the art (for example, a spray coating method and a direct coating method) can be adopted.

流路の高さ(H)方向の間隔は、層流環境が維持できれば流体の性質に依存して設定することができ、例えば、0.2mm、0.3mm、0.4mm、0.5mm、0.6mm、0.7mm、0.8mm、0.9mm及び1.0mmであってもよく、これらのうちの任意の2点間の範囲の間隔であってもよい。流路の幅(W)方向の長さは、層流環境が維持できれば流体の性質に依存して設定することができ、例えば、15cm、20cm、25cm、30cm及びそれ以上であってもよく、これらのうちの任意の2点間の範囲の長さであってもよい。流路の縦(D)方向の長さは、層流環境が維持できれば流体の性質に依存して設定することができ、例えば、1cm、2cm、3cm、4cm、5cm及びそれ以上であってもよく、これらのうちの任意の2点間の範囲の長さであってもよい。流路の高さ(H)方向の間隔、流路の幅(W)方向の長さ及び流路の縦(D)方向の長さは、それぞれ、流体の層流環境が形成可能となるように設定するのが好ましい。 The spacing in the height (H) direction of the flow path can be set depending on the properties of the fluid if the laminar flow environment can be maintained, for example 0.2 mm, 0.3 mm, 0.4 mm, 0.5 mm, 0.6 mm, 0.7. It may be mm, 0.8 mm, 0.9 mm and 1.0 mm, and may be an interval in the range between any two of these points. The length in the width (W) direction of the flow path can be set depending on the properties of the fluid as long as the laminar flow environment can be maintained, and may be, for example, 15 cm, 20 cm, 25 cm, 30 cm or more. It may be the length of the range between any two of these points. The length of the flow path in the longitudinal (D) direction can be set depending on the nature of the fluid as long as the laminar flow environment can be maintained, for example 1 cm, 2 cm, 3 cm, 4 cm, 5 cm and more. Well, it may be the length of the range between any two of these points. The distance in the height (H) direction of the flow path, the length in the width (W) direction of the flow path, and the length in the vertical direction (D) of the flow path are set so that a laminar flow environment of the fluid can be formed. It is preferable to set to.

薄肉部121の内面に設けられた搭載部170には、被測定部材140が設けられる。被測定部材140は、限定するものではないが、例えば、被測定部材インク(スラリー状の被測定部材)の担持によって薄肉部121の内面に設けることができる。触媒材料の測定にあっては触媒インクを用いることができる。被測定部材140の厚さは、流体に乱流が生じない厚さであることが好ましい。被測定部材140の周囲に絶縁素材160がコーティングされている場合、被測定部材140の厚さは、被測定部材140と絶縁材料160との間の段差によって流体に乱流が生じないように、絶縁材料160の表面と被測定部材140の表面が同一平面(同一水準)となる厚さにすることが好ましい。被測定部材140の厚さは、絶縁材料160の厚さに合わせて選択してもよく、その逆であってもよい。被測定部材140は、少なくとも薄肉部121全体を覆うサイズである。被測定部材140は、薄肉部121の内面にコートティングされた絶縁材料160を除去することで設けられる搭載部170に取り付けてもよい。また、被測定部材140は、(1)薄肉部121の内面に被測定部材140を設けて、(2)被測定部材140上を適切なカバー(例えばマスキングテープ)によってマスクし、(3)絶縁材料160を流路150にコートティングして、(4)カバーを取り除くことによって設けてもよい。被測定部材140は、導電性の被測定部材(例えば、金属触媒)又は非導電性の被測定部材(例えば、セラミックス触媒)としてもよく、実験によって任意の金属、金属合金、カーボン、セラミックスを選択することができ、例えば、白金、金及び白金コバルトを挙げることができる。被測定部材140が導電性である場合、本体110と接触していてもよい。また、被測定部材140は、生物試料(例えば、細胞、タンパク質及び核酸、生体組織)が結合していてもよく、生物試料そのものであってもよい。 A member to be measured 140 is provided on the mounting portion 170 provided on the inner surface of the thin-walled portion 121. The member to be measured 140 can be provided on the inner surface of the thin-walled portion 121 by supporting the ink of the member to be measured (slurry-like member to be measured), for example, without limitation. Catalyst ink can be used in the measurement of the catalyst material. The thickness of the member to be measured 140 is preferably such that turbulence does not occur in the fluid. When the insulating material 160 is coated around the measured member 140, the thickness of the measured member 140 is such that the step between the measured member 140 and the insulating material 160 does not cause turbulence in the fluid. It is preferable that the thickness is such that the surface of the insulating material 160 and the surface of the member to be measured 140 have the same plane (same level). The thickness of the member to be measured 140 may be selected according to the thickness of the insulating material 160, and vice versa. The member to be measured 140 has a size that covers at least the entire thin portion 121. The member to be measured 140 may be attached to a mounting portion 170 provided by removing the insulating material 160 coated on the inner surface of the thin portion 121. Further, the measured member 140 is (1) provided with the measured member 140 on the inner surface of the thin portion 121, (2) masked on the measured member 140 with an appropriate cover (for example, masking tape), and (3) insulated. The material 160 may be provided by coating the flow path 150 and (4) removing the cover. The member to be measured 140 may be a conductive member to be measured (for example, a metal catalyst) or a non-conductive member to be measured (for example, a ceramics catalyst), and any metal, metal alloy, carbon, or ceramics is selected by an experiment. For example, platinum, gold and platinum cobalt can be mentioned. When the member to be measured 140 is conductive, it may be in contact with the main body 110. Further, the member 140 to be measured may be bound to a biological sample (for example, cells, proteins and nucleic acids, biological tissue), or may be the biological sample itself.

電磁波(X線など)は、薄肉部121を通じて被測定部材140に照射される。被測定部材140に電磁波を照射することによって被測定部材140は刺激を受け、まったく別の電磁波を発したり、熱や音など別のエネルギーを発したり、照射した電磁波の強度やエネルギーをだけ変えて外部に放出したりする。これらの情報を分析することにより、被測定部材140の構造及び電子状態を、薄肉部121を通してXAFSの測定が可能になる。 Electromagnetic waves (X-rays, etc.) are applied to the member to be measured 140 through the thin portion 121. By irradiating the measured member 140 with an electromagnetic wave, the measured member 140 is stimulated and emits a completely different electromagnetic wave, emits another energy such as heat or sound, or changes only the intensity or energy of the irradiated electromagnetic wave. It is released to the outside. By analyzing this information, it becomes possible to measure the structure and electronic state of the member to be measured 140 through the thin-walled portion 121 in XAFS.

2-2. X線回折(XRD)及び小角X線散乱(SAXS)用のフローセル
図3のフローセル200は、流路150を挟んで対向する一対の薄肉部(121と221)を備えるフローセルである。なお、他の構成及び条件は、図2A及びBのフローセル100と同じである。薄肉部221は、流路150に向かって本体110(第二本体部112)に形成された凹部220によって構成される。肉薄部221は、X線が透過し且つ流体のリークを防げる厚さであれば特に限定しないが、例えば、2.0mm、3.0mm、3.5mm、4.0mm、4.5mm、5.0mm又は6.0mm厚であってもよく、これらのうちの任意の2点間の範囲の厚さであってもよい。被測定部材140は、一対の薄肉部(121と221)の一方に設けられる。通常、被測定部材140は、電磁波の入射側の薄肉部の内面に設けられる。図3のフローセル200は、X線を凹部120へ入射することによって、流路150及び薄肉部221を透過したX線を凹部220の外面に配置した検出器(不図示)によって検出するXRD及びSAXS用フローセルとして用いることができる。なお、絶縁材料160がX線を透過させない場合は、薄肉部221の内面にはX線を透過させるために絶縁材料160がコーティングされていない窪み部230を設けてもよい。窪み部230が設けられている場合、少なくとも被測定部材140側を通過する流体は、層流である。窪み部230は、任意のX線透過材料を用いて、絶縁材料160の表面とX線透過材料の表面が同一平面(同一水準)となるように塞いでもよい。また、絶縁材料160がX線を透過させる場合は、絶縁材料160は、薄肉部221の内面もコーティングされていてもよい。更に、薄肉部221は、薄肉部221の内面方向に突出した突出部を、絶縁材料160の表面と突出部の表面が同一平面(同一水準)となるように備えていてもよい。突出部を設けた場合、突出部の厚さと薄肉部221の厚さの合計の厚さは、X線が透過し且つ流体のリークを防げる厚さであれば特に限定しないが、例えば、2.0mm、3.0mm、3.5mm、4.0mm、4.5mm、5.0mm又は6.0mm厚であってもよく、これらのうちの任意の2点間の範囲の厚さであってもよい。
2-2. Flow cell for X-ray diffraction (XRD) and small-angle X-ray scattering (SAXS) The flow cell 200 in FIG. 3 is a flow cell provided with a pair of thin-walled portions (121 and 221) facing each other across the flow path 150. .. The other configurations and conditions are the same as those of the flow cell 100 of FIGS. 2A and 2B. The thin-walled portion 221 is composed of a recess 220 formed in the main body 110 (second main body portion 112) toward the flow path 150. The thin portion 221 is not particularly limited as long as it has a thickness that allows X-rays to pass through and prevents fluid leakage, but is, for example, 2.0 mm, 3.0 mm, 3.5 mm, 4.0 mm, 4.5 mm, 5.0 mm, or 6.0 mm thick. It may be, or it may be a thickness in the range between any two of these points. The member to be measured 140 is provided on one of a pair of thin-walled portions (121 and 221). Normally, the member to be measured 140 is provided on the inner surface of the thin-walled portion on the incident side of the electromagnetic wave. The flow cell 200 of FIG. 3 detects X-rays transmitted through the flow path 150 and the thin-walled portion 221 by a detector (not shown) arranged on the outer surface of the recess 220 by injecting X-rays into the recess 120. Can be used as a flow cell for. When the insulating material 160 does not transmit X-rays, a recess 230 not coated with the insulating material 160 may be provided on the inner surface of the thin-walled portion 221 in order to transmit X-rays. When the recess 230 is provided, at least the fluid passing through the member to be measured 140 is a laminar flow. The recessed portion 230 may be closed by using an arbitrary X-ray transmitting material so that the surface of the insulating material 160 and the surface of the X-ray transmitting material are flush with each other (same level). Further, when the insulating material 160 transmits X-rays, the insulating material 160 may also be coated on the inner surface of the thin-walled portion 221. Further, the thin-walled portion 221 may be provided with a protruding portion protruding in the inner surface direction of the thin-walled portion 221 so that the surface of the insulating material 160 and the surface of the protruding portion are flush with each other (same level). When the protrusion is provided, the total thickness of the thickness of the protrusion and the thickness of the thin wall portion 221 is not particularly limited as long as it is a thickness that allows X-rays to pass through and prevents fluid leakage, but is, for example, 2.0 mm. , 3.0 mm, 3.5 mm, 4.0 mm, 4.5 mm, 5.0 mm or 6.0 mm thick, and may be in the range between any two of these points.

2-3. 反射赤外分光法(IRAS)用のフローセル
図4のフローセル300において、本体110(第一本体部111)は、流路150に繋がる開口部122を有し、開口部122には赤外線透過部材123が設けられているフローセルである。なお、他の構成及び条件は、図2A及びBのフローセルと同じである。開口部122は、流路150と流体連通する構成である。赤外線透過部材123は、流体が流路150から凹部120にリークしないように開口部122に嵌めることが望ましいが、赤外線透過部材123と開口部122との間に適切なシーリング剤を用いて流体のリークを防いでもよい。赤外線透過部材123は、IRASが可能であれば任意の物質を用いることができ、例えば、Si、Ge及びZnSeを挙げることができる。赤外線透過部材123は、IRASが可能であれば任意の形状を用いることができ、例えば、ドーム形状、半円柱形状及び三角柱形状を取ることができる。赤外線透過部材123は、流路150に対向する面に被測定部材140を備えていてもよい。この場合は赤外線透過部材123の流路150に対向する面が被測定部材140の搭載部170となる。赤外線透過部材123は、流路150に対向する面に金膜124を備えていてもよい。金膜124は、メッキ処理又は蒸着によって赤外線透過部材123に設けてもよい。この場合は金膜124を施した赤外線透過部材123の流路150に対向する面が被測定部材140の搭載部170となる。赤外線透過部材123が金膜124を備えている場合、被測定部材140は、金膜124に接触するように配置される。被測定部材140は、金膜124を介して本体110と電気的に接続してもよく、本体110と直接電気的に接続していてもよい。
2-3. Flow cell for reflected infrared spectroscopy (IRAS) In the flow cell 300 of FIG. 4, the main body 110 (first main body 111) has an opening 122 connected to the flow path 150, and the opening 122 has an opening 122. It is a flow cell provided with an infrared transmissive member 123. The other configurations and conditions are the same as those of the flow cells of FIGS. 2A and 2B. The opening 122 has a structure in which fluid communicates with the flow path 150. The infrared transmissive member 123 is preferably fitted into the opening 122 so that the fluid does not leak from the flow path 150 to the recess 120, but the fluid is provided with an appropriate sealant between the infrared transmissive member 123 and the opening 122. You may prevent the leak. As the infrared transmissive member 123, any substance can be used as long as IRAS is possible, and examples thereof include Si, Ge and ZnSe. The infrared transmissive member 123 may have any shape as long as IRAS is possible, and may have, for example, a dome shape, a semi-cylindrical shape, or a triangular prism shape. The infrared transmitting member 123 may include the member 140 to be measured on the surface facing the flow path 150. In this case, the surface of the infrared transmissive member 123 facing the flow path 150 becomes the mounting portion 170 of the member to be measured 140. The infrared transmissive member 123 may be provided with a gold film 124 on a surface facing the flow path 150. The gold film 124 may be provided on the infrared transmissive member 123 by plating treatment or vapor deposition. In this case, the surface of the infrared transmissive member 123 provided with the gold film 124 facing the flow path 150 becomes the mounting portion 170 of the member to be measured 140. When the infrared transmitting member 123 includes the gold film 124, the member to be measured 140 is arranged so as to be in contact with the gold film 124. The member to be measured 140 may be electrically connected to the main body 110 via the gold film 124, or may be directly electrically connected to the main body 110.

2-4. 別の形態のXAFS、XRD及びSAXS用のフローセル
図5Aのフローセル400は、図2A及びBのフローセル100及び図3のフローセル200の別の形態を示している。フローセル400は、凹部を備えない第一本体部211と凹部を備えない第二本体部212を有する本体210を備える。第一本体部211と第二本体部212の厚さは、薄肉部121の厚さと同じにすることができる。第一本体部211と第二本体部212は、任意の補強具(不図示)を用いて補強してもよい。フローセル400は、参照電極130と対極131を備えてもよい一方で、流体の層流環境が維持されていれば、フローセル400外に参照電極130と対極131を備えてもよいことはいうまでもない。
2-4. Flow cells for XAFS, XRD and SAXS in different forms Flow cell 400 in FIG. 5A shows another form of flow cell 100 in FIGS. 2A and B and flow cell 200 in FIG. The flow cell 400 includes a main body 210 having a first main body portion 211 having no recess and a second main body portion 212 having no recess. The thickness of the first main body portion 211 and the second main body portion 212 can be the same as the thickness of the thin-walled portion 121. The first main body portion 211 and the second main body portion 212 may be reinforced by using any reinforcing tool (not shown). It goes without saying that the flow cell 400 may be provided with the reference electrode 130 and the counter electrode 131, while the reference electrode 130 and the counter electrode 131 may be provided outside the flow cell 400 as long as the laminar flow environment of the fluid is maintained. do not have.

2-5. 別の形態のIRAS用のフローセル
図5Bのフローセル500は、図4のフローセル300の別の形態を示している。フローセル500は、図4のフローセル300と類似の構造をする一方で、凹部を備えない第一本体部211と第二本体部212を有する本体210を備える。第一本体部211と第二本体部212の厚さは、薄肉部121の厚さと同じにすることができる。第一本体部211と第二本体部212は、任意の補強具(不図示)を用いて補強してもよい。フローセル500は、参照電極130と対極131を備えてもよい一方で、流体の層流環境が維持されていれば、フローセル500外に参照電極130と対極131を備えてもよいことはいうまでもない。
2-5. Flow cell for IRAS in another form The flow cell 500 in FIG. 5B shows another form of the flow cell 300 in FIG. The flow cell 500 has a structure similar to that of the flow cell 300 of FIG. 4, but includes a main body 210 having a first main body portion 211 without a recess and a second main body portion 212. The thickness of the first main body portion 211 and the second main body portion 212 can be the same as the thickness of the thin-walled portion 121. The first main body portion 211 and the second main body portion 212 may be reinforced by using any reinforcing tool (not shown). It goes without saying that the flow cell 500 may be provided with the reference electrode 130 and the counter electrode 131, while the reference electrode 130 and the counter electrode 131 may be provided outside the flow cell 500 as long as the laminar flow environment of the fluid is maintained. do not have.

1-1. XAFS用フローセルの構造
XAFSセルの基本構造は、図2A及びBに表している。角度120℃のテーパーを有する薄肉部(厚さ4mm)付きのカーボン製本体部と、参照電極と対極を備えるカーボン製本体部(それぞれ、W20cmxH5cm)を用意した。被測定部材は、白金触媒(Pt/CB)を用いた(塗布量50μg/cm2)。更に、白金触媒が溶液中で剥がれることを防止する目的で、白金触媒上にナフィオン(登録商標)を0.05μmキャストした。白金触媒を塗布する領域は、1mm x 20mmとした。両カーボン製本体部は、白金触媒領域、電極領域及びX線が通過する可能性のある領域を除いて、PTFEを用いて約2μmの厚さでコートした。白金触媒を約1mm x 20mmの範囲且つ厚さ約2μm程度に薄肉部の内面に塗布した。両カーボン製本体部の間に厚さ0.5mm程度の絶縁性パッキンを挟み込んで、流路内の高さが一定に保たれた空間(高さ:約0.5mm)を形成した。
1-1. Structure of flow cell for XAFS
The basic structure of the XAFS cell is shown in Figures 2A and B. A carbon main body with a thin wall (thickness 4 mm) having a taper at an angle of 120 ° C and a carbon main body with a reference electrode and a counter electrode (W20 cm x H5 cm, respectively) were prepared. A platinum catalyst (Pt / CB) was used as the member to be measured (coating amount 50 μg / cm 2 ). Furthermore, in order to prevent the platinum catalyst from peeling off in the solution, Nafion (registered trademark) was cast at 0.05 μm on the platinum catalyst. The area to which the platinum catalyst was applied was 1 mm x 20 mm. Both carbon bodies were coated with PTFE to a thickness of approximately 2 μm, excluding the platinum catalyst region, electrode region and region through which X-rays could pass. A platinum catalyst was applied to the inner surface of the thin-walled portion in a range of about 1 mm x 20 mm and a thickness of about 2 μm. An insulating packing with a thickness of about 0.5 mm was sandwiched between both carbon main bodies to form a space (height: about 0.5 mm) in which the height in the flow path was kept constant.

XAFSセルでは、X線を薄肉部から照射し、白金触媒から生み出される蛍光X線を分析する。X線も蛍光X線も同一の薄肉部を通る。X線としては、1-20keVの放射光を用いた。X線は斜めから薄肉部に入射させ、生じる蛍光X線をフローセルの薄肉部外面側においた検出器にて分析した。白金触媒への通電は、カーボン製のフローセル自体を用いた。 In the XAFS cell, X-rays are irradiated from the thin part and the fluorescent X-rays produced by the platinum catalyst are analyzed. Both X-rays and fluorescent X-rays pass through the same thin-walled part. Synchrotron radiation of 1-20 keV was used as X-rays. X-rays were incident on the thin-walled part from an angle, and the generated fluorescent X-rays were analyzed by a detector placed on the outer surface side of the thin-walled part of the flow cell. The carbon flow cell itself was used to energize the platinum catalyst.

1-2. フローセル内で層流が得られていることの証明
システムの構成を図6に示す。以下の条件で、XAFS用フローセルを用いて酸素還元反応を行った。
・流速:60、90、120ml/min(4、6、8cm/s)
・電解質溶液:0.1M HClO4
・電解液温度:室温(27℃)、50℃、70℃
1-2. Proof that laminar flow is obtained in the flow cell Figure 6 shows the configuration of the system. An oxygen reduction reaction was carried out using a flow cell for XAFS under the following conditions.
・ Flow velocity: 60, 90, 120 ml / min (4, 6, 8 cm / s)
-Electrolyte solution: 0.1M HClO 4
・ Electrolyte temperature: Room temperature (27 ℃), 50 ℃, 70 ℃

図7は、電位(potential)(参照極:可逆水素電極)を5mV/sで掃引したときの酸素還元電流を示している。図7Aは、室温(27℃)、図7Bは、50℃、図7Cは、70℃の環境下での実験結果である。どの温度においても、酸素還元電流が測定されている。図8は、図7Aのデータに基づく「(流速)1/3と限界電流の値」の関係を示している。両者が比例関係であることから、本フローセル内は層流であったことがわかった。 FIG. 7 shows the oxygen reduction current when the potential (reference electrode: reversible hydrogen electrode) is swept at 5 mV / s. FIG. 7A shows the experimental results at room temperature (27 ° C.), FIG. 7B shows the experimental results at 50 ° C., and FIG. 7C shows the experimental results at 70 ° C. Oxygen reduction current is measured at any temperature. FIG. 8 shows the relationship between “(flow velocity) 1/3 and the value of the critical current” based on the data of FIG. 7A. Since the two are in a proportional relationship, it was found that there was a laminar flow in this flow cell.

1-3. 酸素還元反応中のXAFS解析
酸素還元反応中の白金触媒粒子の構造をXAFS用フローセルによって解析した。反応は、室温で行い、0.1M過塩素酸溶液中において、3mAの電流が白金触媒に定常的に流れている条件で測定を行った。図9は、フーリエ変換したXAFSスペクトル(測定データ)とその数値フィッティングカーブを示している。この時の白金原子-白金原子の距離は0.275nmであり、白金原子1つについて平均で8.6個の白金原子が周りに存在することが分かった。単純な粒子であるが、酸素還元反応中のXAFS測定により、反応中、反応速度を規定しての白金触媒粒子の構造パラメーター取得に成功した。
1-3. XAFS analysis during the oxygen reduction reaction The structure of platinum-catalyzed particles during the oxygen reduction reaction was analyzed by a flow cell for XAFS. The reaction was carried out at room temperature and measured in a 0.1 M perchloric acid solution under the condition that a current of 3 mA was constantly flowing through the platinum catalyst. FIG. 9 shows the Fourier transformed XAFS spectrum (measurement data) and its numerical fitting curve. At this time, the distance between platinum atoms and platinum atoms was 0.275 nm, and it was found that an average of 8.6 platinum atoms existed around each platinum atom. Although it is a simple particle, we succeeded in obtaining the structural parameters of platinum-catalyzed particles by defining the reaction rate during the reaction by measuring XAFS during the oxygen reduction reaction.

2-1. XRD及びSAXS用フローセルの構造
XRD及びSAXS用フローセルの基本構造は、図3に表している。角度120℃のテーパーを有する薄肉部(厚さ4mm)付きのカーボン製本体部と、電極(参照電極と対極)及び角度120℃のテーパーを有する薄肉部(厚さ4mm)付きのカーボン製本体部(それぞれ、W20cmxH5cm)を用意した。被測定部材は、白金コバルト触媒を用いた。触媒を塗布する領域は、1mm x 20mmとした。両カーボン製本体部は、触媒領域、電極領域及びX線が通過する可能性のある領域を除いて、PTFEを用いて約2μmの厚さでコートした。触媒を約1mm x 4mmの範囲且つ厚さ約2μm程度に、電極を備える本体部側の薄肉部の内面に塗布した。両カーボン製本体部の間に厚さ0.5mm程度の絶縁性パッキンを挟み込んで、流路内の高さが一定に保たれた空間(高さ:約0.5mm)を形成した。
2-1. Structure of flow cell for XRD and SAXS
The basic structure of the flow cell for XRD and SAXS is shown in Fig. 3. A carbon body with a thin wall (thickness 4 mm) with a taper of 120 ° C, and a carbon body with an electrode (opposite to the reference electrode) and a thin part (thickness 4 mm) with a taper of 120 ° C. (W20cm x H5cm, respectively) were prepared. A platinum cobalt catalyst was used as the member to be measured. The area to which the catalyst was applied was 1 mm x 20 mm. Both carbon bodies were coated with PTFE to a thickness of approximately 2 μm, excluding the catalyst region, electrode region and region through which X-rays could pass. The catalyst was applied to the inner surface of the thin-walled part on the main body side equipped with the electrodes in a range of about 1 mm x 4 mm and a thickness of about 2 μm. An insulating packing with a thickness of about 0.5 mm was sandwiched between both carbon main bodies to form a space (height: about 0.5 mm) in which the height in the flow path was kept constant.

XRDやSAXS測定では、触媒を有する一方の薄肉部にX線を入射し、触媒を通り、他方の薄肉部から透過するX線を分析する。触媒への通電は、カーボン製のフローセル自体を用いた。システムの構成を図10に示す。 In XRD and SAXS measurements, X-rays are incident on one thin-walled portion having a catalyst, passed through the catalyst, and transmitted from the other thin-walled portion is analyzed. The carbon flow cell itself was used to energize the catalyst. Figure 10 shows the system configuration.

2-2. 触媒劣化反応中のXRD解析
0.1M過塩素酸中65℃において、図11に示すプロトコルで白金コバルト触媒の劣化試験を行った。1サイクルは、6秒である。合成方法の違う燃料電池用触媒1、2、3を用いて0サイクル、1000サイクル(6,000秒)、5000サイクル(30,000秒)での劣化の様子を見た。図12は、この時に測定された触媒の表面積を示している。図12の結果から、3つの触媒共に表面積が減少していることがわかった。この時に、XRD及びSAXS用フローセルを用いて触媒のXRDを測定した。図13AからCは、劣化測定中のoperando XRDデータを示しており、それぞれ、劣化前、1000サイクル、5000サイクルにおけるデータを示している。ピークの高さは、結晶性の高さを示している。
2-2. XRD analysis during catalytic degradation reaction
A deterioration test of the platinum-cobalt catalyst was performed using the protocol shown in FIG. 11 at 65 ° C. in 0.1 M perchloric acid. One cycle is 6 seconds. Using the fuel cell catalysts 1, 2 and 3 with different synthesis methods, the deterioration was observed at 0 cycle, 1000 cycle (6,000 seconds) and 5000 cycle (30,000 seconds). FIG. 12 shows the surface area of the catalyst measured at this time. From the results shown in Fig. 12, it was found that the surface area of all three catalysts was reduced. At this time, the XRD of the catalyst was measured using the flow cells for XRD and SAXS. FIGS. 13A to 13C show the operando XRD data during the deterioration measurement, and show the data before deterioration, 1000 cycles, and 5000 cycles, respectively. The height of the peak indicates the height of crystallinity.

触媒1は、1000サイクルではそれほど変化がないが、5000サイクルでは結晶性が低くなった。触媒2は、初めから結晶性が良くないが、1000サイクルでより結晶性が落ち、5000サイクルと同等になった。この時ピークの位置は、低角側にシフトした(結晶組成が変化した)。一方、触媒3では、劣化前から高かった結晶性が5000サイクル後でも保たれており、結晶性が変化しないことがわかった。 Catalyst 1 did not change much at 1000 cycles, but had lower crystallinity at 5000 cycles. The crystallinity of catalyst 2 was not good from the beginning, but the crystallinity decreased after 1000 cycles, which was equivalent to 5000 cycles. At this time, the position of the peak was shifted to the low angle side (the crystal composition changed). On the other hand, in the catalyst 3, it was found that the crystallinity, which was high before the deterioration, was maintained even after 5000 cycles, and the crystallinity did not change.

以上より考察すると、主に触媒1では白金の溶解再析出、触媒2ではコバルト溶出、触媒3では結晶子径は変化せず凝集による表面積低下が起こることが考察される。 Considering the above, it is considered that the catalyst 1 mainly dissolves and redistributes platinum, the catalyst 2 elutes cobalt, and the catalyst 3 does not change the crystallite diameter and the surface area decreases due to aggregation.

2-3. 触媒劣化反応中のSAXS解析
2-2と同条件で、SAXS解析を行った(図14)。触媒2は、劣化サイクル中に2θ=4.2°のピーク強度が減少したが(図14A)、触媒3は、劣化サイクル後もほぼ変化がなかった(図14B)。このことから、触媒3は、劣化サイクルに伴う粒子サイズ変化が他の触媒に比べ小さい、即ち、劣化が起こりにくいことが示唆された。この結果は、表面積変化の結果とも一致している。
2-3. SAXS analysis during catalytic deterioration reaction
SAXS analysis was performed under the same conditions as 2-2 (Fig. 14). The peak intensity of 2θ = 4.2 ° decreased in catalyst 2 during the deterioration cycle (Fig. 14A), but that in catalyst 3 remained almost unchanged after the deterioration cycle (Fig. 14B). From this, it was suggested that the change in particle size with the deterioration cycle of the catalyst 3 is smaller than that of other catalysts, that is, deterioration is less likely to occur. This result is also consistent with the result of surface area changes.

上記したように本発明のフローセルは、反応速度を一定に制御した環境で構造や状態のoperando測定を可能とするフローセルである。従って、静止した液体での測定方法である非特許文献1のようなセルとは異なり、定常的に液体又は気体を層流環境(即ち、反応速度に影響を及ぼす乱流が生じていない環境)に維持して流しながら、任意の時点あるいは経時的な反応速度を測定する方法を実施することができる。言い換えると本発明フローセルによる「反応速度を規定しながらoperando測定」によりこうした知見を得ることができる。 As described above, the flow cell of the present invention is a flow cell that enables operator and measurement of a structure and a state in an environment in which the reaction rate is controlled to be constant. Therefore, unlike a cell as in Non-Patent Document 1, which is a measurement method using a stationary liquid, a laminar flow environment (that is, an environment in which no turbulent flow that affects the reaction rate occurs) in which the liquid or gas is constantly flowed). It is possible to carry out a method of measuring the reaction rate at any time point or over time while maintaining the flow. In other words, such findings can be obtained by "operando measurement while defining the reaction rate" by the flow cell of the present invention.

また、本発明のフローセルは、導電性被測定部材に接続するための本体そのものを電気配線とすることができ、電磁波の照射を妨げることなくX線や赤外線等の電磁波を照射する薄肉部をテーパー状に形成することができる。 Further, in the flow cell of the present invention, the main body itself for connecting to the conductive measured member can be an electric wiring, and the thin portion that irradiates electromagnetic waves such as X-rays and infrared rays is tapered without interfering with the irradiation of electromagnetic waves. It can be formed into a shape.

さらにまた、気体又は液体の温度を設定することも可能であり、加えて、反応物が減少して反応生成物が増えても気体又は液体を交換することもできないあるいは気体や液体を交換しても、その時の反応や触媒の応答を観察することができないといった課題も生じない。 Furthermore, it is also possible to set the temperature of the gas or liquid, and in addition, the gas or liquid cannot be exchanged even if the reactants decrease and the reaction products increase, or the gas or liquid is exchanged. However, there is no problem that the reaction at that time or the reaction of the catalyst cannot be observed.

本発明のフローセルにおいて、流路は、流路内の流体が層流となるように構成されている。「層流」は、反応速度に影響を及ぼす乱流が生じていない流体の流れを含み、これには、反応速度に影響を及ぼさない乱流が生じている流体の流れも含まれる。例えば、少なくとも被測定部材上を通過する流体に、反応速度に影響を及ぼす乱流が生じていなければ、流体は層流であると見なすことができる。 In the flow cell of the present invention, the flow path is configured so that the fluid in the flow path becomes a laminar flow. "Laminar flow" includes a flow of fluid that does not have a turbulent flow that affects the reaction rate, including a flow of a fluid that has a turbulent flow that does not affect the reaction rate. For example, a fluid can be considered to be a laminar flow if at least the fluid passing over the member under test does not have a turbulent flow that affects the reaction rate.

なお、被測定部材の「機能と構造・状態との関連」を明らかにするためには、反応速度を一定に制御した環境で且つ構造や状態のoperando測定を行うフローセルは発明者の知るところ今までなかったものである。これは、今までこのような測定の必要性がなかったからである。本発明は、燃料電池の開発において鍵となる触媒の性能向上のためには、燃料電池の触媒での反応現象を統一的且つ詳細に測定する必要に迫られてなされたものである。本発明のフローセルを利用することによってはじめて反応速度を一定に制御した環境での構造や状態のoperando測定が可能となり、より詳細な触媒での反応現象を捉えることが可能となり、触媒の性能向上へのフィードバックが期待されることとなった。 In order to clarify the "relationship between function and structure / state" of the member to be measured, the inventor knows that a flow cell that performs operando measurement of structure and state in an environment where the reaction rate is controlled to be constant is now known. It wasn't until. This is because there has been no need for such measurements until now. INDUSTRIAL APPLICABILITY The present invention has been made in order to improve the performance of a catalyst, which is a key in the development of a fuel cell, in order to measure the reaction phenomenon of the fuel cell catalyst in a unified and detailed manner. By using the flow cell of the present invention, it is possible to measure the structure and state of the operatorando in an environment where the reaction rate is controlled to be constant for the first time, and it is possible to capture the reaction phenomenon with a catalyst in more detail, which improves the performance of the catalyst. Feedback was expected.

以上、本発明を実施例に基づいて説明した。この実施例はあくまで例示であり、種々の変形例が可能である。燃料電池や二次電池といったエネルギー分野のみならず、電気化学センサー、腐食・防食、めっき、半導体プロセス、細胞生理学など大変広範囲にわたる基幹産業技術にも同様に役立てることができる。またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。 The present invention has been described above based on examples. This embodiment is merely an example, and various modifications are possible. It can be used not only in the energy field such as fuel cells and secondary batteries, but also in a very wide range of core industrial technologies such as electrochemical sensors, corrosion / corrosion protection, plating, semiconductor processes, and cell physiology. It will be understood by those skilled in the art that such modifications are also within the scope of the present invention.

100、200、300、400、500 フローセル
110、210 本体
111、211 第一本体部
112、212 第二本体部
120、220 凹部
121、221 薄肉部
122 開口部
123 赤外線透過部材
124 金膜
130 参照電極
131 対極
140 被測定部材
150 流路
160 絶縁材料
170 搭載部
230 窪み部
100, 200, 300, 400, 500 flow cell
110, 210 body
111, 211 First body
112, 212 Second body
120, 220 concave
121,221 Thin wall part
122 opening
123 Infrared transmissive member
124 Gold film
130 Reference electrode
131 Opposite pole
140 Measured member
150 flow path
160 Insulation material
170 Mounting part
230 dent

Claims (13)

流路を有する本体と、
前記流路の内面に前記流路の前記内面より窪んで設けられた被測定部材の搭載部
前記被測定部材よりも下流の流路上に位置する参照電極と、
前記参照電極よりも下流の流路上に位置する対極と、を備え、
前記参照電極と対極は、前記本体とは電気的に絶縁され、
前記流路は、前記被測定部材を前記搭載部に搭載した際その内面に乱流が生じる段差がないように構成され、前記流路内の流体が層流となる、フローセル。
The main body with a flow path and
A mounting portion of the member to be measured provided on the inner surface of the flow path so as to be recessed from the inner surface of the flow path ,
A reference electrode located on the flow path downstream of the member to be measured,
With a counter electrode located on the flow path downstream of the reference electrode,
The reference electrode and the counter electrode are electrically isolated from the main body.
The flow path is a flow cell in which the flow path is configured so that there is no step in which a turbulent flow occurs on the inner surface of the member to be measured when the member to be measured is mounted on the mounting portion, and the fluid in the flow path becomes a laminar flow.
前記本体は、X線が透過可能な薄肉部を備え、
前記搭載部は、前記薄肉部の内面に設けられる、請求項1に記載のフローセル。
The main body has a thin portion through which X-rays can pass.
The flow cell according to claim 1, wherein the mounting portion is provided on the inner surface of the thin-walled portion.
前記本体は、前記流路を挟んで対向する一対の薄肉部を備え、
前記一対の薄肉部は、それぞれ、X線が透過可能であり、
前記搭載部は、前記一対の薄肉部の一方に設けられる、請求項1に記載のフローセル。
The main body includes a pair of thin-walled portions facing each other across the flow path.
Each of the pair of thin-walled portions is capable of transmitting X-rays.
The flow cell according to claim 1, wherein the mounting portion is provided on one of the pair of thin-walled portions.
前記薄肉部は、前記流路に向かって前記本体に形成された凹部によって構成される、請求項2又は請求項3に記載のフローセル。 The flow cell according to claim 2 or 3, wherein the thin portion is formed of a recess formed in the main body toward the flow path. 前記凹部は、前記流路に近づくにつれて狭まるテーパー形状を有する、請求項4に記載のフローセル。 The flow cell according to claim 4, wherein the recess has a tapered shape that narrows as it approaches the flow path. 前記本体は、前記流路に繋がる開口部を有し、
前記開口部には赤外線透過部材が設けられ、
前記赤外線透過部材は、前記流路に対抗する面に被測定部材の搭載部を備える、請求項1に記載のフローセル。
The main body has an opening connected to the flow path.
An infrared transmitting member is provided in the opening, and an infrared transmitting member is provided.
The flow cell according to claim 1, wherein the infrared transmissive member includes a mounting portion of the member to be measured on a surface facing the flow path.
前記搭載部の前記被測定部材の搭載面には、金膜が施されている、請求項6に記載のフローセル。 The flow cell according to claim 6, wherein a gold film is applied to the mounting surface of the mounted member of the mounting portion. 前記参照電極と対極は、前記流路の内面にコーティングされた絶縁材料によって絶縁されている、請求項に記載のフローセル。 The flow cell according to claim 7 , wherein the reference electrode and the counter electrode are insulated by an insulating material coated on the inner surface of the flow path. 前記絶縁材料は、ポリテトラフルオロエチレンである、請求項に記載のフローセル。 The flow cell according to claim 8 , wherein the insulating material is polytetrafluoroethylene. 前記本体は、導電性を有する、請求項1から請求項いずれか1つに記載のフローセル。 The flow cell according to any one of claims 1 to 9 , wherein the main body has conductivity. 前記搭載部に前記被測定部材が搭載された、請求項1から請求項1いずれか1つに記載のフローセル。 The flow cell according to any one of claims 1 to 10, wherein the member to be measured is mounted on the mounting portion. 前記被測定部材は、導電性被測定部材である、請求項1に記載のフローセル。 The flow cell according to claim 11 , wherein the member to be measured is a conductive member to be measured. 前記本体は、カーボンでできている、請求項1に記載のフローセル。 The flow cell according to claim 1, wherein the main body is made of carbon.
JP2017168476A 2017-09-01 2017-09-01 Flow cell Active JP7025628B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017168476A JP7025628B2 (en) 2017-09-01 2017-09-01 Flow cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017168476A JP7025628B2 (en) 2017-09-01 2017-09-01 Flow cell

Publications (2)

Publication Number Publication Date
JP2019045295A JP2019045295A (en) 2019-03-22
JP7025628B2 true JP7025628B2 (en) 2022-02-25

Family

ID=65812725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017168476A Active JP7025628B2 (en) 2017-09-01 2017-09-01 Flow cell

Country Status (1)

Country Link
JP (1) JP7025628B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7292643B2 (en) * 2019-06-04 2023-06-19 出光興産株式会社 Observation device, observation system, and observation method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003091706A1 (en) 2002-04-24 2003-11-06 Hitachi, Ltd. Microreactor for solid-liquid interface reaction and method for conducting meaurement concerning solid-liquid interface reaction
JP2007078487A (en) 2005-09-13 2007-03-29 Hokkaido Univ Electrochemical infrared spectroscope
JP2011145309A (en) 2011-04-28 2011-07-28 Sharp Corp Channel reaction method and channel reactor
JP2012122783A (en) 2010-12-07 2012-06-28 Hitachi High-Technologies Corp Electrode and electrochemical cell, analyzer therefor, and manufacturing method therefor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6293758U (en) * 1985-12-03 1987-06-15
US4974952A (en) * 1988-03-31 1990-12-04 Focht Daniel C Live cell chamber for microscopes
JPH0627025A (en) * 1992-07-06 1994-02-04 Toto Ltd Molecule recognizing function film and sensor employing it
JP2009098027A (en) * 2007-10-17 2009-05-07 Eiwa Corp Multichannel flow double-electrode measuring apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003091706A1 (en) 2002-04-24 2003-11-06 Hitachi, Ltd. Microreactor for solid-liquid interface reaction and method for conducting meaurement concerning solid-liquid interface reaction
JP2007078487A (en) 2005-09-13 2007-03-29 Hokkaido Univ Electrochemical infrared spectroscope
JP2012122783A (en) 2010-12-07 2012-06-28 Hitachi High-Technologies Corp Electrode and electrochemical cell, analyzer therefor, and manufacturing method therefor
JP2011145309A (en) 2011-04-28 2011-07-28 Sharp Corp Channel reaction method and channel reactor

Also Published As

Publication number Publication date
JP2019045295A (en) 2019-03-22

Similar Documents

Publication Publication Date Title
Yan et al. Improving the efficiency of CO2 electrolysis by using a bipolar membrane with a weak-acid cation exchange layer
Lopata et al. Effects of the transport/catalyst layer interface and catalyst loading on mass and charge transport phenomena in polymer electrolyte membrane water electrolysis devices
Yang et al. Building electron/proton nanohighways for full utilization of water splitting catalysts
Etzold et al. Understanding the activity transport nexus in water and CO2 electrolysis: State of the art, challenges and perspectives
Clark et al. Differential electrochemical mass spectrometer cell design for online quantification of products produced during electrochemical reduction of CO2
Fominykh et al. Iron-doped nickel oxide nanocrystals as highly efficient electrocatalysts for alkaline water splitting
Stoerzinger et al. Reactivity of perovskites with water: role of hydroxylation in wetting and implications for oxygen electrocatalysis
Chan et al. A pore-scale model of oxygen reduction in ionomer-free catalyst layers of PEFCs
Rao et al. Surface orientation dependent water dissociation on rutile ruthenium dioxide
Sarkar et al. Unveiling the roles of lattice strain and descriptor species on Pt-like oxygen reduction activity in Pd–Bi catalysts
Deng et al. Resolving the size-dependent transition between CO2 reduction reaction and H2 evolution reaction selectivity in sub-5 nm silver nanoparticle electrocatalysts
Yang et al. Operando resonant soft X-ray scattering studies of chemical environment and interparticle dynamics of Cu nanocatalysts for CO2 electroreduction
Zhang et al. A novel cooperative design with optimized flow field on bipolar plates and hybrid wettability gas diffusion layer for proton exchange membrane unitized regenerative fuel cell
Kong et al. Electrochemical nitrogen reduction kinetics on a copper sulfide catalyst for NH3 synthesis at low temperature and atmospheric pressure
JP7025628B2 (en) Flow cell
Neophytides et al. Non-faradaic electrochemical modification of the catalytic activity of Pt for H2 oxidation in aqueous alkaline media
WO2001063268A1 (en) Multiple electric conductivity measuring apparatus
WO2015025693A1 (en) Plating apparatus and sensing device using same
Corson et al. A temperature-controlled photoelectrochemical cell for quantitative product analysis
Schorr et al. Impact of plasmonic photothermal effects on the reactivity of Au nanoparticle modified graphene electrodes visualized using scanning electrochemical microscopy
Wiberg et al. Design and test of a flexible electrochemical setup for measurements in aqueous electrolyte solutions at elevated temperature and pressure
Aravind et al. Diffusion impedance on nickel/gadolinia-doped ceria anodes for solid oxide fuel cells
Lu et al. Light-regulated nanofluidic ionic diodes with heterogeneous channels stemming from asymmetric growth of metal–organic frameworks
Koderman Podboršek et al. Iridium stabilizes ceramic titanium oxynitride support for oxygen evolution reaction
US20210109043A1 (en) Device, system and method for x-ray diffraction analysis of an electrode of an electrochemical cell, at operating temperature and under current

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220124

R150 Certificate of patent or registration of utility model

Ref document number: 7025628

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150