JPH0658873A - Optical sensor, detection method using optical sensor, and formation of molecular recognizing film for optical - Google Patents

Optical sensor, detection method using optical sensor, and formation of molecular recognizing film for optical

Info

Publication number
JPH0658873A
JPH0658873A JP22934592A JP22934592A JPH0658873A JP H0658873 A JPH0658873 A JP H0658873A JP 22934592 A JP22934592 A JP 22934592A JP 22934592 A JP22934592 A JP 22934592A JP H0658873 A JPH0658873 A JP H0658873A
Authority
JP
Japan
Prior art keywords
film
light
optical sensor
thin film
metal thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22934592A
Other languages
Japanese (ja)
Inventor
Taiji Osada
泰二 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP22934592A priority Critical patent/JPH0658873A/en
Publication of JPH0658873A publication Critical patent/JPH0658873A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • G01N21/553Attenuated total reflection and using surface plasmons

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To perform the determination of specific molecule in a sample solution which shows a specific reaction against molecular recognizing substance, making use of surface plasmon resonance. CONSTITUTION:A prism 1 is provided with a metallic thin film 2, a molecular recognizing film 5, and a passage 6 in which a sample 6 to be analyzed, on one face thereof. An incident light 3 emitting from a while light source 8 is changed to a p-polarized light wave through a polarizer 10 and further into a parallel light through a colimeter lens 11. The light 3 enters the surface of the film 2 at a angle range where the light may be totally reflected, while changing an incident angle, and excites surface plasmon at a specific angle to decrease the intensity of a reflected light 4. When the refractive index, dielectric constant, etc., of the sample 6 vary due to the function of molecular recognizing substance fixed on the film 5, the incident angle (resonance angle) excited by the surface plasmon vary, and its change is detected so as to calculate the concentration, etc., of the specific substance in the sample 6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光学的分析方法の一つで
ある表面プラズモン共鳴方法を用いて、試料溶液中に存
在する、イオン感応物、酵素、抗原、抗体、その他分子
認識機能膜に固定された分子認識機能性物質と特異的反
応を示す特定分子の、定量化或いは監視を行うための光
センサー、光センサーを用いた検出方法、及び光センサ
ーに用いる分子認識機能膜の形成方法に関する。
BACKGROUND OF THE INVENTION The present invention uses the surface plasmon resonance method, which is one of the optical analysis methods, for ion-sensing substances, enzymes, antigens, antibodies, and other molecular recognition functional membranes present in a sample solution. TECHNICAL FIELD The present invention relates to an optical sensor for quantifying or monitoring a specific molecule that specifically reacts with a fixed molecular recognition functional substance, a detection method using the optical sensor, and a method for forming a molecular recognition functional film used in the optical sensor. .

【0002】[0002]

【従来の技術】生体は無機物や有機物を高い選択性で認
識する能力を有している。その高い選択性を有する機能
性分子、或いは細胞、組織を始め生体そのものを物質選
択機能部位として、試料溶液中の検体を迅速に簡単に検
出するデバイスがバイオセンサーである。
2. Description of the Related Art The living body has the ability to recognize inorganic substances and organic substances with high selectivity. A biosensor is a device that quickly and easily detects a specimen in a sample solution by using a functional molecule having high selectivity, or a living body itself including cells and tissues as a substance selection functional site.

【0003】上記センサーの機能は、特定の検体を選択
的に認識して反応させる部分と、この反応による検体の
導伝性、発熱、発光等の変化を捉らえて信号に変換する
部分に分割して考えることができる。反応を捉らえて信
号に変換する部分には、一般的に酸素電極、過酸化水素
電極、イオン電極、ガス電極などの電極が用いられてい
る。また最近は例えば特開平3-48139号公報等に、光を
利用したセンサーが数多く提案されており、例えば特開
昭61-292045号公報、特開昭63-75542号公報、特開昭63-
271162号公報に記載されている表面プラズモン共鳴法は
その一つである。
The function of the sensor is divided into a part for selectively recognizing and reacting a specific sample and a part for detecting changes in the sample's conductivity, heat generation, luminescence, etc. due to this reaction and converting it into a signal. Then you can think. Electrodes such as an oxygen electrode, a hydrogen peroxide electrode, an ion electrode, and a gas electrode are generally used in a portion that catches a reaction and converts it into a signal. Recently, a number of sensors utilizing light have been proposed, for example, in Japanese Patent Application Laid-Open No. 3-48139, for example, Japanese Patent Application Laid-Open Nos. 61-292045, 63-75542 and 63-63.
The surface plasmon resonance method described in Japanese Patent No. 271162 is one of them.

【0004】表面プラズモン共鳴法は、電荷密度が集団
的に振動するというプラズマ波の表面波を、外部から光
波をあてる条件で照射することによって、共鳴、結合さ
せた場合に生ずる。化学センサーとしてこの表面プラズ
モン共鳴法を利用するには、クレッシュマン(Kretshma
n)配置と呼ばれる系を使う。その構成は図9に概略を
示すように、光学プリズム1の一面に金属薄膜2が付着
されており、この金属薄膜には被分析試料としての空気
が接している。上記プラズモンの共鳴を起こす条件は種
々の構造パラメーターに依存する。例えば屈折率n=
1.817(λ=633nm)のプリズム1に70nm
厚の銀蒸着膜2を形成し、空気をサンプルとした場合、
p偏光3を約42.9度で入射した時に、銀薄膜2と空
気層との界面に表面プラズモンが励起され、その結果反
射光4強度が減少することが観察される。この時の入射
角に対する反射光4の強度曲線は図10に示すように、
ある入射角において急激に強度を減じる。このときの反
射光4の角度(共振角)は、金属薄膜2の金属の種類、
膜厚、測定対象試料の屈折率(誘電率)、分子認識機能
膜の膜厚等の変化に対応して大きく変動することが確認
されており、特に測定対象試料の屈折率と分子認識機能
膜の膜厚とを要因とする共振角の変化を化学センサーに
利用している。
The surface plasmon resonance method occurs when a surface wave of a plasma wave in which the charge density oscillates collectively is irradiated with a light wave from the outside to cause resonance and coupling. To use this surface plasmon resonance method as a chemical sensor, Kreshman (Kretshma
n) Use a system called placement. As shown in FIG. 9, the structure is such that a metal thin film 2 is attached to one surface of the optical prism 1, and air as a sample to be analyzed is in contact with this metal thin film. The conditions for causing the above plasmon resonance depend on various structural parameters. For example, the refractive index n =
70 nm on the prism 1 of 1.817 (λ = 633 nm)
When a thick silver vapor deposition film 2 is formed and air is used as a sample,
It is observed that when the p-polarized light 3 is incident at about 42.9 degrees, surface plasmons are excited at the interface between the silver thin film 2 and the air layer, and as a result, the intensity of the reflected light 4 decreases. The intensity curve of the reflected light 4 with respect to the incident angle at this time is as shown in FIG.
The intensity decreases sharply at a certain incident angle. The angle (resonance angle) of the reflected light 4 at this time is the kind of metal of the metal thin film 2,
It has been confirmed that the film thickness, the refractive index (dielectric constant) of the sample to be measured, and the film thickness of the molecular recognition functional film change greatly, and in particular, the refractive index of the sample to be measured and the molecular recognition functional film. The change in the resonance angle due to the film thickness of is used for the chemical sensor.

【0005】上述の原理に基づいて、ナイランダ(Nyla
nder)らは金属薄膜表面にシリコーン・グリコール共重
合体の薄膜を形成し、ハロゲン化炭化水素ガスの吸収に
伴う共鳴吸収位置の変化を検知した(「Sensors and Ac
tuators」7(1982/83),79 )。更にこの後、NO2ガス、
アルコール、抗αフェトプロテイン、抗IgG、イオン
等が検討されている。
Based on the above-mentioned principle, Nyla
Nder et al. formed a thin film of a silicone-glycol copolymer on the surface of a metal thin film and detected the change in the resonance absorption position with the absorption of halogenated hydrocarbon gas (“Sensors and Ac
tuators "7 (1982/83), 79). After this, NO 2 gas,
Alcohol, anti-α-fetoprotein, anti-IgG, ions, etc. have been studied.

【0006】表面プラズモン共鳴の検出方法として、励
起光照射には(1)平行な単色光を角度を変えて入射す
る方法、(2)角度分布を持った単色光を入射する方
法、(3)平行な白色光を入射する方法、があり、反射
光検出には(i)光検知素子の位置及び角度を変える方
法、(ii)アレイ状の光検知素子を用いて、反射率の角
度分布曲線を得る方法、(iii)反射率の波長分光曲線を
得る方法、がある。これらの方法のうち、従来は(1)
−(i)、(2)−(ii)、(3)−(iii)の組合わせで
表面プラズモン共鳴を検出することが多かった。
As a method of detecting surface plasmon resonance, (1) a method of injecting parallel monochromatic light at different angles for irradiation of excitation light, (2) a method of injecting monochromatic light having an angular distribution, (3) There is a method of injecting parallel white light, and (i) a method of changing the position and angle of the light detecting element for reflected light detection, and (ii) an angle distribution curve of reflectance using an array of light detecting elements. And (iii) a method of obtaining a wavelength spectrum curve of reflectance. Among these methods, the conventional method is (1)
Surface plasmon resonance was often detected by the combination of-(i), (2)-(ii), and (3)-(iii).

【0007】一方、タンパク質センサーは、人体におけ
る尿路の異常、腎の血量変化、異常タンパクの生成等に
よって尿中に排出されるタンパク質量を測定するもので
あるが、従来は尿中へ試薬を添加して、 (1)この試薬の添加或いは加熱によって生ずる沈殿量
を測定する方法 (2)吸光度或いは発光量によってタンパク質中のアミ
ノ基量を測定するビューレット法 (3)生じた沈殿を光の透過率によって測定するLow
ry法 (4)尿の屈折率の上昇割合を屈折計で測定する方法 (5)タンパク質と特異的に色素を結合させて吸光度を
測定する色素結合法等が行われていた。また特開平2-27
6966号公報に記載されているような水晶振動子を利用し
たセンサーも提案されている。
On the other hand, a protein sensor measures the amount of protein excreted in urine due to abnormal urinary tract in the human body, change in blood volume in the kidney, production of abnormal protein, etc. And (1) a method for measuring the amount of precipitate generated by the addition or heating of this reagent (2) a burette method for measuring the amount of amino groups in the protein by the amount of light absorption or luminescence (3) Low measured by the transmittance of
ry method (4) Method of measuring the rate of increase in the refractive index of urine with a refractometer (5) A dye binding method or the like in which a dye is specifically bound to a protein and the absorbance is measured. In addition, JP-A-2-27
A sensor using a crystal oscillator as described in Japanese Patent Publication No. 6966 is also proposed.

【0008】[0008]

【発明が解決しようとする課題】上述の励起光照射方法
及び反射光検出の組合わせにおいて、(1)−(i)の
場合は、励起光光源と受光素子の位置を変えるための機
械的な駆動手段が必要であるために精度が悪く、また価
格面においても問題があった。一方(2)−(ii)の場合
は、得られる反射率の角度分布曲線の角度分解機能は、
アレイ状光センサーの素子の数と光センサーの測定対象
試料からの距離とに依存する。従って、この距離を長く
すると分解能はアップするが、反対に光強度は低下して
しまう。更に、(3)−(iii)の場合は、固定して回折
格子やプリズムを用いて分光した光をアレイ状の光検出
素子によって受光する手法が行われているが、波長分解
能が回折格子と光センサーの素子の数によって決定され
るため、分解能を上げると光強度が低下してしまうとい
う難点があった。
In the combination of the excitation light irradiation method and the reflected light detection described above, in the case of (1)-(i), a mechanical mechanism for changing the positions of the excitation light source and the light receiving element is used. Since the driving means is required, the accuracy is poor and there is a problem in terms of price. On the other hand, in the case of (2)-(ii), the angle resolution function of the obtained reflectance angle distribution curve is
It depends on the number of elements of the arrayed optical sensor and the distance from the sample to be measured by the optical sensor. Therefore, if the distance is increased, the resolution is improved, but the light intensity is decreased. Further, in the case of (3)-(iii), there is a method in which light that is fixed and dispersed by using a diffraction grating or a prism is received by an array-shaped photodetector, but the wavelength resolution is different from that of the diffraction grating. Since it is determined by the number of elements of the optical sensor, there is a problem that the light intensity decreases when the resolution is increased.

【0009】また、励起光源とプリズムと金属薄膜との
位置関係が変動すると、反射光の到達する位置がずれた
り、入射角と反射角とが一致しない場合が起きる。この
ようなときには反射光の角度分布−反射率曲線の測定が
不正確となる。例えば、上記励起光照射法(2)の、角
度分布を持った単色光を入射する方法を採用した場合に
は、上記位置関係が不安定であると同じ角度の反射光で
あっても受光素子に入射する位置が変化してしまい、角
度の測定値が不正確となる。また上記(1)或いは
(3)のように、平行光を入射する場合であっても、同
様に反射する位置がずれ、検出される反射光強度がその
都度異なってしまう。表面プラズモン共鳴を利用するた
めには光を全反射条件で入射する必要があるため入射角
が大きく、例えば屈折率調整オイルの厚みが少しでも変
ると上記のようなずれが生ずる。このような場合、厳密
なパラメータで決まる表面プラズモン共鳴条件の検出は
できなくなる。
Further, if the positional relationship between the excitation light source, the prism and the metal thin film is changed, the position where the reflected light reaches may shift or the incident angle and the reflection angle may not match. In such a case, the measurement of the angle distribution-reflectance curve of the reflected light becomes inaccurate. For example, when the method of irradiating monochromatic light having an angular distribution of the excitation light irradiation method (2) is adopted, even if the reflected light is at the same angle as the positional relationship is unstable, the light receiving element Since the position of incidence on the beam changes, the angle measurement value becomes inaccurate. Further, even when parallel light is incident as in (1) or (3) above, the reflected position is similarly displaced, and the detected reflected light intensity is different each time. In order to utilize the surface plasmon resonance, it is necessary to make light incident under the condition of total internal reflection, so that the incident angle is large, and if the thickness of the refractive index adjusting oil changes even a little, the above deviation occurs. In such a case, it becomes impossible to detect the surface plasmon resonance condition determined by the strict parameters.

【0010】更にタンパク質センサーについては、上記
の各試薬添加による方法は測定作業が煩雑であること、
熟練する必要があること、測定時間が長いこと等の難点
があた。
Further, regarding the protein sensor, the measurement work is complicated in the method by adding each reagent described above,
There were problems such as the need to be skilled and the long measurement time.

【0011】[0011]

【課題を解決するための手段】上記課題を解決すべく本
発明に係る光センサーは、被分析試料が流れる溶液流路
にその表面が臨む分子認識機能膜と、この分子認識機能
膜の裏面に設けられる金属薄膜と、この金属薄膜側から
白色(即ち、全波長の光を含む)のp偏光・平行光を全
反射条件で入射させる励起光源と、入射光が金属薄膜表
面で反射することによって発生する反射光を受光する干
渉計を用いたフーリエ変換分光器とを備えた光センサー
としたものである。図10に示したような極めて鋭い曲
線を描く反射率曲線が得られる表面プラズモン共鳴法で
は、このようなフーリエ変換分光分析法が最適である。
In order to solve the above-mentioned problems, an optical sensor according to the present invention comprises a molecular recognition functional film whose surface faces a solution flow path through which a sample to be analyzed and a back surface of the molecular recognition functional film. By providing a metal thin film provided, an excitation light source for injecting white (that is, light of all wavelengths) p-polarized parallel light from the metal thin film side under the condition of total reflection, and by reflecting the incident light on the surface of the metal thin film. The optical sensor includes a Fourier transform spectroscope that uses an interferometer that receives the reflected light that is generated. Such a Fourier transform spectroscopic analysis method is optimal for the surface plasmon resonance method that can obtain a reflectance curve that draws an extremely sharp curve as shown in FIG.

【0012】また前記金属被膜の励起光源側に透明平行
平板と光学プリズムとがこの順に置かれ、白色のp偏光
・平行光はこの光学プリズムと透明平行平板とを透過し
て金属被膜に入射される場合には、(1)光学プリズム
と透明平行平板との間を間隙調整部材で挟み且つ屈折率
調整用オイルで満たすか、(2)透明平行平板側に面す
る光学プリズムの一面に、間隙調整用溝又は突起を形成
し且つ光学プリズムと透明平行平板との間を屈折率調整
用オイルで満たすか、若しくは(3)光学プリズム側に
面する透明平行平板面に、間隙調整用溝又は突起を形成
し且つ光学プリズムと透明平行平板との間を屈折率調整
用オイルで満たす、ことによって上述のプリズムと金属
薄膜の位置関係を一定に保つことが可能となる。
A transparent parallel plate and an optical prism are placed in this order on the excitation light source side of the metal film, and white p-polarized parallel light is transmitted through the optical prism and the transparent parallel plate to enter the metal film. In the case of (1), the gap between the optical prism and the transparent parallel plate is sandwiched by a gap adjusting member and filled with oil for adjusting the refractive index, or (2) the gap is formed on one surface of the optical prism facing the transparent parallel plate side. An adjustment groove or protrusion is formed and the space between the optical prism and the transparent parallel plate is filled with refractive index adjusting oil, or (3) a gap adjustment groove or protrusion is formed on the transparent parallel plate surface facing the optical prism side. It is possible to keep the positional relationship between the prism and the metal thin film constant by forming the above and filling the space between the optical prism and the transparent parallel plate with the refractive index adjusting oil.

【0013】更にタンパク質定量用光センサーについて
は、被分析試料が流れる溶液流路にその表面が臨む分子
認識機能膜と、この分子認識機能膜の裏面に設けられる
金属薄膜と、この金属薄膜側から白色のp偏光・平行光
を入射させる励起光源と、入属薄膜表面で反射すること
によって発生する反射光を受光する受光器とが備えられ
ており、分子認識機能膜が示性式−SO3M(Mは水素
又はアルカリ金属)で示される基を含有する化合物を固
定した機能膜である光センサーによって上記課題を解決
することが可能である。
Further, regarding the optical sensor for protein quantification, a molecular recognition functional film whose surface faces the solution flow path through which the sample to be analyzed flows, a metal thin film provided on the back surface of this molecular recognition functional film, and from this metal thin film side an excitation light source to be incident white p-polarized light and the collimated light, is provided with a photodetector for receiving the reflected light generated by reflection by the Nyushoku thin film surface, the molecular recognition layer is rational formula -SO 3 The above problem can be solved by an optical sensor which is a functional film on which a compound containing a group represented by M (M is hydrogen or an alkali metal) is fixed.

【0014】上記光センサーを用いてタンパク質の定量
を行うには、励起光源から発光させた白色光を、偏光子
及びコリメーターレンズによって白色のp偏光・平行光
に変え、金属薄膜、分子認識機能膜及び被分析試料溶液
流路がこの順に形成された金属薄膜面側へ全反射条件で
徐々に入射角を変動させながら入射し、これによって生
ずる反射光を受光器で受光する。被分析試料溶液中のタ
ンパク質は上記示性式−SO3M(Mは水素又はアルカ
リ金属)で示される基を有する化合物を固定した分子認
識機能膜へ吸着されるため、この吸着作用により生ずる
分子認識機能膜の誘電率変化を、反射光中の表面プラズ
モン共鳴による共振角の変遷を利用して測定し、ここか
ら被分析試料溶液中のタンパク質濃度を測定することが
できる。
In order to quantify protein using the above-mentioned optical sensor, white light emitted from an excitation light source is converted into white p-polarized / parallel light by a polarizer and a collimator lens to obtain a metal thin film and a molecular recognition function. The film and the sample solution flow path to be analyzed are incident on the metal thin film surface side formed in this order while gradually changing the incident angle under the condition of total reflection, and the reflected light generated by this is received by the light receiver. Since the protein in the sample solution to be analyzed is adsorbed on the molecular recognition function membrane on which the compound having the group represented by the above-mentioned rational formula —SO 3 M (M is hydrogen or alkali metal) is immobilized, the molecule generated by this adsorption action The change in the permittivity of the recognition function film can be measured by utilizing the transition of the resonance angle due to the surface plasmon resonance in the reflected light, and from this, the protein concentration in the sample solution to be analyzed can be measured.

【0015】上記の分子認識機能膜は、示性式−SO3
M(Mは水素又はアルカリ金属)で示される基を有す
る。タンパク質認識機能物質である化合物が水溶性であ
る場合は、これを純水に溶解して水相とし、一方、アル
コール類、チオール類、カルボン酸類、4級アンモニウ
ム塩類又はリン酸塩類から選ばれ且つ長鎖アルキル基
(炭素数15乃至24が好ましい)を有する少なくとも
1種の化合物を成膜成分として気液界面に単分子膜を形
成し、機能物質を吸着した単分子膜を基板にすくい取る
ことによって形成することができる。
The above-mentioned molecular recognition functional film has the rational formula --SO 3
It has a group represented by M (M is hydrogen or an alkali metal). When the compound that is a protein recognition functional substance is water-soluble, it is dissolved in pure water to form an aqueous phase, while it is selected from alcohols, thiols, carboxylic acids, quaternary ammonium salts or phosphates, and Forming a monomolecular film at the gas-liquid interface using at least one compound having a long-chain alkyl group (preferably having a carbon number of 15 to 24) as a film-forming component, and scooping the monomolecular film adsorbing a functional substance onto a substrate. Can be formed by.

【0016】また、タンパク質認識機能物質である化合
物が水に溶解しない場合は、上記成膜成分と共に混合し
て純水上にこれらの単分子膜を形成し、機能物質を含有
した単分子膜を基板にすくい取ることによって分子認識
機能膜を形成することができる。
When the compound which is a protein recognition functional substance is not dissolved in water, it is mixed with the above film-forming components to form these monomolecular films on pure water, and the monomolecular film containing the functional substance is formed. The molecular recognition functional film can be formed by scooping on the substrate.

【0017】分子認識膜は、上記単分子膜の形成方法を
繰返して累積膜として用いることもできる。また、上記
成膜成分として、オクタデシルメルカプタンと、下記
(化1)で表すジオクタデシルジメチルアンモニウムブ
ロマイドとの混合物を用いた分子認識機能膜を形成する
ことが好ましい。
The molecular recognition film can also be used as a cumulative film by repeating the method for forming a monomolecular film. Further, it is preferable to form a molecular recognition functional film using a mixture of octadecyl mercaptan and dioctadecyldimethylammonium bromide represented by the following (Chemical formula 1) as the film forming component.

【0018】[0018]

【化1】 [Chemical 1]

【0019】[0019]

【作用】測定対象試料の屈折率(誘電率)等の変化に対
応して、表面プラズモン共鳴に起因する共振角が変化す
る。本発明においては、この共振角の微妙な変動を干渉
計を用いたフーリエ変換分光器によって安定に検出す
る。入射光強度が弱い場合には繰返し測定を行い、その
結果を積算して分光曲線を得ることができる。
Function: The resonance angle resulting from the surface plasmon resonance changes in response to changes in the refractive index (dielectric constant) of the sample to be measured. In the present invention, this subtle fluctuation in the resonance angle is stably detected by a Fourier transform spectroscope using an interferometer. When the incident light intensity is weak, repeated measurement is performed, and the results can be integrated to obtain a spectral curve.

【0020】また、プリズムと金属薄膜の位置関係を一
定に保ち、入射光、反射光の進路を安定化することによ
って、励起光源、受光素子或いは被分析試料との位置関
係が一定となる。この結果、表面プラズモン共鳴現象を
より高精度に検出することができる。
By keeping the positional relationship between the prism and the metal thin film constant and stabilizing the paths of incident light and reflected light, the positional relationship between the excitation light source, the light receiving element or the sample to be analyzed becomes constant. As a result, the surface plasmon resonance phenomenon can be detected with higher accuracy.

【0021】更にタンパク質定量用光センサーについて
は、表面プラズモン共鳴の発生は、金属薄膜のごく近傍
に存在する物質の膜厚及び誘電率の変化によって鋭敏に
影響を受ける。即ち、金属薄膜に隣接する分子認識機能
膜にタンパク質が吸着されると誘電率が上昇するため、
表面プラズモン共鳴の生ずる角度である共振角が大きく
なる。従って、この角度の変化を測定してタンパク質の
定量を行うことができる。
Further, in the optical sensor for protein quantification, the occurrence of surface plasmon resonance is sensitively affected by changes in the film thickness and the dielectric constant of the substance existing in the immediate vicinity of the metal thin film. That is, when the protein is adsorbed on the molecular recognition functional film adjacent to the metal thin film, the dielectric constant increases,
The resonance angle, which is the angle at which surface plasmon resonance occurs, becomes large. Therefore, it is possible to quantify the protein by measuring the change in this angle.

【0022】[0022]

【実施例】以下に本発明の実施例を添付図面に基づいて
説明する。ここで、図1は本発明に係る光センサーの一
例を示す概要図であり、図2は本発明に係る干渉計を備
えたフーリエ変換分光器の例を示す概要図である。また
図3は本発明の光センサーの他の例を示す部分概略図で
あり、図4は本発明に係る間隙調整部材を示す斜視図、
図5は本発明に係る間隙調整用溝を形成した透明平行平
板及び光学プリズムを示す斜視図である。更に図6は本
発明に係るタンパク質定量用分子認識機能膜を形成する
ための単槽式ラングミュアトラフの例を示す概略図、図
7は本発明に係るタンパク質定量用光センサーによる共
振角変化の例を示すグラフ、図8は図7の結果から導い
た共振角−牛血清アルブミン濃度線図である。
Embodiments of the present invention will be described below with reference to the accompanying drawings. Here, FIG. 1 is a schematic diagram showing an example of an optical sensor according to the present invention, and FIG. 2 is a schematic diagram showing an example of a Fourier transform spectroscope including an interferometer according to the present invention. 3 is a partial schematic view showing another example of the optical sensor of the present invention, and FIG. 4 is a perspective view showing the gap adjusting member according to the present invention.
FIG. 5 is a perspective view showing a transparent parallel plate and an optical prism having a gap adjusting groove according to the present invention. Further, FIG. 6 is a schematic diagram showing an example of a single-tank Langmuir trough for forming the molecular recognition functional film for protein quantification according to the present invention, and FIG. 7 is an example of resonance angle change by the optical sensor for protein quantification according to the present invention. FIG. 8 is a resonance angle-bovine serum albumin concentration diagram derived from the results of FIG. 7.

【0023】図1において、高屈折率の光学プリズム1
の一面に金属薄膜2、分子認識機能膜5及び被分析試料
6の流れる流路7がこの順に配置されている。白色光光
源8から発せられる入射光3は、ミラー9a、9bによ
って光学プリズム1に対する入射角度を調整することが
できる。ミラー9a、9bに代えてレンズ或いは光ファ
イバー等を用いてもよい。次に白色光を偏光子10によ
ってp偏光の光波とする。これは表面プラズモンがp偏
光の光波のみと結合するためである。この光は更にコリ
メーターレンズ11によって平行光とされる。偏光子1
0及びコリメーターレンズ11の配置は順序が逆であっ
てもよい。
In FIG. 1, an optical prism 1 having a high refractive index
The metal thin film 2, the molecular recognition functional film 5, and the flow path 7 through which the sample 6 to be analyzed flows are arranged in this order on one surface. Incident light 3 emitted from the white light source 8 can be adjusted in incident angle to the optical prism 1 by the mirrors 9a and 9b. A lens, an optical fiber, or the like may be used instead of the mirrors 9a and 9b. Next, the white light is converted into a p-polarized light wave by the polarizer 10. This is because surface plasmons couple only with p-polarized light waves. This light is further collimated by the collimator lens 11. Polarizer 1
The arrangement of 0 and the collimator lens 11 may be reversed.

【0024】金属薄膜2は高屈折率プリズム1の一面に
形成するのが便利である。また金属薄膜2と分子認識機
能膜5とを積層した平板を透明基材の1つとして用い、
屈折率調整オイルを介して高屈折率プリズム1と接する
ようにすると、分子認識機能膜5の交換が容易に行える
利点があるためこの構成も好ましい。金属薄膜2の形成
方法としては公知の真空蒸着法、スパッタ法等がある。
金属は種類は問わないが、例えば分子認識機能膜5を隣
接して形成する関係で、金属表面の親水性、疎水性や、
酸化膜の形成され易さ等を考慮する必要があり、また基
材との密着性等も考えて選択する必要がある。このよう
な金属としては例えば金、銀が挙げられる。
The metal thin film 2 is conveniently formed on one surface of the high refractive index prism 1. Further, a flat plate in which the metal thin film 2 and the molecular recognition functional film 5 are laminated is used as one of the transparent substrates,
If the high refractive index prism 1 is brought into contact with the high refractive index prism 1 through the refractive index adjusting oil, there is an advantage that the molecular recognition function film 5 can be easily replaced, and this configuration is also preferable. As a method for forming the metal thin film 2, there are known vacuum deposition method, sputtering method and the like.
The metal may be of any type, but for example, because the molecular recognition function film 5 is formed adjacently, the hydrophilicity or hydrophobicity of the metal surface,
It is necessary to consider the ease with which an oxide film is formed, etc., and also to consider the adhesion to the base material, etc. Examples of such metal include gold and silver.

【0025】分子認識機能膜5には公知の酵素、抗体等
を分子認識機能物質として使用することができ、これを
交換することによって多種類の物質の測定が可能な光セ
ンサーを形成することができる。
Known enzymes, antibodies, etc. can be used as the molecular recognition functional substance in the molecular recognition functional film 5, and by exchanging these, an optical sensor capable of measuring many kinds of substances can be formed. it can.

【0026】以上の操作によってp偏光・平行光となっ
た白色光を光学プリズム1に入射する。入射光3は金属
薄膜2の表面で全反射する角度範囲で、入射角度を変化
させながら入射されるが、ある特定の角度で表面プラズ
モンを励起してそのときの反射光4の強度を低下させ
る。ここで、分子認識機能膜5に固定された分子認識機
能物質の作用によって被分析試料6の屈折率、誘電率等
が変化した場合には、表面プラズモンの励起される前記
入射角度(共振角)が変化するため、この変化を検知し
て被分析試料6中の特定物質の濃度等を算出することが
できる。
The white light converted into p-polarized light and parallel light by the above operation is incident on the optical prism 1. The incident light 3 is incident on the surface of the metal thin film 2 in an angle range where the incident angle is changed, and the surface plasmon is excited at a specific angle to reduce the intensity of the reflected light 4 at that time. . Here, when the refractive index, the dielectric constant, etc. of the sample 6 to be analyzed are changed by the action of the molecular recognition functional substance fixed to the molecular recognition functional film 5, the incident angle (resonance angle) at which the surface plasmon is excited Changes, it is possible to detect the change and calculate the concentration of the specific substance in the sample 6 to be analyzed.

【0027】出射した反射光4は、ミラー9c、9dを
通ってフーリエ変換分光装置(FT分光装置)12に入
射され、前記入射角度の変化に対応する反射光4の出射
角度変化が検出される。ミラー9c、9dの角度は自由
に調整できる必要があり、また、ミラーに代えてレンズ
或いは光ファイバーを使用することもできる。特にミラ
ー9a、9b、9c、9dに代えて光ファイバーを使用
すると回転駆動部分の負担を軽減することができる。
The emitted reflected light 4 is incident on a Fourier transform spectroscope (FT spectroscope) 12 through mirrors 9c and 9d, and a change in the outgoing angle of the reflected light 4 corresponding to the change in the incident angle is detected. . It is necessary that the angles of the mirrors 9c and 9d can be freely adjusted, and a lens or an optical fiber can be used instead of the mirror. In particular, when an optical fiber is used instead of the mirrors 9a, 9b, 9c and 9d, the load on the rotary drive portion can be reduced.

【0028】図2に示すホログラフィックFT分光装置
12は、光学系の干渉計20を有し、ここで調整された
光を多チャンネル受光素子21で検知し、信号処理装置
22によってインターフェログラムを作成し、このイン
ターフェログラムからフーリエ変換演算によってスペク
トルを求める装置である。干渉計20には反射光4が入
射され、コリメーターレンズ23で平行光とされ、等傾
角ミラー24a、同24b及び半透過型ミラー25を設
けたビームスプリッタ26で2光束に分割され、光路長
の差を生じて凹面ミラー27、反射ミラー28及び円筒
形レンズ29を経て受光素子21へ入射する。
The holographic FT spectroscopic device 12 shown in FIG. 2 has an interferometer 20 of an optical system, the light adjusted here is detected by a multi-channel light receiving element 21, and an interferogram is obtained by a signal processing device 22. This is a device that is created and obtains a spectrum from this interferogram by a Fourier transform operation. The reflected light 4 is incident on the interferometer 20, is collimated by a collimator lens 23, and is split into two light beams by a beam splitter 26 provided with equi-tilt mirrors 24a and 24b and a semi-transmissive mirror 25. Is generated and enters the light receiving element 21 through the concave mirror 27, the reflecting mirror 28 and the cylindrical lens 29.

【0029】上記干渉計20には次のような特長があ
る。即ち、光学系が構造的に固定されているため駆動部
分がなく、小型、高分解能、強光度であること、検出部
には多チャンネル受光素子21を採用しており瞬時に測
定を完了できること、測定値が安定しており再現性が高
いこと等である。またこの干渉計20は特に輝線や狭帯
域スペクトル、スペクトル群を測定する場合に性能を発
揮する。
The interferometer 20 has the following features. That is, since the optical system is structurally fixed, there is no driving part, and it is compact, has high resolution, and has high intensity, and the multi-channel light receiving element 21 is adopted for the detection part, so that the measurement can be completed instantly. The measured values are stable and the reproducibility is high. Further, this interferometer 20 exhibits its performance especially when measuring a bright line, a narrow band spectrum, and a spectrum group.

【0030】本実施例の光センサーによれば、表面プラ
ズモン共鳴条件の変化による反射光4の吸収ピークの変
化を、迅速に精度よく検出することができる。
According to the optical sensor of this embodiment, the change in the absorption peak of the reflected light 4 due to the change in the surface plasmon resonance condition can be detected quickly and accurately.

【0031】図3は光学プリズム1と透明平行平板30
との間隙を一定に調整した光センサーの実施例を示すも
のである。p偏光・平行光とした白色光である入射光3
は、光学プリズム1を通って屈折率調整用オイル31及
び透明平行平板30を透過し、金属薄膜2表面で全反射
して反射光4となり、FT分光装置12へ入射する。
FIG. 3 shows an optical prism 1 and a transparent parallel plate 30.
It shows an embodiment of an optical sensor in which the gap between and is adjusted to be constant. Incident light 3 that is white light that is p-polarized and parallel light
Passes through the optical prism 1 and the refractive index adjusting oil 31 and the transparent parallel plate 30, and is totally reflected by the surface of the metal thin film 2 to become reflected light 4, which is incident on the FT spectroscope 12.

【0032】ここにおいて屈折率調整用オイル31は、
図4(a)及び(b)に示す間隙調整部材32a又は32bと
ともに光学プリズム1と透明平行平板30との間に挟み
込まれ、これら間隙調整部材によって一定の厚さに保持
されている。間隙調整部材32aは膜厚1μmのポリテ
トラフルオロエチレンのシートで形成され、また間隙調
整部材32bは厚さ1.2μmの金属アルミニウム薄板
で形成されている。このように間隙調整部材32を使用
すると、屈折率調整用オイル31の厚さを一定に保つこ
とができるため、反射光4の到達位置を安定させること
ができる。また、屈折率調整用オイル31のみの場合と
違って反射光4の到達位置の調整は一度行えば再度調整
する必要がない。更に光の通路となる位置を部材が塞が
ないように配慮してあるため、透過性が悪くなることは
ない。
Here, the refractive index adjusting oil 31 is
It is sandwiched between the optical prism 1 and the transparent parallel plate 30 together with the gap adjusting member 32a or 32b shown in FIGS. 4 (a) and 4 (b), and is kept at a constant thickness by these gap adjusting members. The gap adjusting member 32a is made of a polytetrafluoroethylene sheet having a film thickness of 1 μm, and the gap adjusting member 32b is made of a metal aluminum thin plate having a thickness of 1.2 μm. By using the gap adjusting member 32 in this way, the thickness of the refractive index adjusting oil 31 can be kept constant, so that the arrival position of the reflected light 4 can be stabilized. Further, unlike the case where only the refractive index adjusting oil 31 is used, once the arrival position of the reflected light 4 is adjusted, it is not necessary to perform the adjustment again. Further, since the member does not block the position of the light passage, the transparency does not deteriorate.

【0033】図5は間隙調整部材32を使用せずに屈折
率調整用オイル31の厚さを一定に保つ機構を示す他の
例である。同図(a)は、透明平行平板30の上面に間隙
調整用溝33aを形成している。この溝に屈折率調整用
オイル31を滴下し、光学プリズム1と組合わせること
でオイル31の厚さを一定に保つことが可能である。ま
た同図(b)は、光学プリズム1の一面に間隙調整用溝3
3bを形成した例であり、この溝に屈折率調整用オイル
31を滴下して透明平行平板30と組合わせることで同
じくオイル31の厚さを一定に保つことが可能となる。
更に、これら間隙調整用溝33に代えて、光学プリズム
1又は透明平行平板30の表面に複数の突起を設けてこ
の間に屈折率調整用オイル31を滴下し、オイル31の
厚さを一定に保つこともできる。即ち、これら間隙調整
用溝又は突起によってオイル31の厚さを一定に保ち、
反射光4の到達位置を安定させることができる。
FIG. 5 shows another example of a mechanism for keeping the thickness of the refractive index adjusting oil 31 constant without using the gap adjusting member 32. In FIG. 3A, a gap adjusting groove 33a is formed on the upper surface of the transparent parallel plate 30. It is possible to keep the thickness of the oil 31 constant by dropping the refractive index adjusting oil 31 into this groove and combining it with the optical prism 1. Further, FIG. 2B shows that the gap adjusting groove 3 is formed on one surface of the optical prism 1.
3b is an example in which the refractive index adjusting oil 31 is dropped into this groove and combined with the transparent parallel plate 30, so that the thickness of the oil 31 can be kept constant.
Further, instead of these gap adjusting grooves 33, a plurality of protrusions are provided on the surface of the optical prism 1 or the transparent parallel plate 30, and the refractive index adjusting oil 31 is dropped between them to keep the thickness of the oil 31 constant. You can also That is, these gap adjusting grooves or protrusions keep the thickness of the oil 31 constant,
The arrival position of the reflected light 4 can be stabilized.

【0034】上記の間隙調整部材32、間隙調整用溝3
3又は間隙調整用突起によって光学プリズム1と透明平
行平板30との間隔を一定に保つ場合、屈折率調整用オ
イル31を使用しないことも可能である。
The gap adjusting member 32 and the gap adjusting groove 3 described above.
When the gap between the optical prism 1 and the transparent parallel plate 30 is kept constant by 3 or the protrusions for adjusting the gap, it is possible not to use the refractive index adjusting oil 31.

【0035】本発明に係る、タンパク質定量用の分子認
識機能膜を形成する一例を示す。図6において、単槽式
ラングミュアトラフ40には単分子膜を形成するための
槽(トラフ)41が設けられている。槽41には純水中
に溶解されたタンパク質認識機能物質の溶液が入ってい
る。このタンパク質認識機能物質の例としては、(化
2)〜(化18)に示した化合物が挙げられる。
An example of forming a molecular recognition functional film for protein quantification according to the present invention will be shown. In FIG. 6, a single tank type Langmuir trough 40 is provided with a tank (trough) 41 for forming a monomolecular film. The tank 41 contains a solution of the protein recognition function substance dissolved in pure water. Examples of this protein recognition functional substance include the compounds shown in (Chemical Formula 2) to (Chemical Formula 18).

【0036】[0036]

【化2】 [Chemical 2]

【化3】 [Chemical 3]

【化4】 [Chemical 4]

【化5】 [Chemical 5]

【化6】 [Chemical 6]

【化7】 [Chemical 7]

【化8】 [Chemical 8]

【化9】 [Chemical 9]

【化10】 [Chemical 10]

【化11】 [Chemical 11]

【化12】 [Chemical 12]

【化13】 [Chemical 13]

【化14】 [Chemical 14]

【化15】 [Chemical 15]

【化16】 [Chemical 16]

【化17】 [Chemical 17]

【化18】 [Chemical 18]

【0037】またこの水溶液の表面には、有機溶剤に溶
解された成膜成分が滴下されて単分子膜を形成してい
る。この有機溶剤は揮発して単分子膜の成分のみが気体
膜として展開される。こうして形成された単分子膜を図
示しないバリアで圧縮して所望の表面圧で圧縮して凝縮
膜とする。成膜成分として2種類以上の化合物を用いる
場合には、混合比を自由に変えて所望の物性を有する単
分子膜を得ることができる。成膜成分の例としては、オ
クタデシルメルカプタン、ジオクタデシルジメチルアン
モニウムブロマイド、オクタデシルアルコール、ジヘキ
サデシルリン酸等が挙げられる。上記単分子膜には、上
記の水溶性の分子認識機能物質が吸着されている。
On the surface of this aqueous solution, a film-forming component dissolved in an organic solvent is dropped to form a monomolecular film. This organic solvent volatilizes and only the component of the monomolecular film is developed as a gas film. The monomolecular film thus formed is compressed by a barrier (not shown) and compressed to a desired surface pressure to form a condensed film. When two or more compounds are used as film-forming components, the mixing ratio can be freely changed to obtain a monomolecular film having desired physical properties. Examples of film-forming components include octadecyl mercaptan, dioctadecyldimethylammonium bromide, octadecyl alcohol, dihexadecylphosphoric acid, and the like. The water-soluble molecule recognition functional substance is adsorbed on the monolayer.

【0038】一方、上記分子認識機能膜を形成する基材
としては、表面に金属薄膜2を形成した光学プリズム1
或いは透明平行平板30を利用するのが便利である。光
学プリズム1を利用する場合には真空蒸着法等により金
属薄膜2を形成し、この金属表面を酸素プラズマ照射等
によって親水化し、単槽式ラングミュアトラフ40に浸
漬して前記分子認識機能物質を吸着した単分子膜(ラン
グミュア−ブロジェット膜。以下LB膜と略称する)を
1層形成する。また基材として透明平行平板30を用い
る場合はこの表面を例えばシランカップリング剤で改質
し、その後図6に示すように浸漬してLB膜を形成する
ことができる。LB膜を累積層にしたいときには、同図
矢印のように透明平行平板30を必要回数だけ上下させ
ればよい。また、裏面に形成された不要な膜は、成膜成
分を溶解した前記溶剤等によって容易に除去することが
できる。
On the other hand, as the base material for forming the molecular recognition functional film, the optical prism 1 having the metal thin film 2 formed on the surface thereof is used.
Alternatively, it is convenient to use the transparent parallel plate 30. When the optical prism 1 is used, a metal thin film 2 is formed by a vacuum deposition method or the like, the metal surface is made hydrophilic by oxygen plasma irradiation, etc., and immersed in a single tank type Langmuir trough 40 to adsorb the molecular recognition functional substance. One layer of the above-mentioned monomolecular film (Langmuir-Blodgett film; hereinafter abbreviated as LB film) is formed. When the transparent parallel plate 30 is used as the substrate, this surface can be modified with, for example, a silane coupling agent, and then immersed as shown in FIG. 6 to form an LB film. When the LB film is to be a cumulative layer, the transparent parallel plate 30 may be moved up and down a required number of times as indicated by the arrow in the figure. Further, the unnecessary film formed on the back surface can be easily removed by the solvent or the like in which the film forming components are dissolved.

【0039】LB膜の形成方法の他の例としては、ポリ
イオンコンプレックスによる形成方法が挙げられる。
Another example of the method of forming the LB film is a method of forming by a polyion complex.

【0040】上記によって形成されたタンパク質定量用
分子認識機能膜5は、図1或いは図3に示す構成によっ
てタンパク質定量用光センサーとして使用することがで
きる。但し、本発明のタンパク質定量用光センサーは必
ずしもFT分光装置12を使用する必要はなく、公知の
受光器及び演算装置を用いることもできる。
The protein quantification molecular recognition functional film 5 formed as described above can be used as an optical sensor for protein quantification with the configuration shown in FIG. 1 or 3. However, the optical sensor for protein quantification of the present invention does not necessarily need to use the FT spectroscopic device 12, and a known light receiver and arithmetic device can be used.

【0041】本発明のタンパク質定量用光センサーは、
分子認識機能膜5に対するタンパク質の非可逆的吸着に
よって生ずる膜厚及び誘電率の変化を表面プラズモン共
鳴によって検出していると考えられる。タンパク質の吸
着性は、分子認識機能膜5に存在するスルホ基の密度と
その状態とに依存する。従って、被分析試料6の酸性度
若しくは塩基性度、或いはスルホ基の水素がアルカリ金
属に置換された場合等によって吸着の度合いが変ってく
る。吸着されたタンパク質は、上記のように非可逆的で
はあるが、被分析試料6の酸性度若しくは塩基性度とは
大きく異なる酸性度若しくは塩基性度に調製した洗浄水
で洗うことによって離脱させることができる。
The optical sensor for protein quantification of the present invention comprises:
It is considered that changes in film thickness and dielectric constant caused by irreversible adsorption of protein to the molecular recognition function film 5 are detected by surface plasmon resonance. The adsorptivity of proteins depends on the density and the state of sulfo groups existing in the molecular recognition function film 5. Therefore, the degree of adsorption changes depending on the acidity or basicity of the sample 6 to be analyzed, or when hydrogen of the sulfo group is replaced with an alkali metal. Although the adsorbed protein is irreversible as described above, it can be released by washing with wash water prepared to have an acidity or basicity that is significantly different from the acidity or basicity of the sample 6 to be analyzed. You can

【0042】本発明のタンパク質定量用光センサーを更
に詳細に説明する。即ち、屈折率nd=1.5143の
直角プリズム1上に真空蒸着法により膜厚約5nmのク
ロム(Cr)膜と、50.8nmの金(Au)膜をこの順
に形成した。この表面を酸素プラズマ照射(MARCH
社製PM−600型プラズマ灰化装置利用。酸素流量1
0ml/分、入力電力100Wで30秒間処理)して親
水性とし、ここへ(化2)のAcid Red 112を固定したL
B膜を1層形成した。
The optical sensor for protein quantification of the present invention will be described in more detail. That is, a chromium (Cr) film having a film thickness of about 5 nm and a gold (Au) film having a film thickness of 50.8 nm were formed in this order on the rectangular prism 1 having a refractive index nd = 1.5143 by a vacuum vapor deposition method. This surface is irradiated with oxygen plasma (MARCH
Using PM-600 type plasma ashing device manufactured by the same company. Oxygen flow rate 1
L at which Acid Red 112 of (Chemical Formula 2) was fixed here by making it hydrophilic by treating with 0 ml / min, input power 100 W for 30 seconds).
One layer of B film was formed.

【0043】上記LB膜の形成は次のように行った。即
ち、単槽式ラングミュアトラフ40には、Acid Red 112
を純水中に25mg/lの濃度で溶解した水溶液を入れ
た。成膜成分としては、オクタデシルメルカプタン(C
1837SH、東京化成工業(株)製)及びジオクタデシ
ルジメチルアンモニウムブロマイド(2(C1837)N2 2
CH3Br、東京化成工業(株)製)を各1mmol/l
(モル比1:1)の濃度で混合し、これをクロロホルム
(CHCl3、同仁化学研究所、紫外分光分析用)に溶解
して用いた。上記成膜成分を前記Acid Red 112水溶液上
に展開し、1時間放置した後、圧縮を14cm2/分の
速度で行い、表面圧5mN/mでLB膜を形成した。
The LB film was formed as follows. That is, Acid Red 112 is included in the single tank Langmuir trough 40.
An aqueous solution of 25 mg / l dissolved in pure water was added. As a film forming component, octadecyl mercaptan (C
18 H 37 SH, manufactured by Tokyo Chemical Industry Co., Ltd. and dioctadecyldimethylammonium bromide ( 2 (C 18 H 37 ) N 2 2
CH 3 Br, manufactured by Tokyo Chemical Industry Co., Ltd., 1 mmol / l each
The mixture was mixed at a concentration of (molar ratio 1: 1), and this was dissolved in chloroform ( CHC13 , Dojindo Laboratories, for ultraviolet spectroscopic analysis) and used. The above film-forming components were spread on the Acid Red 112 aqueous solution, left for 1 hour, and then compressed at a speed of 14 cm 2 / min to form an LB film at a surface pressure of 5 mN / m.

【0044】上記によって形成した、スルホ基含有分子
認識機能膜5及び金属薄膜2を一体化した光学プリズム
1を用いて、図1に示した装置によって表面プラズモン
共鳴の検出を行った。被分析試料6として、濃度が2
0、50、100及び200mg/lの牛血清アルブミ
ン水溶液を用いた。この結果図7に示すように、標準と
して用いた純水の共振角に対して、牛血清アルブミン水
溶液を用いた場合の共振角は、アルブミン濃度が高くな
るに連れて大きくなることが観測された。
Using the optical prism 1 formed by integrating the sulfo group-containing molecule recognition function film 5 and the metal thin film 2 formed as described above, the surface plasmon resonance was detected by the apparatus shown in FIG. Analyte sample 6 has a concentration of 2
Bovine serum albumin aqueous solutions of 0, 50, 100 and 200 mg / l were used. As a result, as shown in FIG. 7, with respect to the resonance angle of pure water used as a standard, it was observed that the resonance angle in the case of using the bovine serum albumin aqueous solution increased as the albumin concentration increased. .

【0045】上記共振角の変化に基づいて描いた共振角
−アルブミン濃度線を図8に示した。同図において、共
振角とアルブミン濃度とは非常に高い相関性を有するた
め、本発明の光センサーを用いれば、本図の傾きからア
ルブミン濃度を正確、安定且つ容易に測定することが可
能である。
FIG. 8 shows a resonance angle-albumin concentration line drawn based on the change in the resonance angle. In the figure, since the resonance angle and the albumin concentration have a very high correlation, the albumin concentration can be accurately, stably and easily measured from the inclination of the figure by using the optical sensor of the present invention. .

【0046】比較例として上記の系を用いて、牛血清ア
ルブミン水溶液の代りに同じ濃度のグルコース水溶液を
使用して共振角を測定したが、純水の共振角との差、及
び濃度の異なる水溶液同士の差はほとんどなく、従っ
て、グルコース水溶液濃度の測定には向かないことが分
かった。
As a comparative example, the above system was used to measure the resonance angle using a glucose aqueous solution having the same concentration instead of the bovine serum albumin aqueous solution. The difference between the resonance angle of pure water and the aqueous solutions having different concentrations were measured. It was found that there was almost no difference between the two, and therefore it was not suitable for measurement of the glucose aqueous solution concentration.

【0047】[0047]

【発明の効果】以上に説明した如く本発明によれば、迅
速に精度よく被分析試料の定量分析を行うことのできる
光センサーを提供できる。また、間隙調整部材、間隙調
整用溝又は突起によって屈折率調整用オイルの厚さを一
定に保ち、反射光の到達位置を安定させることができる
ため、位置合わせを度々行う必要がなく精度、再現性共
に良好に反射光の観測を行うことができる。
As described above, according to the present invention, it is possible to provide an optical sensor that can perform quantitative analysis of a sample to be analyzed quickly and accurately. In addition, the gap adjusting member, gap adjusting groove or protrusion can keep the thickness of the refractive index adjusting oil constant and stabilize the arrival position of the reflected light. The reflected light can be satisfactorily observed in terms of both sex.

【0048】更に、本発明の光センサーをタンパク質セ
ンサーとして用いることによって、従来の手法に比較し
て簡便に、再現性が良く且つ安定した結果を得ることが
でる。
Furthermore, by using the optical sensor of the present invention as a protein sensor, it is possible to easily obtain stable and reproducible results as compared with the conventional method.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光センサーの一例を示す概要図FIG. 1 is a schematic diagram showing an example of an optical sensor of the present invention.

【図2】本発明に係る干渉計を備えたフーリエ変換分光
器の例を示す概要図
FIG. 2 is a schematic diagram showing an example of a Fourier transform spectroscope including an interferometer according to the present invention.

【図3】本発明の光センサーの他の例を示す部分概略図FIG. 3 is a partial schematic view showing another example of the optical sensor of the present invention.

【図4】本発明に係る間隙調整部材を示す斜視図FIG. 4 is a perspective view showing a gap adjusting member according to the present invention.

【図5】同、間隙調整用溝を形成した透明平行平板及び
光学プリズムを示す斜視図
FIG. 5 is a perspective view showing a transparent parallel plate and an optical prism in which a gap adjusting groove is formed.

【図6】本発明に係るタンパク質定量用の分子認識機能
膜を形成するための単槽式ラングミュアトラフの例を示
す概略図
FIG. 6 is a schematic view showing an example of a single tank type Langmuir trough for forming a molecular recognition functional film for protein quantification according to the present invention.

【図7】本発明に係るタンパク質定量用光センサーによ
る共振角変化の例を示すグラフ
FIG. 7 is a graph showing an example of resonance angle change by the optical sensor for protein quantification according to the present invention.

【図8】図7の結果から導いた共振角−牛血清アルブミ
ン濃度線図
FIG. 8: Resonance angle-bovine serum albumin concentration diagram derived from the results of FIG.

【図9】クレッシュマン配置を示す概略図FIG. 9 is a schematic diagram showing the Creshman arrangement.

【図10】表面プラズモン共鳴を説明する、入射角に対
する反射光の強度曲線
FIG. 10 is an intensity curve of reflected light with respect to an incident angle for explaining surface plasmon resonance.

【符号の説明】[Explanation of symbols]

1…光ファイバー、2…分子認識機能膜、3…励起光、
4…蛍光、5…検知器、6…コア部、7…高屈折率プリ
ズム、8…金属薄膜、9…分子認識機能膜、10…流
路、11…励起光発生器、12…光検出器、13…透明
基板、14…屈折率調整オイル、20…干渉計、21…
多チャンネル受光素子、22…信号処理装置、30…透
明平行平板、31…屈折率調整用オイル、32a、32
b…間隙調整部材、33a、33b…間隙調整用溝、4
0…単槽式ラングミュアトラフ。
1 ... Optical fiber, 2 ... Molecular recognition functional film, 3 ... Excitation light,
4 ... Fluorescence, 5 ... Detector, 6 ... Core part, 7 ... High refractive index prism, 8 ... Metal thin film, 9 ... Molecular recognition functional film, 10 ... Flow path, 11 ... Excitation light generator, 12 ... Photodetector , 13 ... Transparent substrate, 14 ... Refractive index adjusting oil, 20 ... Interferometer, 21 ...
Multi-channel light receiving element, 22 ... Signal processing device, 30 ... Transparent parallel plate, 31 ... Refractive index adjusting oil, 32a, 32
b ... Gap adjusting member, 33a, 33b ... Gap adjusting groove, 4
0 ... Single tank Langmuth rough.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 被分析試料が流れる溶液流路にその表面
が臨む分子認識機能膜と、この分子認識機能膜の裏面に
設けられる金属薄膜と、この金属薄膜側から白色のp偏
光・平行光を入射させる励起光源と、入射光が金属薄膜
表面で反射することによって発生する反射光を受光する
干渉計を用いたフーリエ変換分光器とを備えたことを特
徴とする光センサー。
1. A molecular recognition functional film, the surface of which faces a solution flow path through which a sample to be analyzed flows, a metal thin film provided on the back surface of the molecular recognition functional film, and white p-polarized / parallel light from the metal thin film side. And a Fourier transform spectroscope using an interferometer that receives reflected light generated by reflecting incident light on the surface of the metal thin film.
【請求項2】 前記励起光源からの白色のp偏光・平行
光を前記金属薄膜に入射させるための透明平行平板と光
学プリズムとがこの順に金属薄膜の裏面側に配置されて
いることを特徴とする請求項1に記載の光センサー。
2. A transparent parallel plate for causing white p-polarized parallel light from the excitation light source to enter the metal thin film and an optical prism are arranged in this order on the back surface side of the metal thin film. The optical sensor according to claim 1.
【請求項3】 前記光学プリズムと透明平行平板との間
には間隙調整部材が挟まれ、且つ屈折率調整用オイルが
満たされていることを特徴とする請求項2に記載の光セ
ンサー。
3. The optical sensor according to claim 2, wherein a gap adjusting member is sandwiched between the optical prism and the transparent parallel plate, and a refractive index adjusting oil is filled.
【請求項4】 前記透明平行平板側に面する光学プリズ
ムの一面に、間隙調整用溝又は突起が形成され且つ光学
プリズムと透明平行平板との間は屈折率調整用オイルが
満たされていることを特徴とする請求項2に記載の光セ
ンサー。
4. A gap adjusting groove or protrusion is formed on one surface of the optical prism facing the transparent parallel plate side, and a refractive index adjusting oil is filled between the optical prism and the transparent parallel plate. The optical sensor according to claim 2, wherein:
【請求項5】 前記光学プリズム側に面する透明平行平
板面に、間隙調整用溝又は突起が形成され且つ光学プリ
ズムと透明平行平板との間には屈折率調整用オイルが満
たされていることを特徴とする請求項2に記載の光セン
サー。
5. A transparent parallel plate surface facing the optical prism is provided with a gap adjusting groove or a protrusion, and a refractive index adjusting oil is filled between the optical prism and the transparent parallel plate. The optical sensor according to claim 2, wherein:
【請求項6】被分析試料が流れる溶液流路にその表面が
臨む分子認識機能膜と、この分子認識機能膜の裏面に設
けられる金属薄膜と、この金属薄膜側から白色のp偏光
・平行光を入射させる励起光源と、入射光が金属薄膜表
面で反射することによって発生する反射光を受光する受
光器とが備えられ、且つ前記分子認識機能膜が示性式−
SO3M(Mは水素又はアルカリ金属)で示される基を
有する化合物を固定したものであることを特徴とする光
センサー。
6. A molecular recognition functional film, the surface of which faces a solution flow path through which the sample to be analyzed, a metal thin film provided on the back surface of this molecular recognition functional film, and white p-polarized / parallel light from the metal thin film side. Is provided, and a light receiver for receiving reflected light generated by reflecting incident light on the surface of the metal thin film, and the molecular recognition functional film is a rational formula-
An optical sensor, wherein a compound having a group represented by SO 3 M (M is hydrogen or an alkali metal) is immobilized.
【請求項7】 励起光源から発した白色光を、偏光子及
びコリメーターレンズによって白色のp偏光・平行光と
なし、金属薄膜、分子認識機能膜及び被分析試料溶液流
路がこの順に形成された金属薄膜面側へ全反射条件で入
射角を変動させながら入射し、反射光を受光器で受光し
て、示性式−SO3M(Mは水素又はアルカリ金属)で
示される基を有する化合物を固定した前記分子認識機能
膜への、被分析試料溶液中に含まれるタンパク質の吸着
作用により生ずる該分子認識機能膜の誘電率変化を、反
射光中の表面プラズモン共鳴による共振角の変化を利用
して測定し、被分析試料溶液中のタンパク質濃度を測定
することを特徴とするタンパク質の光センサーを用いた
検出方法。
7. The white light emitted from the excitation light source is converted into white p-polarized / parallel light by a polarizer and a collimator lens, and a metal thin film, a molecular recognition functional film and a sample solution channel to be analyzed are formed in this order. It is incident on the metal thin film surface side while varying the incident angle under the condition of total reflection, and the reflected light is received by the light receiver to have a group represented by the rational formula —SO 3 M (M is hydrogen or an alkali metal). The change in the dielectric constant of the molecular recognition functional film caused by the adsorption action of the protein contained in the sample solution to be analyzed to the molecular recognition functional film on which the compound is immobilized is measured by the change in the resonance angle due to the surface plasmon resonance in the reflected light. A method for detecting a protein concentration in a sample solution to be analyzed by using an optical sensor for protein, the method comprising:
【請求項8】 タンパク質認識機能物質であり、示性式
−SO3M(Mは水素又はアルカリ金属)で示される基
を有する水溶性化合物を純水に溶解して水相とし、アル
コール類、チオール類、カルボン酸類、4級アンモニウ
ム塩類又はリン酸塩類から選ばれ且つ長鎖アルキル基を
有する少なくとも1種の成膜成分によって気液界面に単
分子膜を形成し、前記認識機能物質を吸着した単分子膜
を基板にすくい取ることを特徴とする、タンパク質の光
センサーに用いる分子認識機能膜の形成方法。
8. A water-soluble compound having a group represented by the rational formula —SO 3 M (M is hydrogen or an alkali metal), which is a protein recognition functional substance, is dissolved in pure water to form an aqueous phase, and alcohols, At least one film-forming component selected from thiols, carboxylic acids, quaternary ammonium salts or phosphates and having a long-chain alkyl group forms a monomolecular film at the gas-liquid interface and adsorbs the recognition functional substance. A method for forming a molecular recognition functional film for use in an optical sensor for protein, which comprises scooping a monomolecular film onto a substrate.
【請求項9】 タンパク質認識機能物質であり、示性式
−SO3M(Mは水素又はアルカリ金属)で示される基
を有する水不溶性化合物と、アルコール類、チオール
類、カルボン酸類、4級アンモニウム塩類又はリン酸塩
類から選ばれ且つ長鎖アルキル基を有する少なくとも1
種の成膜成分とを混合して、純水上にこれらの単分子膜
を形成し、前記認識機能物質を含有した単分子膜を基板
にすくい取ることを特徴とする、タンパク質の光センサ
ーに用いる分子認識機能膜の形成方法。
9. A water-insoluble compound which is a protein recognition functional substance and has a group represented by the rational formula —SO 3 M (M is hydrogen or an alkali metal), and alcohols, thiols, carboxylic acids, and quaternary ammonium. At least one selected from salts or phosphates and having a long-chain alkyl group
An optical sensor for proteins, characterized in that these monomolecular films are formed on pure water by mixing with various film forming components and the monomolecular film containing the recognition function substance is scooped onto a substrate. A method for forming a molecular recognition functional film to be used.
【請求項10】 前記単分子膜形成方法を繰返し、累積
膜を形成することを特徴とする請求項9又は10に記載
の形成方法。
10. The forming method according to claim 9, wherein the monomolecular film forming method is repeated to form a cumulative film.
【請求項11】 前記成膜成分がオクタデシルメルカプ
タンと、ジオクタデシルジメチルアンモニウムブロマイ
ドとの混合物である請求項8、9又は10に記載の形成
方法。
11. The method according to claim 8, wherein the film forming component is a mixture of octadecyl mercaptan and dioctadecyl dimethyl ammonium bromide.
JP22934592A 1992-08-05 1992-08-05 Optical sensor, detection method using optical sensor, and formation of molecular recognizing film for optical Pending JPH0658873A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22934592A JPH0658873A (en) 1992-08-05 1992-08-05 Optical sensor, detection method using optical sensor, and formation of molecular recognizing film for optical

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22934592A JPH0658873A (en) 1992-08-05 1992-08-05 Optical sensor, detection method using optical sensor, and formation of molecular recognizing film for optical

Publications (1)

Publication Number Publication Date
JPH0658873A true JPH0658873A (en) 1994-03-04

Family

ID=16890712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22934592A Pending JPH0658873A (en) 1992-08-05 1992-08-05 Optical sensor, detection method using optical sensor, and formation of molecular recognizing film for optical

Country Status (1)

Country Link
JP (1) JPH0658873A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0797090A2 (en) * 1996-03-19 1997-09-24 Texas Instruments Incorporated Integrally formed surface plasmon resonance sensor
JPH10307141A (en) * 1997-04-14 1998-11-17 Boehringer Mannheim Gmbh Method for simultaneously detecting mutual reaction of organism molecule using plasmon resonance and fluorescent detection
US6084716A (en) * 1997-07-09 2000-07-04 Kabushiki Kaisha Toshiba Optical substrate inspection apparatus
WO2002016945A1 (en) * 2000-08-25 2002-02-28 Sanyo Electric Co., Ltd Chemical sensor and method of detecting chemical
US6424418B2 (en) 1998-05-29 2002-07-23 Canon Kabushiki Kaisha Surface plasmon resonance sensor apparatus using surface emitting laser
KR100479938B1 (en) * 2002-06-26 2005-03-30 하권수 Method for analyzing protein microarray by using surface plasmon resonance spectroscopic imaging technology
JP2010008331A (en) * 2008-06-30 2010-01-14 Kobe Steel Ltd Photothermal conversion measuring instrument and its method
EP2146229A1 (en) 2008-07-18 2010-01-20 Ricoh Company, Ltd. Optical element, refractive index sensor, refractive index sensor array, and biosensor
JP2010101646A (en) * 2008-10-21 2010-05-06 Ntt Advanced Technology Corp Spr measurement chip having liquid drop shape
JP2010101645A (en) * 2008-10-21 2010-05-06 Ntt Advanced Technology Corp Spr measurement chip integral with refractive index matching sheet
US8290314B2 (en) 2006-08-21 2012-10-16 National Institute Of Advanced Industrial Science And Technology Optical waveguide mode sensor having pores
JP2013072868A (en) * 2011-09-29 2013-04-22 Micobiomed Co Ltd Surface plasmon resonance sensor system
CN103424791A (en) * 2013-08-15 2013-12-04 复旦大学 Metal film surface dispersion modulation method based on surface plasma resonance
WO2018101528A1 (en) * 2016-11-30 2018-06-07 한국표준과학연구원 Liquid immersion micro-channel measurement device and measurement method which are based on trapezoidal incident structure prism incident-type silicon
CN109374544A (en) * 2018-11-02 2019-02-22 天津津航技术物理研究所 The characterizing method of the aqueous depth of defect of optical medium film
CN109863386A (en) * 2016-10-13 2019-06-07 仪器实验室公司 It is measured using the gross protein of whole blood refraction measurement

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0797090A3 (en) * 1996-03-19 1997-10-01 Texas Instruments Incorporated Integrally formed surface plasmon resonance sensor
US5912456A (en) * 1996-03-19 1999-06-15 Texas Instruments Incorporated Integrally formed surface plasmon resonance sensor
EP0797090A2 (en) * 1996-03-19 1997-09-24 Texas Instruments Incorporated Integrally formed surface plasmon resonance sensor
JPH10307141A (en) * 1997-04-14 1998-11-17 Boehringer Mannheim Gmbh Method for simultaneously detecting mutual reaction of organism molecule using plasmon resonance and fluorescent detection
US6084716A (en) * 1997-07-09 2000-07-04 Kabushiki Kaisha Toshiba Optical substrate inspection apparatus
US6424418B2 (en) 1998-05-29 2002-07-23 Canon Kabushiki Kaisha Surface plasmon resonance sensor apparatus using surface emitting laser
WO2002016945A1 (en) * 2000-08-25 2002-02-28 Sanyo Electric Co., Ltd Chemical sensor and method of detecting chemical
KR100479938B1 (en) * 2002-06-26 2005-03-30 하권수 Method for analyzing protein microarray by using surface plasmon resonance spectroscopic imaging technology
US8290314B2 (en) 2006-08-21 2012-10-16 National Institute Of Advanced Industrial Science And Technology Optical waveguide mode sensor having pores
JP2010008331A (en) * 2008-06-30 2010-01-14 Kobe Steel Ltd Photothermal conversion measuring instrument and its method
US8269956B2 (en) 2008-07-18 2012-09-18 Ricoh Company, Ltd. Optical element, refractive index sensor, refractive index sensor array, and biosensor
EP2146229A1 (en) 2008-07-18 2010-01-20 Ricoh Company, Ltd. Optical element, refractive index sensor, refractive index sensor array, and biosensor
JP2010101646A (en) * 2008-10-21 2010-05-06 Ntt Advanced Technology Corp Spr measurement chip having liquid drop shape
JP2010101645A (en) * 2008-10-21 2010-05-06 Ntt Advanced Technology Corp Spr measurement chip integral with refractive index matching sheet
JP2013072868A (en) * 2011-09-29 2013-04-22 Micobiomed Co Ltd Surface plasmon resonance sensor system
CN103424791A (en) * 2013-08-15 2013-12-04 复旦大学 Metal film surface dispersion modulation method based on surface plasma resonance
CN109863386A (en) * 2016-10-13 2019-06-07 仪器实验室公司 It is measured using the gross protein of whole blood refraction measurement
WO2018101528A1 (en) * 2016-11-30 2018-06-07 한국표준과학연구원 Liquid immersion micro-channel measurement device and measurement method which are based on trapezoidal incident structure prism incident-type silicon
KR20180062554A (en) * 2016-11-30 2018-06-11 한국표준과학연구원 Apparatus and method for trapezoid micro-channel system to improve performance of solution immersed silicon biosensor
CN109374544A (en) * 2018-11-02 2019-02-22 天津津航技术物理研究所 The characterizing method of the aqueous depth of defect of optical medium film
CN109374544B (en) * 2018-11-02 2021-02-12 天津津航技术物理研究所 Characterization method of water-containing defect depth of optical medium film

Similar Documents

Publication Publication Date Title
US5071248A (en) Optical sensor for selective detection of substances and/or for the detection of refractive index changes in gaseous, liquid, solid and porous samples
EP0648328B1 (en) Improvement in optical assays
Ramsden Optical biosensors
US8450104B2 (en) Method of optical detection of binding of a material component to a sensor substance due to a biological, chemical or physical interaction and apparatus for its embodiment (variants)
US8085405B2 (en) Detecting element, and target substance detecting device and method of detecting target substance using the same
US4508832A (en) Ellipsometrically measuring rate of optical change in immunoassay
US4818710A (en) Method for optically ascertaining parameters of species in a liquid analyte
US6611634B2 (en) Lens and associatable flow cell
US5434663A (en) Analytical device
US5491556A (en) Analytical device with variable angle of incidence
JPH0658873A (en) Optical sensor, detection method using optical sensor, and formation of molecular recognizing film for optical
US7679749B2 (en) Optical waveguide surface plasmon resonance sensor
JPH01308946A (en) Method and apparatus for detecting low- concentration biochemical component existing in test medium using surface plasmon resonance
US20100065732A1 (en) Analytical system with photonic crystal sensor
US6356676B1 (en) Lens and associatable flow cell
US8932880B2 (en) Method for the direct measure of molecular interactions by detection of light reflected from multilayered functionalized dielectrics
US6784999B1 (en) Surface plasmon resonance detection with high angular resolution and fast response time
Brink et al. Near-infrared surface plasmon resonance in silicon-based sensor: new opportunities in sensitive detection of biomolecules from aqueous solutions by applying microstep for discriminating specific and non-specific binding
US20190056389A1 (en) System and method for determining the presence or absence of adsorbed biomolecules or biomolecular structures on a surface
CN111208060A (en) Sensing chip and preparation method, detection system and detection method thereof
Fattinger et al. The difference interferometer: a highly sensitive optical probe for molecular surface-coverage detection
EP2185480A1 (en) Method of chemical treatment of porous silicon surfaces
CN112840200A (en) High-sensitivity biosensor chip, measurement system and measurement method using high-extinction-coefficient marker and dielectric substrate
JP4030796B2 (en) Measuring chip
JPH11194131A (en) Detecting probe and detecting method using the same

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010710