JPH0627025A - Molecule recognizing function film and sensor employing it - Google Patents

Molecule recognizing function film and sensor employing it

Info

Publication number
JPH0627025A
JPH0627025A JP20197492A JP20197492A JPH0627025A JP H0627025 A JPH0627025 A JP H0627025A JP 20197492 A JP20197492 A JP 20197492A JP 20197492 A JP20197492 A JP 20197492A JP H0627025 A JPH0627025 A JP H0627025A
Authority
JP
Japan
Prior art keywords
film
compound
harmonic
molecular recognition
molecule
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP20197492A
Other languages
Japanese (ja)
Inventor
Taiji Osada
泰二 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP20197492A priority Critical patent/JPH0627025A/en
Publication of JPH0627025A publication Critical patent/JPH0627025A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a molecule recognizing function film, and a sensor employing the film, for detecting variation of concentration of specific molecule by converting into variation of secondary harmonic generating power. CONSTITUTION:A molecule recognizing function film 1 is formed on a transparent substrate 2 and disposed such that a sample 5 flowing through a channel 4 in a transparent flow cell 3 touches the film 1 directly. Light (basic wave) emitted from a light emitting element 6 transmits through the flow cell 3 and the sample channel 4 and impinges on the film 1. Light transmitted through the film 1 enters into a cut filter 7 where wavelengths other than second harmonic are cut off and only second harmonic impinges on a light receiving element 8. Variation of secondary harmonic is detected and processed at a signal processing section 9 thus determining concentration or specific element contained in the sample 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、有機及び無機化合物或
いは生体関連化合物等の濃度測定を二次高調波発生によ
って行う分子認識機能膜及びこの膜を使用したセンサー
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a molecular recognition functional film for measuring the concentration of organic and inorganic compounds or bio-related compounds by generating second harmonics, and a sensor using this film.

【0002】[0002]

【従来の技術】生体は無機物や有機物を高い選択性で認
識する能力を有している。その高い選択性を有する機能
性分子、或いは細胞、組織を始め生体そのものを物質選
択機能部位として、試料溶液中の検体を迅速に簡単に検
出するバイオセンサーが知られている。
2. Description of the Related Art The living body has the ability to recognize inorganic substances and organic substances with high selectivity. There is known a biosensor that quickly and easily detects a specimen in a sample solution by using a functional molecule having high selectivity, or a living body itself including cells and tissues as a substance selection functional site.

【0003】上記センサーの機能は、特定の検体を選択
的に認識して反応させる部分と、この反応による検体の
導伝性、発熱、発光等の変化を捉らえて信号に変換する
部分に分けて考える事ができる。検体を認識してこれと
反応する生体高分子としては、酵素、抗体、受容体等の
蛋白質などが知られており、これらは天然高分子や合成
高分子から成る膜中に分散・固定化して用いられる。一
方、反応を捉らえて信号に変換する部分には、一般的に
酸素電極、過酸化水素電極、イオン電極、ガス電極など
の電極が用いられている。また最近は上記検体の発光を
利用したセンサー等が数多く提案されてきている。
The function of the sensor is divided into a part for selectively recognizing and reacting a specific sample, and a part for capturing a change in conductivity, heat generation, luminescence, etc. of the sample due to this reaction and converting it into a signal. You can think about it. As biopolymers that recognize and react with specimens, proteins such as enzymes, antibodies, and receptors are known, and these are dispersed and immobilized in a membrane composed of natural or synthetic polymers. Used. On the other hand, electrodes such as an oxygen electrode, a hydrogen peroxide electrode, an ion electrode, and a gas electrode are generally used in a portion for capturing a reaction and converting it into a signal. Also, recently, many sensors and the like utilizing the light emission of the above-mentioned specimen have been proposed.

【0004】前記の電極を用いる電気化学的測定法は、
(1)測定に際して電気的、磁気的ノイズが発生しやすい
こと、(2)参照電極を用いるために微量の検体を測定で
きないこと、等の難点がある。これに対して光学的測定
方法は例えば特開昭61-292045、特開昭63-75542、特開
昭63-271162の各号公報に開示されているが、(1)近年の
技術革新により高感度の光検出が可能になったこと、
(2)測定に際して電気的、磁気的ノイズが発生しにくい
こと、(3)参照電極は不要なこと、等の利点があり、更
に光の入射や検知に光ファイバーを用いた場合には、反
応場と光ファイバーとを物理的に接触させる必要がない
ため、反応場の試薬交換が容易となること、また、複数
の波長を用いて複数の検体を同時に測定できる可能性が
あること等の特徴を有している。
The electrochemical measuring method using the above electrode is
There are drawbacks such as (1) electrical and magnetic noises are likely to occur during measurement, and (2) a small amount of sample cannot be measured because a reference electrode is used. On the other hand, the optical measurement method is disclosed in, for example, JP-A-61-292045, JP-A-63-75542, and JP-A-63-271162. Sensitive light detection is now possible,
(2) Electric and magnetic noises are less likely to occur during measurement, (3) No reference electrode is required, and other advantages.When an optical fiber is used for light incidence and detection, the reaction field Since it is not necessary to physically contact the sample with the optical fiber, it is easy to exchange reagents in the reaction field, and there is the possibility that multiple samples can be measured simultaneously using multiple wavelengths. is doing.

【0005】一方前記の二次高調波発生用の材料とし
て、有機非線形光学材料は原理的に無機材料よりも高い
非線形光学特性を実現できる可能性があるため精力的に
研究されている。高い二次高調波発生(SHG)を実現
させるためには、分子分極率の高い分子を、反転中心を
持たない配列構造(非対称配向)に配列させることが必
要である。そのため当初は単結晶材料に関して進められ
てきた研究が、近年ではラングミュアーブロジェット
(LB)法によって形成される非対称配向構造を有する
累積膜についても行われるようになってきている(応用
物理 第60巻 第6号(1991) P586)。このLB法は、
(1)反転中心を持たない配列構造(非対称配向)が容易
に形成できること、(2)常に基板の法線方向に光学軸を
有する薄膜として得られること、(3)分子レベル単位で
薄膜を制御できること、(4)重合性基を導入することに
より、リソグラフィ技術を用いてパターニングが可能な
こと、(5)重金属等の物質を導入して屈折率を制御でき
ること、といった特徴を有しているが、更に、成膜成分
として分子分極率の高い分子を用いると、形成されるL
B膜自身も高い分極特性を示し、従って高い二次高調波
発生を示すという大きな特徴がある。
On the other hand, as a material for generating the above-mentioned second harmonic, an organic nonlinear optical material is theoretically studied because it may possibly realize higher nonlinear optical characteristics than an inorganic material. In order to realize high second harmonic generation (SHG), it is necessary to arrange molecules having a high molecular polarizability in an arrangement structure (asymmetric orientation) having no inversion center. For this reason, research that was initially conducted on single crystal materials has recently been conducted on cumulative films having an asymmetrically oriented structure formed by the Langmuir-Blodgett (LB) method (Applied Physics No. 60). Volume 6 (1991) P586). This LB method
(1) Easy formation of an array structure without a reversal center (asymmetric orientation), (2) always obtainable as a thin film having an optical axis in the normal direction of the substrate, (3) control of thin film on a molecular level basis It is possible to do, (4) by introducing a polymerizable group, it is possible to pattern by using the lithography technology, (5) it is possible to introduce a substance such as a heavy metal to control the refractive index, Moreover, when a molecule having a high molecular polarizability is used as a film forming component, L formed
The B film itself also has high polarization characteristics, and thus has a great feature that it exhibits high second harmonic generation.

【0006】上記の二次高調波発生は非線形光学材料の
特性の一つであるが、LB膜の分子配列或いは分子構造
に変化があると非線形光学特性も影響を受ける。この原
理を応用して塩化水素ガスでLB膜成膜成分のプロトン
化反応を行い、このときの二次高調波変化を分析した例
がある(電気化学会 '91春年会 2A22)。
The above-mentioned second harmonic generation is one of the characteristics of the non-linear optical material, but if the molecular arrangement or the molecular structure of the LB film is changed, the non-linear optical characteristics are also affected. There is an example of applying this principle to conduct a protonation reaction of LB film forming components with hydrogen chloride gas and analyzing the second harmonic change at that time (Electrochemical Society '91 Spring Annual Meeting 2A22).

【0007】[0007]

【発明が解決しようとする課題】上述した従来のLB法
は二次高調波を発生することができるが、センサーとし
てどのように利用するかについては未だ研究の段階にあ
り、実用に供されていない。上記分子構造の変化と非線
形光学特性とを結びつけた研究にあっても、この技術は
LB膜構成分子が直接的な化学変化を受けるため、分析
機器として使うには不向きであった。
Although the above-mentioned conventional LB method can generate the second harmonic, it is still in the stage of research on how to use it as a sensor and has been put to practical use. Absent. Even in the research in which the above-mentioned change in molecular structure and non-linear optical characteristics were linked, this technique was not suitable for use as an analytical instrument because the LB film constituent molecule undergoes a direct chemical change.

【0008】[0008]

【課題を解決するための手段】上記課題を解決すべく本
願発明は、単分子膜の成膜成分中に分子認識機能を有す
る化合物及び二次高調波を発生する化合物を導入して累
積膜を形成する。従ってこの累積膜は分子認識機能を有
するため、特定分子との吸着、反応触媒作用等によって
分子配列の立体構造に変化が生じ、これに伴って二次高
調波発生機能が変化するので、この変化を検知して前記
特定分子の濃度を測定することができる。前記分子認識
機能を有する化合物と、前記二次高調波を発生する化合
物とは、それぞれ異なる単分子膜成膜成分中に存在して
もよく、この場合には2つの単分子膜を交互に重ねるこ
とで非対称構造の累積膜を容易に形成することができ
る。
In order to solve the above problems, the present invention provides a cumulative film by introducing a compound having a molecular recognition function and a compound generating a second harmonic into the film forming components of a monomolecular film. Form. Therefore, since this cumulative film has a molecular recognition function, the three-dimensional structure of the molecular arrangement changes due to adsorption with specific molecules, reaction catalysis, etc., and the second harmonic generation function changes accordingly. Can be detected to measure the concentration of the specific molecule. The compound having the molecular recognition function and the compound that generates the second harmonic may exist in different monomolecular film forming components. In this case, two monomolecular films are alternately stacked. This makes it possible to easily form a cumulative film having an asymmetric structure.

【0009】前記二次高調波を発生する化合物は、電子
供与基及び電子受容基に挟まれた発色団を有する化合物
とすることによって二次高調波発生能を強化することが
できる。また前記単分子膜が親水基と疎水基とを有する
化合物を含むものであれば前記LB法によって容易に累
積膜を形成することができる。
The compound generating a second harmonic can be enhanced in its ability to generate a second harmonic by using a compound having a chromophore sandwiched between an electron donating group and an electron accepting group. If the monomolecular film contains a compound having a hydrophilic group and a hydrophobic group, a cumulative film can be easily formed by the LB method.

【0010】また本発明による分子認識機能膜は、前記
のように特定分子の影響による二次高調波の変化を検知
してこの特定分子の濃度を測定することが可能なためセ
ンサーとして使用することができる。本発明のセンサー
の構成は、一般的に行われているメーカーフリンジ法又
はウエッジ法を転用すればよく(「光学的測定ハンドブ
ック」朝倉書店 IV-1.2.1. 494頁)、基本波を発生し
て分子認識機能膜へ入射する発光素子と、ここから発生
する二次高調波を受光する受光素子と、この受光素子か
らの信号を処理する信号処理部とからなり、上記分子認
識機能膜から発生する測定試料に固有の二次高調波発生
能を測定してその濃度を計測することができる。
The molecular recognition functional film according to the present invention can be used as a sensor because it can detect the change of the second harmonic due to the influence of the specific molecule and measure the concentration of the specific molecule as described above. You can The sensor of the present invention may be constructed by diverting a commonly used maker fringe method or wedge method (“Optical Measurement Handbook” Asakura Shoten IV-1.2.1. 494 page) to generate a fundamental wave. Generated from the above molecular recognition function film, consisting of a light emitting element that is incident on the molecular recognition function film, a light receiving element that receives the second harmonic generated from this, and a signal processing unit that processes the signal from this light receiving element. It is possible to measure the concentration of the second harmonic generation characteristic of the measurement sample.

【0011】[0011]

【作用】本発明の分子認識機能膜は、特定化合物との吸
着、反応触媒作用等によって分子配列の立体構造に変化
が生じ、これに伴って二次高調波発生機能も変化するた
め、この変化を検知して特定化合物の濃度を測定するこ
とができる。
In the molecular recognition function film of the present invention, the three-dimensional structure of the molecular arrangement changes due to adsorption with a specific compound, reaction catalysis, etc., and the second harmonic generating function also changes accordingly. Can be detected to measure the concentration of the specific compound.

【0012】[0012]

【実施例】以下に本発明の実施例を説明する。図1は本
発明に基づくセンサーを示す概念図である。分子認識機
能膜1は透明基板2上に形成され、透明なフローセル3
内の流路4を流れる測定試料5が直接分子認識機能膜1
に触れるように設置されている。発光素子6から発せら
れた光(基本波)は、フローセル3及び測定試料5の流
れる流路4を透過して分子認識機能膜1を照射する。分
子認識機能膜1を透過した二次高調波を含む光は、カッ
トフィルター7で二次高調波以外の波長をカットされて
受光素子8へ入射する。こうして検出した二次高調波の
変化を信号処理部9で処理して測定試料5中に含まれる
特定試料の濃度を算出する。
EXAMPLES Examples of the present invention will be described below. FIG. 1 is a conceptual diagram showing a sensor according to the present invention. The molecular recognition functional film 1 is formed on a transparent substrate 2 and has a transparent flow cell 3
The measurement sample 5 flowing through the internal flow path 4 is directly the molecular recognition functional film 1
It is installed to touch. The light (fundamental wave) emitted from the light emitting element 6 passes through the flow cell 3 and the flow path 4 through which the measurement sample 5 flows, and irradiates the molecule recognition functional film 1. The light including the second harmonic transmitted through the molecular recognition function film 1 is cut into wavelengths other than the second harmonic by the cut filter 7 and enters the light receiving element 8. The change of the second harmonic detected in this way is processed by the signal processing unit 9 to calculate the concentration of the specific sample contained in the measurement sample 5.

【0013】図2乃至図5は本発明の分子認識機能膜1
及びその構成分子を表したものである。図2(a)の分子
認識機能膜1は分子10及び分子11からなる単分子膜
Aと、分子10及び分子12からなる単分子膜Bとを後
述のヘテロY型構造の形式に重ねたものである。これら
の単分子膜はLB法によって容易に累積膜とすることが
できる。同図中では2層のみ表示してあるが、実際には
2層に限定されるものではない。
2 to 5 show a molecular recognition functional film 1 of the present invention.
And its constituent molecules. The molecular recognition functional film 1 of FIG. 2 (a) is obtained by stacking a monomolecular film A composed of molecules 10 and 11 and a monomolecular film B composed of molecules 10 and 12 in a hetero Y-type structure described later. Is. These monomolecular films can be easily made into a cumulative film by the LB method. Although only two layers are shown in the figure, the number of layers is not limited to two.

【0014】分子10及び11は図3に示す構造を有し
ている。即ち分子10は、図3(a)にあるように疎水基
13及び親水基14からなり、また分子11は疎水基1
5、親水基16及び発色団17らなる。分子11内の疎
水基15は電子供与基を、また親水基16は電子受容基
を兼用しているが、勿論、疎水基と電子供与基、親水基
と電子受容基は別々の基であってもよい。また分子10
に用いる疎水基13及び親水基14は公知のどのような
基でもよいが、分子11との親和性を考慮してそれぞれ
電子供与基を兼ねる疎水基15及び電子受容基を兼ねる
親水基16と同じまたは同種のものを使用することが好
ましい。電子供与基を兼ねる疎水基15としてはアルキ
ル基又はアリール基が好ましく、電子受容基を兼ねる親
水基16としては−COOM基、−SO3M基等が好ま
しい(Mは水素原子又はアルカリ金属原子若しくはアル
カリ土類金属原子を表す)。
Molecules 10 and 11 have the structure shown in FIG. That is, the molecule 10 is composed of a hydrophobic group 13 and a hydrophilic group 14 as shown in FIG.
5, hydrophilic group 16 and chromophore 17. The hydrophobic group 15 in the molecule 11 also serves as an electron-donating group, and the hydrophilic group 16 also serves as an electron-accepting group. Of course, the hydrophobic group and the electron-donating group, and the hydrophilic group and the electron-accepting group are different groups. Good. Also the molecule 10
The hydrophobic group 13 and the hydrophilic group 14 used for may be any known groups, but in consideration of affinity with the molecule 11, they are the same as the hydrophobic group 15 also serving as an electron donating group and the hydrophilic group 16 also serving as an electron accepting group, respectively. Alternatively, it is preferable to use the same kind. The hydrophobic group 15 also serving as an electron donating group is preferably an alkyl group or an aryl group, and the hydrophilic group 16 also serving as an electron accepting group is preferably —COOM group, —SO 3 M group or the like (M is a hydrogen atom or an alkali metal atom or Represents an alkaline earth metal atom).

【0015】また極性の発色団17としてはニトロ基、
アゾ基、共役ジエン等公知のものを利用することができ
るが、この発色団17は電子供与基と電子授与基とに挟
まれていることが好ましい。以上から、分子10として
はアラキジン酸、ステアリン酸バリウム、ステアリルア
ルコール、ステアリルメルカプタン、ステアリルアミン
等の化合物が挙げられ、また分子11としては例えば
(化1)乃至(化5)に示すような化合物が挙げられ
る。また分子12は特定分子を識別してその作用を受け
る機能を有する化合物である。分子12としては、例え
ば特定分子を吸着する化合物として、特定の外形を有す
るイオンだけを吸着する機能を有するクラウンエーテル
が挙げられ、また特定の基質のみの反応を触媒する酵素
等も挙げられる。
As the polar chromophore 17, a nitro group,
Known substances such as an azo group and a conjugated diene can be used, but the chromophore 17 is preferably sandwiched between an electron donating group and an electron donating group. From the above, examples of the molecule 10 include compounds such as arachidic acid, barium stearate, stearyl alcohol, stearyl mercaptan, and stearyl amine, and examples of the molecule 11 include compounds shown in (Chemical Formula 1) to (Chemical Formula 5). Can be mentioned. The molecule 12 is a compound having a function of identifying a specific molecule and receiving its action. As the molecule 12, for example, as a compound that adsorbs a specific molecule, a crown ether having a function of adsorbing only an ion having a specific outer shape can be used, and an enzyme that catalyzes a reaction of only a specific substrate can also be used.

【0016】[0016]

【化1】 [Chemical 1]

【化2】 [Chemical 2]

【化3】 [Chemical 3]

【化4】 [Chemical 4]

【化5】 [Chemical 5]

【0017】図4はLB法による単分子膜の累積の型を
示す模式図である。本図中、(b)は親水基同士(また図
には表されていないが、疎水基同士も)が接触した対称
型の構造(Y型構造)をとっており安定な膜である。し
かしこの累積膜は構造が対称であるため膜全体としては
分極せず、従って二次高調波発生能力が劣る。一方、
(a)(X型構造)及び(c)(Z型構造)は累積された単分
子膜内の分子が全て一方向に向いている非対称構造であ
る。従って、分子内の電子供与基と電子受容基の効果に
よって膜全体が分極し、二次高調波発生を効率よく行う
ことができる。しかし(b)の対称型構造と違って親水基
と疎水基が接触しているため、かなり不安定な膜であ
る。一方(d)の構造は、2種の単分子膜を交互に累積し
たものであって、各種類の膜単位で見ると、分子が全て
一方向に向いている非対称構造をとっている(ヘテロY
型構造)。このヘテロY型構造は、親水基同士(また図
には表されていないが、疎水基同士も)が接触した構造
であるため安定な膜であり、本発明に係る非対称構造と
して最も望ましいものである。
FIG. 4 is a schematic diagram showing a type of accumulation of a monomolecular film by the LB method. In this figure, (b) is a stable film having a symmetric structure (Y-type structure) in which hydrophilic groups (or hydrophobic groups not shown in the figure) are in contact with each other. However, since the structure of this cumulative film is symmetrical, the film as a whole does not polarize, and therefore the second harmonic generation capability is poor. on the other hand,
(a) (X-type structure) and (c) (Z-type structure) are asymmetric structures in which all the molecules in the accumulated monomolecular film are oriented in one direction. Therefore, the entire film is polarized due to the effect of the electron-donating group and the electron-accepting group in the molecule, and the second harmonic can be efficiently generated. However, unlike the symmetric structure of (b), the hydrophilic group and the hydrophobic group are in contact with each other, so that the film is considerably unstable. On the other hand, the structure of (d) is an accumulation of two kinds of monomolecular films alternately, and when viewed in each kind of film unit, all the molecules have an asymmetric structure in which the molecules are oriented in one direction (hetero). Y
Type structure). This hetero Y-type structure is a stable film because it has a structure in which hydrophilic groups are in contact with each other (and hydrophobic groups are also not shown in the figure), and it is the most preferable asymmetric structure according to the present invention. is there.

【0018】上記ヘテロY型構造の累積膜を形成する場
合、例えば図2(a)のように形成する場合を説明する
と、単分子膜Aは疎水基及び親水基を有する分子10と
電子供与基、電子受容基及び発色団を有する分子11と
からなる。従って、単分子膜Aは二次高調波発生機能を
有する膜となる。また単分子膜Bは疎水基及び親水基を
有する分子10と特定分子を識別してその作用を受ける
機能を有する分子12とからなる。即ち単分子膜Bは分
子認識機能膜となる。この単分子膜Bの上に更に単分子
膜A、単分子膜B、単分子膜A、単分子膜B、…………
と重ねて累積膜を形成するが、複数の単分子膜A内の分
子は全て親水基(電子受容基)を上方に向けており、ま
た複数の単分子膜B内の分子は親水基を全て下方に向け
ている(分子12が酵素の場合には酵素は親水性である
ことが多いため、分子10の親水基の側に並ぶ。また分
子12が疎水性の場合はアルキル基等を付加することに
よって、同じく親水基の側に並べることができる)。従
って膜全体として見ると非対称構造の膜となり、単分子
膜Aについては丁度平面電池を直列につないだ形となっ
て膜上面が−に、膜下面が+に分極し、二次高調波発生
を効率よく行うことができる。
In the case of forming a cumulative film having the above-mentioned hetero Y-type structure, for example, as shown in FIG. 2A, the monomolecular film A is composed of a molecule 10 having a hydrophobic group and a hydrophilic group and an electron donating group. , A molecule 11 having an electron accepting group and a chromophore. Therefore, the monomolecular film A becomes a film having a second harmonic generation function. The monomolecular film B is composed of a molecule 10 having a hydrophobic group and a hydrophilic group and a molecule 12 having a function of discriminating a specific molecule and receiving its action. That is, the monomolecular film B becomes a molecular recognition functional film. On top of this monolayer B, monolayer A, monolayer B, monolayer A, monolayer B, ...
To form a cumulative film, the molecules in the plurality of monolayers A all have hydrophilic groups (electron accepting groups) facing upward, and the molecules in the plurality of monolayers B all have hydrophilic groups. Facing downward (when the molecule 12 is an enzyme, the enzyme is often hydrophilic, so it is lined up on the side of the hydrophilic group of the molecule 10. When the molecule 12 is hydrophobic, an alkyl group or the like is added. It can also be arranged on the side of the hydrophilic group). Therefore, the film as a whole has an asymmetric structure, and the monomolecular film A has a structure in which flat cells are just connected in series, and the upper surface of the film is polarized to − and the lower surface of the film is polarized to +, so that the second harmonic is generated. It can be done efficiently.

【0019】上記の膜をセンサーとして使用した場合、
そのメカニズムは明確ではないが、分子12内の分子認
識機能を有する化合物は特定分子の作用によって膨張、
歪み等の変形を生じ、これが単分子膜Aの発色団含有分
子11に伝達されて分子11の方向性等に影響を与える
ものと思われる。いずれにしても特定分子の作用によっ
て固有の二次高調波発生機能に変化が生じ、しかもこの
変化は特定分子の濃度と相関があるため、これを利用し
て特定分子の濃度を測定することが可能となる。
When the above membrane is used as a sensor,
Although the mechanism is not clear, a compound having a molecular recognition function in the molecule 12 expands due to the action of a specific molecule,
It is considered that deformation such as distortion occurs, and this is transmitted to the chromophore-containing molecule 11 of the monomolecular film A and affects the directionality of the molecule 11 and the like. In any case, the action of the specific molecule causes a change in the inherent second harmonic generation function, and since this change correlates with the concentration of the specific molecule, it is possible to use this to measure the concentration of the specific molecule. It will be possible.

【0020】図2(b)は1種類の単分子膜が二次高調波
発生機能及び分子認識機能を併せ持つ例である。分子認
識機能を有する分子12が親水性である場合は、この図
のように親水基及び疎水基を持つ分子10によって単分
子膜内に固定することができる。LB法による累積膜を
形成するには、この1種類の単分子膜を重ねる方法もあ
るが、もう1種類の例えば分子10のような親水基及び
疎水基を持つ分子からなる単分子膜を使用して、前記ヘ
テロY型の構造をとるほうが形成も容易であり安定性も
良い。
FIG. 2 (b) is an example in which one kind of monomolecular film has both a second harmonic generation function and a molecular recognition function. When the molecule 12 having a molecular recognition function is hydrophilic, it can be immobilized in the monomolecular film by the molecule 10 having a hydrophilic group and a hydrophobic group as shown in this figure. In order to form a cumulative film by the LB method, there is a method of stacking this one kind of monomolecular film, but another kind of monomolecular film composed of molecules having a hydrophilic group and a hydrophobic group such as molecule 10 is used. Then, the hetero Y-type structure is easier to form and has better stability.

【0021】図2(c)は1種類の膜が二次高調波発生機
能及び分子認識機能を併せ持つ例である。この膜は分子
認識機能を有する分子12が疎水性であるため、単分子
膜を水面に形成したときに膜の疎水基側に乗り上げた形
となっている。この膜もLB法を用いて容易に累積膜と
することができる。またこの場合も上記(b)の例と同じ
く、もう1種類の例えば分子10のような親水基及び疎
水基を持つ分子からなる単分子膜を使用して、前記ヘテ
ロY型の構造とするほうが形成も容易であり安定性も良
い。
FIG. 2 (c) shows an example in which one kind of film has both a second harmonic generation function and a molecular recognition function. Since the molecules 12 having a molecular recognition function are hydrophobic in this film, when the monomolecular film is formed on the water surface, it is in the form of riding on the hydrophobic group side of the film. This film can also be easily made into a cumulative film by using the LB method. Also in this case, as in the case of (b) above, it is better to use another type of monomolecular film composed of molecules having a hydrophilic group and a hydrophobic group such as molecule 10 to form the hetero Y-type structure. It is easy to form and has good stability.

【0022】上記のような、2種類の膜を交互に重ねる
LB法による累積膜は、例えば図5に示すような二槽式
ラングミュアトラフ18を用いて形成することができ
る。二槽式ラングミュアトラフ18には単分子膜を形成
するための槽(トラフ)I及び槽(トラフ)IIが設けら
れている。槽I及び槽IIには水が張られておりそれぞれ
の水面には例えば図2(a)の単分子膜A及びBの各組成
物が有機溶媒に溶解されて滴下されている。この有機溶
剤は揮発して各単分子膜の成分のみが気体膜として展開
される。こうして形成された各単分子膜を図示しないバ
リアで圧縮して所望の表面圧で圧縮して凝縮膜とする。
A cumulative film by the LB method in which two kinds of films are alternately stacked can be formed by using, for example, a two-tank Langmuir trough 18 as shown in FIG. The two-tank Langmuir trough 18 is provided with a tank (trough) I and a tank (trough) II for forming a monomolecular film. The tanks I and II are filled with water, and the compositions of the monomolecular films A and B shown in FIG. 2A, for example, are dissolved in an organic solvent and dropped on the respective water surfaces. This organic solvent volatilizes and only the components of each monomolecular film are developed as a gas film. Each monomolecular film thus formed is compressed by a barrier (not shown) and compressed to a desired surface pressure to form a condensed film.

【0023】上記のように槽I及び槽IIに単分子膜が形
成された状態で透明基板2の膜が形成される部分を図の
ように槽Iに沈める。このとき単分子膜Aが透明基板2
へ移動しても表面圧が変化しないようにバリアを移動さ
せる。本発明に用いる透明基板2は透明性があって試料
或いは溶剤等で劣化しないものであればよく、例えばガ
ラス板等の無機材料やアクリル板等の有機ポリマーによ
って形成されたもの等が挙げられる。次に透明基板2を
沈めた状態のままフレキシブル・ゲート19a、19b
を通過させて槽IIへ移動する。槽IIへ移動させた透明基
板2は仮想線で示してある。なおフレキシブル・ゲート
19a、19bの間の槽IIIは2種類の単分子膜の混濁
を防ぐため設けられた中間槽である。槽IIへ移した透明
基板2の膜形成部分を引き上げることによって単分子膜
Aの上に単分子膜Bが重なる。今度は透明基板2を引き
上げた状態のままフレキシブル・ゲート19b、19a
を通過させて槽Iに戻し、膜形成部分を沈める。以上の
繰り返しによって累積膜を得ることができる。
The portions of the transparent substrate 2 where the film is to be formed are submerged in the tank I as shown in the figure with the monomolecular films formed in the tanks I and II as described above. At this time, the monolayer A is the transparent substrate 2
The barrier is moved so that the surface pressure does not change even when the barrier is moved to. The transparent substrate 2 used in the present invention may be any one as long as it is transparent and is not deteriorated by a sample, a solvent or the like, and examples thereof include those formed of an inorganic material such as a glass plate or an organic polymer such as an acrylic plate. Next, the flexible gates 19a and 19b with the transparent substrate 2 being sunk
To move to tank II. The transparent substrate 2 moved to the bath II is shown by an imaginary line. The tank III between the flexible gates 19a and 19b is an intermediate tank provided to prevent turbidity of the two kinds of monomolecular films. By pulling up the film forming portion of the transparent substrate 2 transferred to the bath II, the monomolecular film B is superposed on the monomolecular film A. This time, the flexible gates 19b and 19a with the transparent substrate 2 being pulled up
To return to the bath I to sink the film forming portion. A cumulative film can be obtained by repeating the above.

【0024】以下に本発明の具体的な実施例を説明す
る。実施例1 透明基板2として、屈折率nd=1.523の透明ガラス板を
洗浄して用いた。図5に示した二槽式ラングミュアトラ
フ18を使用し、槽Iには(化1)の化合物(図3の分
子10に属する、発色団を含む化合物)及びアラキジン
酸(図3の分子10に属する疎水基及び親水基を有する
化合物。CH3(CH2)18COOH)をクロロホルムに溶
解した溶液を滴下して単分子膜Aを形成し、表面圧25mN
/mに圧縮した。一方槽IIには、酵素であるグルコースオ
キシダーゼ(図2の分子12に属する、分子認識機能を
有する化合物)及び酵素固定化剤DPPE(図3の分子
10に属する、疎水基及び親水基を有する化合物。Dipa
lmitoylphosphatidylethanolamine シグマ社製)をク
ロロホルムに溶解した溶液を滴下して単分子膜Bを形成
し、表面圧8mN/mに圧縮した。これら酵素及び酵素固定
化剤は上記の他公知の種々のものを使用することができ
る。
Specific examples of the present invention will be described below. Example 1 As the transparent substrate 2, a transparent glass plate having a refractive index nd = 1.523 was washed and used. The two-tank Langmuir trough 18 shown in FIG. 5 was used, and in tank I, the compound of (Chemical formula 1) (compound containing a chromophore, which belongs to molecule 10 of FIG. 3) and arachidic acid (molecule 10 of FIG. 3) were used. A compound having a hydrophobic group and a hydrophilic group to which CH 3 (CH 2 ) 18 COOH) is dissolved in chloroform to form a monomolecular film A, and the surface pressure is 25 mN.
Compressed to / m. On the other hand, in tank II, glucose oxidase (a compound having a molecular recognition function, which belongs to molecule 12 in FIG. 2) and an enzyme immobilizing agent DPPE (a compound having a hydrophobic group and a hydrophilic group, which belongs to molecule 10 in FIG. 3) are contained in tank II. . Dipa
A solution of lmitoylphosphatidylethanolamine (manufactured by Sigma) in chloroform was added dropwise to form a monomolecular film B, and the surface pressure was compressed to 8 mN / m. As the enzyme and the enzyme immobilizing agent, various known compounds other than the above can be used.

【0025】次に上述の累積膜形成方法に従って、透明
基板2上に単分子膜A及びBが交互に合計81層重ねら
れたヘテロY型構造のLB膜を形成した。その後、透明
基板2の片面のみをクロロホルムにさらして形成された
膜の片面を除去した。この透明基板2上に形成された膜
を用いて、先ず未処理のまま二次高調波強度を測定し、
次に純水に膜面を5分間さらしてから測定し、最後に10
0mg/ml濃度のグルコース水溶液に膜面を5分間さらして
から測定した。この結果、二次高調波強度は未処理の場
合及び純水で処理した場合はほぼ同じ強度を示したが、
グルコース水溶液と接触させた場合には明らかな強度低
下を示した。なお、二次高調波強度の測定は、YAGレ
ーザーの基本波(λ=1.064μm)を用いて、上記膜を形
成した透明基板2に膜側から照射し、透過光中の基本波
を赤外線カットフィルターで除去して検出した。
Then, according to the above-described cumulative film forming method, an LB film having a hetero Y-type structure in which a total of 81 monomolecular films A and B were alternately laminated was formed on the transparent substrate 2. Then, only one surface of the transparent substrate 2 was exposed to chloroform to remove one surface of the formed film. By using the film formed on the transparent substrate 2, first, the second harmonic intensity is measured without being processed,
Next, the membrane surface is exposed to pure water for 5 minutes and then measured.
The measurement was performed after exposing the membrane surface to a glucose aqueous solution having a concentration of 0 mg / ml for 5 minutes. As a result, the second harmonic intensity was almost the same when untreated and when treated with pure water.
When it was contacted with an aqueous glucose solution, it showed a clear decrease in strength. In addition, the measurement of the second harmonic intensity is performed by irradiating the transparent substrate 2 on which the above film is formed from the film side by using the YAG laser fundamental wave (λ = 1.064 μm) to cut the fundamental wave in the transmitted light by infrared rays. It was detected by removing with a filter.

【0026】実施例2 先ず透明基板2として屈折率nd=1.523の透明ガラス板
を2枚準備し、うち1枚の片面には真空蒸着法によりC
r膜(2nm)を形成しておいた。図5に示した二槽式ラン
グミュアトラフ10を使用し、槽Iには(化2)の化合
物(図3の分子11に属する発色団を含む化合物)、ク
ラウンエーテル(図2の分子12に属する分子認識機能
を有する化合物。Bis(12Crown4))及びアラキジン酸
(図3の分子10に属する疎水基及び親水基を有する化
合物。CH3(CH2)18COOH)をクロロホルムに溶解
した溶液を滴下して単分子膜Aを形成し、表面圧23mN/m
に圧縮した。一方槽IIには(化2)の化合物を(化3)
の化合物に変えた以外は槽Iの組成と同じ組成物を用
い、クロロホルムに溶解してこの溶液を滴下し、単分子
膜Bを形成した。表面圧は同じく23mN/mに調整した。上
記クラウンエーテルは上記の他公知の種々のものを使用
することができるが、本例のような2環式のものは、特
定のイオンを吸着した際にクラウンエーテルの構造にね
じれが生じて膜構造の物理的変化が著しくなるため、二
次高調波強度の変化も大きくなるので好ましい。
Example 2 First, two transparent glass plates having a refractive index of nd = 1.523 were prepared as the transparent substrate 2, and one of them was coated with C by a vacuum deposition method.
An r film (2 nm) was formed. The two-tank Langmuir trough 10 shown in FIG. 5 is used, and in tank I, the compound of (Chemical formula 2) (compound containing a chromophore belonging to molecule 11 of FIG. 3) and crown ether (belonging to molecule 12 of FIG. 2) are used. A compound having a molecular recognition function. Bis (12Crown4)) and arachidic acid (a compound having a hydrophobic group and a hydrophilic group belonging to molecule 10 in FIG. 3, CH 3 (CH 2 ) 18 COOH) dissolved in chloroform are added dropwise. To form monolayer A, surface pressure 23mN / m
Compressed to. On the other hand, in tank II, the compound of (Chemical formula 2) (Chemical formula 3)
The same composition as the composition of the tank I was used except that the compound of Example 1 was used, the solution was dissolved in chloroform, and this solution was added dropwise to form a monomolecular film B. The surface pressure was also adjusted to 23 mN / m. As the above-mentioned crown ether, various other known ones can be used. However, in the case of the bicyclic one as in the present example, the structure of the crown ether is twisted when a specific ion is adsorbed, and thus the membrane is formed. Since the physical change of the structure becomes remarkable, the change of the second harmonic intensity also becomes large, which is preferable.

【0027】次に先ず片面にCr膜を形成しておいたガ
ラス透明基板2を槽IIに下降し、槽Iで上昇し、この操
作を10回繰返してヘテロY型膜を20層形成した。その
後、Cr膜を形成しておいた面とは反対の面をクロロホ
ルムにさらしてこの面に形成された膜を除去した。一方
Cr膜を形成していないガラス透明基板2についてはま
ず槽Iで下降し、槽IIで上昇し、この操作を10回繰返
してヘテロY型膜を19層形成した。その後、片面をクロ
ロホルムにさらして形成された片面の膜を除去した。そ
してこの2つの基板の、膜を除去した面同士を貼り合せ
て本発明に基づく両面に膜を設けた基板を完成した。
First, the glass transparent substrate 2 having a Cr film formed on one surface thereof was lowered into a bath II and raised in a bath I, and this operation was repeated 10 times to form 20 hetero Y-type films. Then, the surface opposite to the surface on which the Cr film had been formed was exposed to chloroform to remove the film formed on this surface. On the other hand, the glass transparent substrate 2 on which the Cr film was not formed was first lowered in the tank I and moved up in the tank II, and this operation was repeated 10 times to form 19 layers of hetero Y-type films. Then, the one-sided film formed by exposing one side to chloroform was removed. Then, the films-removed surfaces of these two substrates were bonded to each other to complete the substrate according to the present invention in which the films were provided on both surfaces.

【0028】次に実施例1と同じYAGレーザーを用い
て、上記基板を回転させながら(即ち入射角を変えなが
ら)発生する二次高調波強度を測定し、図6に示すフリ
ンジパターンを得た。このようなパターンが生ずる理由
は、それぞれの膜で発生した二次高調波が互いに干渉す
るためであり、入射角によって変化するのは行路長が変
化するためである。そこで二次高調波が極小値をとる角
度に上記基板を固定し、純水に5分間さらした後に二次
高調波強度を測定したところ変化はなかった。次に2mol
/l及び10mol/l濃度の塩化ナトリウム水溶液に5分間さ
らした後に測定したところ、濃度変化に相関性を持って
明らかな二次高調波強度の増加が見られた。
Next, using the same YAG laser as in Example 1, the second harmonic intensity generated while rotating the substrate (that is, while changing the incident angle) was measured to obtain the fringe pattern shown in FIG. . The reason why such a pattern occurs is that the second harmonics generated in the respective films interfere with each other, and the reason that it changes depending on the incident angle is that the path length changes. Therefore, there was no change when the above-mentioned substrate was fixed at an angle at which the secondary harmonic had a minimum value and exposed to pure water for 5 minutes and then the secondary harmonic intensity was measured. Then 2 mol
When it was exposed to a sodium chloride aqueous solution having a concentration of 1 / l or 10 mol / l for 5 minutes and then measured, a clear increase in the second harmonic intensity was observed in correlation with the change in the concentration.

【0029】比較例1 単分子膜Bの形成用組成物中にグルコースオキシダーゼ
を添加しない以外は実施例1と同様にして累積膜をガラ
ス透明基板2上に形成し、二次高調波強度を測定したと
ころ、100mg/ml濃度のグルコース水溶液で膜面を処理し
た場合にも強度変化は生じなかった。
Comparative Example 1 A cumulative film was formed on the glass transparent substrate 2 in the same manner as in Example 1 except that glucose oxidase was not added to the composition for forming the monomolecular film B, and the second harmonic intensity was measured. As a result, no change in strength occurred even when the membrane surface was treated with a glucose aqueous solution having a concentration of 100 mg / ml.

【0030】比較例2 単分子膜Aの形成用組成物中に(化1)の化合物を添加
しない以外は実施例1と同様にして累積膜をガラス透明
基板2上に形成し、二次高調波強度を測定したところ、
未処理、純水処理及び100mg/ml濃度のグルコース水溶液
処理のいずれの場合も二次高調波は検出できなかった。
Comparative Example 2 A cumulative film was formed on the glass transparent substrate 2 in the same manner as in Example 1 except that the compound of Chemical formula 1 was not added to the composition for forming the monomolecular film A. When the wave intensity was measured,
No secondary harmonics could be detected in any of untreated, pure water treated, and 100 mg / ml glucose aqueous solution treated.

【0031】[0031]

【発明の効果】以上に説明した如く本発明によれば、特
定化合物の吸着機能、この化合物との錯体形成機能、或
いはこの化合物の酵素反応、免疫反応等の触媒作用等、
多種の作用を二次高調波発生強度の変化に転換して検出
することができるため、特定分子の濃度を容易に検出す
ることができる。
As described above, according to the present invention, the adsorption function of a specific compound, the complex formation function with this compound, or the catalytic action of this compound such as an enzymatic reaction or an immunoreaction,
Since various actions can be converted into changes in the intensity of the generated second harmonic to be detected, the concentration of the specific molecule can be easily detected.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に基づくセンサーを示す概略図FIG. 1 is a schematic diagram showing a sensor according to the present invention.

【図2】本発明に係る分子認識機能膜の一部を模式的に
示した図
FIG. 2 is a diagram schematically showing a part of a molecular recognition functional film according to the present invention.

【図3】本発明に係る分子認識機能膜を構成する成分分
子の一部を模式的に示した図
FIG. 3 is a diagram schematically showing a part of component molecules constituting the molecular recognition functional film according to the present invention.

【図4】本発明に係る分子認識機能膜のLB法による累
積型式を模式的に示した図
FIG. 4 is a diagram schematically showing a cumulative type of the molecular recognition functional film according to the present invention by the LB method.

【図5】二槽式ラングミュアトラフの概略図FIG. 5 is a schematic view of a two-tank type Langmuir trough.

【図6】基本波入射角と発生した二次高調波強度との相
関図
FIG. 6 is a correlation diagram between the incident angle of the fundamental wave and the intensity of the generated second harmonic.

【符号の説明】[Explanation of symbols]

1…分子認識機能膜、2…透明基板、3…フローセル、
4…流路、5…測定試料、6…発光素子、7…カットフ
ィルター、8…受光素子、9…信号処理部、10、1
1、12…分子、13…疎水基、14…親水基、15…
電子供与基を兼ねる疎水基、16…電子受容基を兼ねる
親水基、17…発色団、18…二槽式ラングミュアトラ
フ、19a、19b…フレキシブル・ゲート。
1 ... Molecular recognition functional film, 2 ... Transparent substrate, 3 ... Flow cell,
4 ... Flow path, 5 ... Measurement sample, 6 ... Light emitting element, 7 ... Cut filter, 8 ... Light receiving element, 9 ... Signal processing unit, 10, 1
1, 12 ... Molecule, 13 ... Hydrophobic group, 14 ... Hydrophilic group, 15 ...
Hydrophobic group also serving as an electron-donating group, 16 ... Hydrophilic group also serving as an electron-accepting group, 17 ... Chromophore, 18 ... Two-tank Langmuir trough, 19a, 19b ... Flexible gate.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 特定化合物との酵素反応等の触媒機能、
この化合物との吸着機能、或いはこの化合物との錯体形
成機能等を有する分子認識物質を担体に固定化した分子
認識機能膜において、前記膜が単分子膜を非対称構造に
重ねた累積膜であり、この累積膜を構成する複数の単分
子膜の少なくとも一つには、二次高調波を発生する化合
物が含有されていることを特徴とする分子認識機能膜。
1. A catalytic function such as an enzymatic reaction with a specific compound,
In a molecular recognition functional film in which a molecular recognition substance having an adsorption function with this compound or a complex formation function with this compound is immobilized on a carrier, the film is a cumulative film in which monomolecular films are stacked in an asymmetric structure, A molecular recognition functional film, wherein at least one of a plurality of monomolecular films constituting the cumulative film contains a compound that generates a second harmonic.
【請求項2】 前記二次高調波を発生する化合物が、電
子供与基及び電子受容基に挟まれた発色団を有する化合
物である請求項1に記載の分子認識機能膜。
2. The molecular recognition functional film according to claim 1, wherein the compound generating the second harmonic is a compound having a chromophore sandwiched between an electron donating group and an electron accepting group.
【請求項3】 前記分子認識機能膜が、親水基と疎水基
とを有する化合物を含む一種以上の単分子膜を重ねた累
積膜である請求項1に記載の分子認識機能膜。
3. The molecular recognition functional film according to claim 1, wherein the molecular recognition functional film is a cumulative film in which one or more monomolecular films containing a compound having a hydrophilic group and a hydrophobic group are stacked.
【請求項4】 単分子膜を非対称構造に重ねた累積膜で
あって、この累積膜を構成する複数の単分子膜の少なく
とも一つに、二次高調波を発生する化合物が含有されて
いる分子認識機能膜と、基本波を発生して前記分子認識
機能膜へ入射する発光素子と、ここから発生する二次高
調波を検知する受光素子と、受光素子からの信号を処理
する信号処理部からなるセンサー。
4. A cumulative film in which monomolecular films are stacked in an asymmetric structure, and at least one of a plurality of monomolecular films constituting the cumulative film contains a compound that generates a second harmonic. A molecular recognition functional film, a light emitting element that generates a fundamental wave and enters the molecular recognition functional film, a light receiving element that detects a second harmonic generated from the molecular recognition functional film, and a signal processing unit that processes a signal from the light receiving element. Sensor consisting of.
JP20197492A 1992-07-06 1992-07-06 Molecule recognizing function film and sensor employing it Withdrawn JPH0627025A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20197492A JPH0627025A (en) 1992-07-06 1992-07-06 Molecule recognizing function film and sensor employing it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20197492A JPH0627025A (en) 1992-07-06 1992-07-06 Molecule recognizing function film and sensor employing it

Publications (1)

Publication Number Publication Date
JPH0627025A true JPH0627025A (en) 1994-02-04

Family

ID=16449851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20197492A Withdrawn JPH0627025A (en) 1992-07-06 1992-07-06 Molecule recognizing function film and sensor employing it

Country Status (1)

Country Link
JP (1) JPH0627025A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7199140B2 (en) 2001-06-26 2007-04-03 Astrazeneca Ab Vinyl phenyl derivatives as GLK activators
JP2007155459A (en) * 2005-12-02 2007-06-21 National Institute Of Advanced Industrial & Technology Target detecting nanosensor
US7524957B2 (en) 2001-08-17 2009-04-28 Astrazeneca Ab Compounds effecting glucokinase
US7642259B2 (en) 2005-07-09 2010-01-05 Astrazeneca Ab Heteroaryl benzamide derivatives for use as GLK activators in the treatment of diabetes
US7696191B2 (en) 2006-12-21 2010-04-13 Astrazeneca Ab Crystalline compound
US7700640B2 (en) 2004-10-16 2010-04-20 Astrazeneca Ab Process for making phenoxy benzamide compounds
US7709505B2 (en) 2002-11-19 2010-05-04 Astrazeneca Ab Benzofuran derivatives, process for their preparation and intermediates thereof
US7902200B2 (en) 2006-10-23 2011-03-08 Astrazeneca Ab Chemical compounds
US7973178B2 (en) 2005-11-28 2011-07-05 Astrazeneca Ab Chemical process for the preparation of an amido-phenoxybenzoic acid compound
US8071608B2 (en) 2009-04-09 2011-12-06 Astrazeneca Ab Therapeutic agents
JP2019045295A (en) * 2017-09-01 2019-03-22 国立大学法人山梨大学 Flow cell

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7199140B2 (en) 2001-06-26 2007-04-03 Astrazeneca Ab Vinyl phenyl derivatives as GLK activators
US7951830B2 (en) 2001-08-17 2011-05-31 Astrazeneca Ab Compounds effecting glucokinase
US7524957B2 (en) 2001-08-17 2009-04-28 Astrazeneca Ab Compounds effecting glucokinase
US7709505B2 (en) 2002-11-19 2010-05-04 Astrazeneca Ab Benzofuran derivatives, process for their preparation and intermediates thereof
US7700640B2 (en) 2004-10-16 2010-04-20 Astrazeneca Ab Process for making phenoxy benzamide compounds
US7642263B2 (en) 2005-07-09 2010-01-05 Astrazeneca Ab Heteroaryl benzamide derivatives for use as GLK activators in the treatment of diabetes
US7642259B2 (en) 2005-07-09 2010-01-05 Astrazeneca Ab Heteroaryl benzamide derivatives for use as GLK activators in the treatment of diabetes
US7973178B2 (en) 2005-11-28 2011-07-05 Astrazeneca Ab Chemical process for the preparation of an amido-phenoxybenzoic acid compound
JP2007155459A (en) * 2005-12-02 2007-06-21 National Institute Of Advanced Industrial & Technology Target detecting nanosensor
US7902200B2 (en) 2006-10-23 2011-03-08 Astrazeneca Ab Chemical compounds
US7696191B2 (en) 2006-12-21 2010-04-13 Astrazeneca Ab Crystalline compound
US8071608B2 (en) 2009-04-09 2011-12-06 Astrazeneca Ab Therapeutic agents
JP2019045295A (en) * 2017-09-01 2019-03-22 国立大学法人山梨大学 Flow cell

Similar Documents

Publication Publication Date Title
CN1926424B (en) Recognition chip for target substance, and detection method and device for the same
Wink et al. Self-assembled monolayers for biosensors
Abbott et al. Reversible wettability of photoresponsive pyrimidine-coated surfaces
Wang et al. Progress in the studies of photoelectrochemical sensors
Dong et al. Some new aspects in biosensors
Li et al. Mutual promotion of electrochemical-localized surface plasmon resonance on nanochip for sensitive sialic acid detection
Zhu et al. Assembly of dithiocarbamate-anchored monolayers on gold surfaces in aqueous solutions
JPH0627025A (en) Molecule recognizing function film and sensor employing it
KR20100072528A (en) Biochip and apparatus for detecting bio materials
Dahlin et al. Synchronized quartz crystal microbalance and nanoplasmonic sensing of biomolecular recognition reactions
KR101297325B1 (en) Surface plasmon resonance sensor containing prism deposited metallic carbon nanostructure layer, and preparing method of the same
CA2723436A1 (en) Analyte detecting sensor with coated transducer
AU2004290129B2 (en) Lamellar structure and optical waveguide sensor based on photoaddressable polymers
Li et al. Attenuated total reflection surface-enhanced infrared absorption spectroscopy: A powerful technique for bioanalysis
Gulino et al. Engineered silica surfaces with an assembled C60 fullerene monolayer
Weisser et al. Guest-host interactions with immobilized cyclodextrins
JPH0658873A (en) Optical sensor, detection method using optical sensor, and formation of molecular recognizing film for optical
Li et al. Non-fouling polymer brush grafted fluorine-doped tin oxide enabled optical and chemical enhancement for sensitive label-free antibody microarrays
WO2009088082A1 (en) Method for specifically detecting test substance using photocurrent, sensor unit used therefor, and measuring device
Pflug et al. Simultaneous electrochemical and fluorometric monitoring of zinc tetraphenylporphyrin deposited on indium oxide and pyrolytic graphite electrodes
Du et al. A Au nanoparticle and polydopamine co-modified biosensor: A strategy for in situ and label-free surface plasmon resonance immunoassays
Zaera Probing liquid/solid interfaces at the molecular level
JP3401059B2 (en) Electrochemical gas sensor
JPH0627023A (en) Optical biosensor
Haron Planar waveguide enzyme sensors coated with nanocomposite membranes for water pollution monitoring

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19991005