JPH10325643A - Absorber of absorption refrigerator - Google Patents

Absorber of absorption refrigerator

Info

Publication number
JPH10325643A
JPH10325643A JP10016057A JP1605798A JPH10325643A JP H10325643 A JPH10325643 A JP H10325643A JP 10016057 A JP10016057 A JP 10016057A JP 1605798 A JP1605798 A JP 1605798A JP H10325643 A JPH10325643 A JP H10325643A
Authority
JP
Japan
Prior art keywords
heat transfer
absorber
transfer plate
cooling water
absorbing liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10016057A
Other languages
Japanese (ja)
Other versions
JP3378785B2 (en
Inventor
Hiroyuki Hashimoto
裕之 橋本
Naoki Ko
直樹 広
Yoshio Ozawa
芳男 小澤
Kenji Nasako
賢二 名迫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP01605798A priority Critical patent/JP3378785B2/en
Priority to PCT/JP1998/001289 priority patent/WO1998043027A1/en
Priority to CN98803663A priority patent/CN1251164A/en
Priority to EP98909857A priority patent/EP0972999A4/en
Priority to US09/381,700 priority patent/US6192704B1/en
Publication of JPH10325643A publication Critical patent/JPH10325643A/en
Application granted granted Critical
Publication of JP3378785B2 publication Critical patent/JP3378785B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an absorber having a high absorbability. SOLUTION: Inside an absorber of an absorption refrigerator, a plurality of refrigerating pipes 2 which extend in a horizontal direction are arranged. A plurality of planar heat transfer plates 1 are arranged in a spaced-apart manner in a vertical posture and in a horizontal direction. The plurality of refrigerating pipes 2 pass through these heat transfer plates 1 in a vertical direction. The pitch Pd of the heat transfer plates 1 is set to 3-15 mm. On the upper surface of each heat transfer plate 1, an absorbent liquid reservoir 10 having a V-shaped cross section and extends in a longitudinal direction along the upper surface of the heat transfer plate 1 is integrally formed. On the bottom of each absorbent liquid reservoir 10, at positions located above both surfaces of the heat transfer plate 1, a plurality of absorbent liquid flow-out apertures 11 are formed in two rows with an interval in a longitudinal direction of the heat transfer plates 1. These absorbent liquid flow-out apertures 11 have their outlets abutted with the surfaces of the heat transfer plates 1. Due to such a construction, with a plurality of absorbent liquid reservoirs 10 formed in each heat transfer plate 1, an absorbent liquid supply mechanism is constructed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、吸収式冷凍機にお
いて、蒸発器から発生した冷媒蒸気を吸収液に吸収させ
る吸収器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorber for absorbing refrigerant vapor generated from an evaporator into an absorbing liquid in an absorption refrigerator.

【0002】[0002]

【従来の技術】二重効用型の吸収式冷凍機においては、
図16に示す如く密閉ドラム(3)の内部にエリミネータ
(30)を設置して、その両側に蒸発器室(31)及び吸収器室
(32)を形成し、蒸発器室(31)には蒸発器(図示省略)を設
置すると共に吸収器室(32)には吸収器(50)を設置する。
又、密閉ドラム(3)の底部には、低温熱交換器及び高温
熱交換器を経て高温再生器へ伸びる配管(62)が接続さ
れ、該配管(62)の途中には、吸収液ポンプ(6)が取り付
けられている。
2. Description of the Related Art In a double effect absorption refrigerator,
As shown in FIG. 16, an eliminator is provided inside the closed drum (3).
(30) is installed, and the evaporator room (31) and the absorber room
(32) is formed, an evaporator (not shown) is installed in the evaporator chamber (31), and an absorber (50) is installed in the absorber chamber (32).
A pipe (62) extending to a high-temperature regenerator through a low-temperature heat exchanger and a high-temperature heat exchanger is connected to the bottom of the closed drum (3). 6) is attached.

【0003】吸収器(50)は、低温熱交換器から伸びる配
管(61)の先端に接続された吸収液散布機構(4)と、水平
方向に伸びる複数本の冷却水配管(2)を具えた冷却水配
管系とから構成される。吸収器(50)においては、吸収液
散布機構(4)から冷却水配管(2)へ向けて破線で示す如
く吸収液(臭化リチウム水溶液)が散布される。吸収液
は、落下する過程で、蒸発器から発生した冷媒蒸気を吸
収し、この際に発生する凝縮熱及び混合熱(吸収熱)によ
り温度が上昇した吸収液は、冷却水配管(2)内を流れる
冷却水によって冷却される。
[0003] The absorber (50) comprises an absorbent spraying mechanism (4) connected to the tip of a pipe (61) extending from the low-temperature heat exchanger, and a plurality of cooling water pipes (2) extending in the horizontal direction. Cooling water piping system. In the absorber (50), the absorbing liquid (aqueous lithium bromide solution) is sprayed from the absorbing liquid spraying mechanism (4) toward the cooling water pipe (2) as shown by a broken line. The absorbing liquid absorbs the refrigerant vapor generated from the evaporator in the process of falling, and the absorbing liquid whose temperature has increased due to the heat of condensation and the heat of mixing (absorbing heat) generated at this time flows into the cooling water pipe (2). Is cooled by the cooling water flowing through.

【0004】[0004]

【発明が解決しようとする課題】従来の吸収器(50)にお
いては、吸収液散布機構(4)から散布された吸収液は、
先ず、最上段の冷却水配管(2)の外周面上に落下し、滴
状のまま外周面を伝って下方に流れた後、その下段の冷
却水配管(2)の外周面上に落下する。この様にして吸収
液は、滴状のまま、順に下段の冷却水配管(2)へ伝わっ
ていくことになる。従って、吸収液は、重力の作用によ
って比較的高速で落下するばかりでなく、冷却水配管
(2)の外周面に充分に拡がらず、冷媒蒸気を吸収すべき
吸収液の吸収面積と、管表面に対する濡れ面積は小さな
ものとなる。この結果、充分な吸収と熱交換が行なわれ
ず、このために、吸収器の吸収能力が低い問題があっ
た。そこで本発明の目的は、従来よりも高い吸収能力が
得られる吸収器を提供することである。
In the conventional absorber (50), the absorbing liquid sprayed from the absorbing liquid spraying mechanism (4) is:
First, it falls on the outer peripheral surface of the uppermost cooling water pipe (2), flows downward along the outer peripheral surface in a droplet form, and then falls on the outer peripheral surface of the lower cooling water pipe (2). . In this way, the absorbing liquid is transmitted to the lower cooling water pipe (2) in the order of droplets. Therefore, not only does the absorbing liquid fall at a relatively high speed due to the action of gravity, but also the cooling water piping
In (2), the absorption area of the absorbing liquid that should not absorb the refrigerant vapor and does not sufficiently spread to the outer peripheral surface, and the wetting area on the pipe surface are small. As a result, sufficient absorption and heat exchange were not performed, and there was a problem that the absorption capacity of the absorber was low. Therefore, an object of the present invention is to provide an absorber capable of obtaining a higher absorption capacity than before.

【0005】[0005]

【課題を解決する為の手段】本発明に係る吸収式冷凍機
の吸収器は、吸収液及び冷媒蒸気が供給されるべき密閉
室内に、吸収液供給機構が設置される。吸収液供給機構
の下方位置には、横方向に伸びる複数本の冷却水配管を
互いに直列或いは並列に接続してなる冷却水配管系が設
置されると共に、複数枚の伝熱板が互いに間隔をおいて
垂直の姿勢で横方向に配列され、前記複数本の冷却水配
管がこれらの伝熱板を貫通している。
In the absorber of the absorption refrigerator according to the present invention, an absorption liquid supply mechanism is provided in a closed chamber to which the absorption liquid and the refrigerant vapor are to be supplied. At the lower position of the absorbing liquid supply mechanism, a cooling water piping system formed by connecting a plurality of cooling water pipings extending in a lateral direction to each other in series or in parallel is installed, and a plurality of heat transfer plates are spaced from each other. The plurality of cooling water pipes penetrate these heat transfer plates.

【0006】上記吸収式冷凍機の吸収器においては、冷
却水配管内に冷却水が供給され、伝熱板及び冷却水配管
の表面は、冷却水によって充分に温度が低下することに
なる。吸収液供給機構から伝熱板の表面へ吸収液が供給
され、その後、吸収液は、伝熱板の表面に拡がりつつ、
伝熱板の表面及び冷却水配管の外周面を伝って流下す
る。この過程で吸収液は、伝熱板の間を通過する冷媒蒸
気と充分な面積で接触して、冷媒蒸気を吸収する。又、
吸収液は、伝熱板表面を流下する過程で、伝熱板の表面
を広い面積で濡らすこととなる。然も吸収液は、流動抵
抗により減速されて、伝熱板の表面を充分な時間をかけ
て流れることになる。従って、伝熱板表面との間で充分
な熱交換が行われて、吸収液は効果的に冷却されること
になる。上述の如く、吸収液は広い面積で冷媒蒸気と接
触して冷媒蒸気を吸収すると共に、これによって発生す
る熱は充分な熱交換によって効果的に冷却され、この結
果、高い吸収能力が得られる。
In the absorber of the absorption refrigerator, the cooling water is supplied into the cooling water pipe, and the surfaces of the heat transfer plate and the cooling water pipe are sufficiently cooled by the cooling water. The absorbing liquid is supplied from the absorbing liquid supply mechanism to the surface of the heat transfer plate, and then the absorbing liquid spreads on the surface of the heat transfer plate,
It flows down along the surface of the heat transfer plate and the outer peripheral surface of the cooling water pipe. In this process, the absorbing liquid contacts the refrigerant vapor passing between the heat transfer plates with a sufficient area to absorb the refrigerant vapor. or,
The absorbing liquid wets the surface of the heat transfer plate over a wide area in the process of flowing down the heat transfer plate surface. Of course, the absorbing liquid is decelerated by the flow resistance and flows on the surface of the heat transfer plate over a sufficient time. Therefore, sufficient heat exchange is performed with the heat transfer plate surface, and the absorbing liquid is effectively cooled. As described above, the absorbing liquid comes into contact with the refrigerant vapor over a large area to absorb the refrigerant vapor, and the heat generated thereby is effectively cooled by sufficient heat exchange, and as a result, a high absorption capacity is obtained.

【0007】具体的には、前記複数枚の伝熱板は、3m
m乃至15mmのピッチで配列されている。
[0007] Specifically, the plurality of heat transfer plates are 3 m
They are arranged at a pitch of m to 15 mm.

【0008】吸収液は、伝熱板を伝って流下する過程
で、伝熱板の間を通過する冷媒蒸気と接触して、冷媒蒸
気を吸収する。ここで、伝熱板のピッチが小さくなるに
つれて、隣接する2枚の伝熱板の対向面を夫々流れる吸
収液どうしが接近し、ピッチが3mmよりも小さくなる
と、吸収液どうしが合流して流下することになる。この
結果、冷媒蒸気の流路が吸収液により塞がれて、吸収液
に冷媒蒸気が充分な面積で接触せず、吸収能力が大幅に
低下する。又、伝熱板のピッチが大きくなるにつれて、
冷却水配管の全長に亘って配列される伝熱板の枚数が減
少して、冷媒蒸気を吸収すべき吸収液の吸収面積と伝熱
板に対する吸収液の濡れ面積(伝熱板表面に付着した吸
収液の伝熱板表面との接触面積;m2)が小さくなり、ピ
ッチが15mmを越えると、従来の伝熱板のない吸収器
を大きく上回る吸収量と熱交換量は得られない。従っ
て、フィンのピッチは、3〜15mmの範囲に設定する
ことが望ましい。
[0008] In the process of flowing down the heat transfer plate, the absorbing liquid comes into contact with the refrigerant vapor passing between the heat transfer plates and absorbs the refrigerant vapor. Here, as the pitch of the heat transfer plates becomes smaller, the absorbents flowing on the opposing surfaces of two adjacent heat transfer plates approach each other, and when the pitch is smaller than 3 mm, the absorbents join and flow down. Will do. As a result, the flow path of the refrigerant vapor is blocked by the absorbing liquid, the refrigerant vapor does not contact the absorbing liquid with a sufficient area, and the absorption capacity is greatly reduced. Also, as the pitch of the heat transfer plate increases,
The number of heat transfer plates arranged over the entire length of the cooling water pipe is reduced, and the absorption area of the absorption liquid to absorb the refrigerant vapor and the wetting area of the absorption liquid to the heat transfer plate (the surface of the heat transfer plate attached to the heat transfer plate) When the contact area of the absorbing liquid with the surface of the heat transfer plate; m 2 ) becomes small and the pitch exceeds 15 mm, the absorption and heat exchange amounts which are much larger than those of the conventional absorber without the heat transfer plate cannot be obtained. Therefore, the fin pitch is desirably set in the range of 3 to 15 mm.

【0009】又、具体的には、鉛直方向に沿って波打つ
波板状に形成されている。又、伝熱板には、鉛直方向に
沿って凹凸が現われる表面加工が施されている該具体的
形状によれば、吸収液が流下する際の流動抵抗が大きく
なって、垂直平板状の伝熱板に比べて流下速度が減小す
ると共に、吸収液の吸収面積と吸収液の濡れ面積が増大
するため、より多くの吸収量と熱交換量を得ることが出
来る。
[0009] More specifically, it is formed in a corrugated shape waving along the vertical direction. In addition, according to the specific shape in which the heat transfer plate is subjected to surface processing in which irregularities appear along the vertical direction, the flow resistance when the absorbing liquid flows down is increased, and the heat transfer plate has a vertical flat plate shape. Since the flow rate is reduced as compared with the hot plate, and the absorption area of the absorbing liquid and the wetting area of the absorbing liquid are increased, a larger amount of absorption and heat exchange can be obtained.

【0010】他の具体的構成において、各伝熱板には、
各冷却水配管の外周面から離して、複数の蒸気流通孔が
開設されている。該具体的構成においては、密閉室内に
供給された冷媒蒸気に、伝熱板に沿う流れが生じると共
に、蒸気流通孔を経て伝熱板を貫通する流れも生じる。
従って、冷媒蒸気は伝熱板に流れを妨げられることな
く、密閉室内を偏りなく流れて、吸収液に十分に吸収さ
れることになる。この場合、複数枚の伝熱板の配列ピッ
チは、2〜14mmの範囲に設定することが望ましい。
In another specific configuration, each heat transfer plate includes:
A plurality of steam circulation holes are opened apart from the outer peripheral surface of each cooling water pipe. In this specific configuration, the refrigerant vapor supplied into the closed chamber generates a flow along the heat transfer plate, and also generates a flow penetrating the heat transfer plate through the steam flow hole.
Therefore, the refrigerant vapor flows evenly in the closed chamber without being obstructed by the heat transfer plate, and is sufficiently absorbed by the absorbing liquid. In this case, the arrangement pitch of the plurality of heat transfer plates is desirably set in a range of 2 to 14 mm.

【0011】[0011]

【発明の効果】本発明に係る吸収式冷凍機の吸収器によ
れば、従来の吸収器に比べて、吸収液は広い面積で冷媒
蒸気と接触して冷媒蒸気を吸収すると共に、これによっ
て発生する熱は充分な熱交換によって効果的に冷却され
るので、吸収能力が飛躍的に向上する。
According to the absorber of the absorption refrigerator according to the present invention, as compared with the conventional absorber, the absorbing liquid comes into contact with the refrigerant vapor over a wider area to absorb the refrigerant vapor and generate the same. The generated heat is effectively cooled by sufficient heat exchange, so that the absorption capacity is dramatically improved.

【0012】[0012]

【発明の実施の形態】以下、本発明を二重効用型吸収式
冷凍機の吸収器に実施した形態につき、図面に沿って具
体的に説明する。第1実施例 本実施例の吸収器は、図16に示す従来と同様に、密閉
ドラム(3)内に形成された吸収器室(32)内に設置され
る。図1乃至図3に示す如く、本実施例の吸収器(5)に
おいては、吸収器室(32)内に、水平方向に伸びる複数本
の冷却水配管(2)が上下左右共に、例えば22mmのピ
ッチで配列される。又、複数枚の平板状の伝熱板(1)
が、互いに間隔をおいて垂直の姿勢で水平方向に配列さ
れ、前記複数本の冷却水配管(2)が、これらの伝熱板
(1)を垂直に貫通している。伝熱板(1)としては、例え
ば肉厚Tdが0.5mmの平板状の銅板が採用される。
尚、伝熱板(1)としては、周知の他の資材、例えばアル
ミニウム等からなるものを採用することも可能である。
又、伝熱板(1)のピッチPdは、3〜15mmに設定さ
れる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the present invention is applied to an absorber of a double-effect absorption refrigerator will be specifically described below with reference to the drawings. First Embodiment The absorber of this embodiment is installed in an absorber chamber (32) formed in a closed drum (3), similarly to the conventional one shown in FIG. As shown in FIGS. 1 to 3, in the absorber (5) of the present embodiment, a plurality of cooling water pipes (2) extending in the horizontal direction are arranged in the absorber chamber (32), for example, 22 mm in length and width. Are arranged at a pitch of Also, a plurality of flat heat transfer plates (1)
Are arranged in the horizontal direction in a vertical position at an interval from each other, and the plurality of cooling water pipes (2) are
(1) penetrates vertically. For example, a flat copper plate having a thickness Td of 0.5 mm is used as the heat transfer plate (1).
As the heat transfer plate (1), other well-known materials, for example, those made of aluminum or the like can be used.
The pitch Pd of the heat transfer plate (1) is set to 3 to 15 mm.

【0013】各伝熱板(1)の上端面には、伝熱板(1)の
上端面の長手方向に沿って伸びる断面V字形の吸収液槽
(10)が、伝熱板(1)と一体に形成されている。各吸収液
槽(10)の底部には、伝熱板(1)の両表面の上方位置に、
複数の吸収液流下孔(11)が伝熱板(1)の長手方向に互い
に間隔をおいて、2列に開設され、これらの吸収液流下
孔(11)の出口は、伝熱板(1)の表面に接している。この
様にして、伝熱板(1)毎に形成された複数の吸収液槽(1
0)によって、吸収液供給機構が構成される。
At the upper end surface of each heat transfer plate (1), an absorbing liquid tank having a V-shaped cross section extending along the longitudinal direction of the upper end surface of the heat transfer plate (1).
(10) is formed integrally with the heat transfer plate (1). At the bottom of each absorption liquid tank (10), at the position above both surfaces of the heat transfer plate (1),
A plurality of absorption liquid flow holes (11) are formed in two rows at intervals in the longitudinal direction of the heat transfer plate (1), and the outlets of the absorption liquid flow holes (11) are connected to the heat transfer plate (1). ) Is in contact with the surface. In this manner, a plurality of absorbing liquid tanks (1) formed for each heat transfer plate (1) are provided.
0) constitutes the absorbing liquid supply mechanism.

【0014】上記吸収式冷凍機の吸収器(5)において
は、冷却水配管(2)内に冷却水が供給され、伝熱板(1)
及び冷却水配管(2)の表面は、冷却水配管(2)内の冷却
水によって充分に温度が低下することになる。図16に
示す配管(61)から、図1に示す本実施例の複数の吸収液
槽(10)内に吸収液が供給される。該吸収液は、吸収液槽
(10)に一旦溜まった後、複数の吸収液流下孔(11)の出口
から流出する。各吸収液流下孔(11)の出口から流出した
吸収液は、鎖線の矢印で示す様に直ぐに伝熱板(1)の表
面に移って、伝熱板(1)の表面に拡がりつつ、伝熱板
(1)の表面及び冷却水配管(2)の外周面を伝って流下し
ていく。ここで、吸収液槽(10)から流下する吸収液は全
て、伝熱板(1)の表面を伝うこととなり、従来の如く滴
状で滴下することはない。吸収液は、伝熱板(1)の表面
を流下する過程で、伝熱板(1)の間を通過する冷媒蒸気
と充分な面積で接触して、冷媒蒸気を吸収する。又この
過程で、吸収液は、伝熱板(1)の表面を広い面積で濡ら
すことになる。然も、吸収液は、流動抵抗により減速さ
れるため、伝熱板(1)の表面を上端部から下端部まで充
分な時間をかけて流れることになる。これによって、大
きな熱交換量が得られる。この様に、吸収液は広い面積
で冷媒蒸気と接触して冷媒蒸気を吸収すると共に、これ
によって発生する熱は充分な熱交換によって効果的に冷
却されることになる。この結果、高い吸収能力が得られ
る。
In the absorber (5) of the absorption refrigerator, cooling water is supplied into a cooling water pipe (2), and a heat transfer plate (1) is provided.
The temperature of the surface of the cooling water pipe (2) is sufficiently lowered by the cooling water in the cooling water pipe (2). The absorbing liquid is supplied from the pipe (61) shown in FIG. 16 to the plurality of absorbing liquid tanks (10) of this embodiment shown in FIG. The absorbing solution is stored in an absorbing solution tank.
After temporarily accumulating in (10), it flows out from the outlets of the plurality of absorption liquid flow holes (11). The absorbent flowing out from the outlet of each absorbent flow hole (11) is immediately transferred to the surface of the heat transfer plate (1) as shown by the dashed arrow, and spreads on the surface of the heat transfer plate (1) while spreading. Hot plate
It flows down along the surface of (1) and the outer peripheral surface of the cooling water pipe (2). Here, all the absorbing liquid flowing down from the absorbing liquid tank (10) travels on the surface of the heat transfer plate (1), and does not drop in the form of a droplet as in the related art. In the process of flowing down the surface of the heat transfer plate (1), the absorbing liquid comes into contact with a sufficient amount of refrigerant vapor passing between the heat transfer plates (1) to absorb the refrigerant vapor. In this process, the absorbing liquid wets the surface of the heat transfer plate (1) over a wide area. Of course, since the absorbing liquid is decelerated by the flow resistance, it flows over the surface of the heat transfer plate (1) from the upper end to the lower end with a sufficient time. Thereby, a large heat exchange amount is obtained. As described above, the absorbing liquid comes into contact with the refrigerant vapor over a large area to absorb the refrigerant vapor, and the heat generated thereby is effectively cooled by sufficient heat exchange. As a result, a high absorption capacity is obtained.

【0015】図4は、本発明の効果を実証するために行
なった吸収能力に関する計算の結果を表わしており、横
軸は伝熱板(1)のピッチPdであり、縦軸は、同一の吸
収能力を有する本発明の吸収器(5)の体積V1と従来の
吸収器(50)の体積V2の比(V1/V2)を表わしてい
る。この体積比が小さいほど、本発明の吸収器(5)の吸
収能力が高いと言える。尚、計算は、図5に示す如く伝
熱板(1)の肉厚Tdを0.5mm、冷却水配管(2)の外径
Dtを1/2インチ又は5/8インチ、冷却水配管(2)
の肉厚Ttを0.6mm、冷却水配管(2)を流れる冷却
水の流速を11.7m/sとし、伝熱板(1)のピッチP
dを変化させて行なった。図4の黒丸のプロットは、冷
却水配管(2)の外径Dtが1/2インチの場合、白丸の
プロットは、5/8インチの場合の計算結果を表わして
いる。
FIG. 4 shows the results of a calculation on the absorption capacity performed to verify the effect of the present invention. The horizontal axis is the pitch Pd of the heat transfer plate (1), and the vertical axis is the same. It shows the ratio (V1 / V2) of the volume V1 of the absorber (5) of the present invention having an absorption capacity to the volume V2 of the conventional absorber (50). It can be said that the smaller the volume ratio, the higher the absorption capacity of the absorber (5) of the present invention. As shown in FIG. 5, the thickness Td of the heat transfer plate (1) is 0.5 mm, the outer diameter Dt of the cooling water pipe (2) is 1/2 inch or 5/8 inch, and the cooling water pipe ( 2)
The thickness Tt is 0.6 mm, the flow velocity of the cooling water flowing through the cooling water pipe (2) is 11.7 m / s, and the pitch P of the heat transfer plate (1) is
The experiment was performed while changing d. The plot of black circles in FIG. 4 indicates the calculation result when the outer diameter Dt of the cooling water pipe (2) is 1/2 inch, and the plot of white circles indicates the calculation result when the outer diameter Dt is 5/8 inch.

【0016】図示の如く、冷却水配管(2)の外径Dtが
1/2インチの場合、5/8インチの場合共に、伝熱板
(1)のピッチPdが3mmのときに、体積比は30%程
度と最小値となっている。又、伝熱板(1)のピッチPd
が3mmから大きくなるにつれて、体積比は徐々に増大
している。そしてピッチPdが15mmのとき、体積比
は、冷却水配管(2)の外径Dtが1/2インチの場合に
95%程度、5/8インチの場合に80%程度となって
いる。これは、伝熱板(1)のピッチPdが大きくなるに
つれて、冷却水配管(2)の全長に亘って配列される伝熱
板(1)の枚数が減少して、吸収液の吸収面積と伝熱板
(1)に対する吸収液の濡れ面積(m2)が小さくなるため
である。そしてピッチPdが15mmを越えると、従来
の伝熱板(1)のない吸収器(50)と殆ど濡れ面積が同じに
なって、従来の熱交換量を大きく上回る熱交換量は得ら
れない。
As shown in the figure, when the outer diameter Dt of the cooling water pipe (2) is 1/2 inch and when it is 5/8 inch, the heat transfer plate is used.
When the pitch Pd in (1) is 3 mm, the volume ratio is a minimum value of about 30%. Also, the pitch Pd of the heat transfer plate (1)
Increases from 3 mm, the volume ratio gradually increases. When the pitch Pd is 15 mm, the volume ratio is about 95% when the outer diameter Dt of the cooling water pipe (2) is 1/2 inch, and is about 80% when the outer diameter Dt is 5/8 inch. This is because as the pitch Pd of the heat transfer plates (1) increases, the number of heat transfer plates (1) arranged over the entire length of the cooling water pipe (2) decreases, and the absorption area of the absorbing liquid and Heat transfer plate
This is because the wetting area (m 2 ) of the absorbing solution with respect to (1) becomes small. When the pitch Pd exceeds 15 mm, the wetted area is almost the same as that of the conventional absorber 50 without the heat transfer plate 1, and a heat exchange amount that is much larger than the conventional heat exchange amount cannot be obtained.

【0017】尚、伝熱板(1)のピッチPdが3mmより
小さい場合については、図4の如く体積比は急激に増大
すると考えられる。これは、伝熱板(1)どうしの接近に
よって、互いに対向する2つの表面を夫々流れる吸収液
どうしが接触し、これらの吸収液が合流して流下するた
め、冷媒蒸気の流路が吸収液により塞がれて、吸収液に
冷媒蒸気が充分な面積で接触せず、吸収能力が大幅に低
下するからである。従って、伝熱板(1)のピッチPd
は、3〜15mmの範囲に設定することが望ましい。図
4のグラフから明らかな様に、本実施例の吸収器(5)に
よれば、従来の吸収器(50)に比べて高い吸収能力が得ら
れ、所期の吸収能力を発揮するために必要な体積は小さ
くて済むので、吸収器(5)の小型化が可能である。
When the pitch Pd of the heat transfer plate (1) is smaller than 3 mm, the volume ratio is considered to increase rapidly as shown in FIG. This is because, when the heat transfer plates (1) approach each other, the absorbing liquids flowing on the two surfaces facing each other come into contact with each other, and these absorbing liquids merge and flow down. This is because the refrigerant vapor does not come into contact with the absorbing liquid in a sufficient area, and the absorbing capacity is greatly reduced. Therefore, the pitch Pd of the heat transfer plate (1)
Is desirably set in the range of 3 to 15 mm. As is clear from the graph of FIG. 4, according to the absorber (5) of the present embodiment, a higher absorption capacity can be obtained as compared with the conventional absorber (50). Since the required volume is small, the absorber (5) can be downsized.

【0018】第2実施例 本実施例の吸収器(7)は、各伝熱板(1)の上端面に一体
に形成された複数の吸収液槽(10)によって吸収液供給機
構を構成する第1実施例の吸収器(5)に対し、全ての伝
熱板(1)の上端部に跨って取り付けられた1つの吸収液
槽(8)を吸収液供給機構として具えたものである。具体
的には、図6乃至図8に示す如く、全ての伝熱板(1)の
上端部に跨って、皿状の吸収液槽(8)が取り付けられ、
全ての伝熱板(1)の上端部が、吸収液槽(8)の底面を貫
通している。吸収液槽(8)の底面には、各伝熱板(1)の
両側に伝熱板(1)の表面に沿って伸びるスリット状の吸
収液流下孔(81)(81)が開設されている。この様にして、
吸収液供給機構として、全ての伝熱板(1)の上端部に跨
る吸収液槽(8)が取り付けられている。
Second Embodiment In the absorber (7) of this embodiment, a plurality of absorbing liquid tanks (10) integrally formed on the upper end surface of each heat transfer plate (1) constitute an absorbing liquid supply mechanism. The absorber (5) of the first embodiment is provided with a single absorbing liquid tank (8) attached across the upper ends of all the heat transfer plates (1) as an absorbing liquid supply mechanism. Specifically, as shown in FIGS. 6 to 8, a dish-shaped absorbing liquid tank (8) is attached across the upper end portions of all the heat transfer plates (1),
The upper ends of all the heat transfer plates (1) penetrate the bottom surface of the absorbing liquid tank (8). On the bottom surface of the absorbing liquid tank (8), slit-shaped absorbing liquid flow holes (81) (81) extending along the surface of the heat transfer plate (1) are opened on both sides of each heat transfer plate (1). I have. In this way,
As an absorbing liquid supply mechanism, an absorbing liquid tank (8) extending over the upper end portions of all the heat transfer plates (1) is attached.

【0019】上記吸収式冷凍機の吸収器(7)において
は、上記第1実施例と同様に、伝熱板(1)及び冷却水配
管(2)の表面は、冷却水配管(2)内の冷却水によって充
分に温度が低下している。図16に示す配管(61)から、
図6に示す本実施例の複数の吸収液槽(8)内に吸収液が
供給される。該吸収液は、吸収液槽(8)に一旦溜まった
後、各吸収液流下孔(81)から伝熱板(1)の表面を伝って
流出する。この際、吸収液は、スリット状の吸収液流下
孔(81)から薄膜状となって流出するため、伝熱板(1)の
表面の幅方向の全域を濡らしながら流下する。従って、
上記第1実施例よりも吸収液の吸収面積と伝熱板(1)表
面に対する濡れ面積が更に増大することになる。この結
果、第1実施例よりも高い吸収能力を得ることが出来
る。
In the absorber (7) of the absorption refrigerator, as in the first embodiment, the surfaces of the heat transfer plate (1) and the cooling water pipe (2) are inside the cooling water pipe (2). The temperature is sufficiently lowered by the cooling water. From the pipe (61) shown in FIG.
The absorbing liquid is supplied into the plurality of absorbing liquid tanks (8) of the present embodiment shown in FIG. The absorption liquid once accumulates in the absorption liquid tank (8), and then flows out from each absorption liquid flow down hole (81) along the surface of the heat transfer plate (1). At this time, since the absorbing liquid flows out in a thin film form from the slit-shaped absorbing liquid flow-down hole (81), the absorbing liquid flows down while wetting the entire surface of the surface of the heat transfer plate (1) in the width direction. Therefore,
The absorption area of the absorbing liquid and the wetting area on the surface of the heat transfer plate (1) are further increased as compared with the first embodiment. As a result, a higher absorption capacity can be obtained than in the first embodiment.

【0020】第3実施例 図13に示す如く、本実施例の吸収器(70)は、第1実施
例の各伝熱板(1)に複数の蒸気流通孔(12)を開設したも
のである。冷却水配管(2)は、外径15.9mm、長さ
2070mmを有して、17列×18段に配列され、総
本数306本である。一方、伝熱板(1)は、396mm
×374mm×0.5tの寸法を有して、345枚がピ
ッチ6mmで配列されている。蒸気流通孔(12)は、図1
4に示す如く内径10mmの大きさを有し、冷却水配管
貫通孔(13)と同一の22mmのピッチで開設されてい
る。
Third Embodiment As shown in FIG. 13, an absorber (70) of the present embodiment has a plurality of steam flow holes (12) formed in each heat transfer plate (1) of the first embodiment. is there. The cooling water pipes (2) have an outer diameter of 15.9 mm and a length of 2070 mm, are arranged in 17 rows × 18 stages, and have a total of 306 pipes. On the other hand, the heat transfer plate (1) is 396 mm
It has dimensions of × 374 mm × 0.5 t, and 345 sheets are arranged at a pitch of 6 mm. The steam flow hole (12) is shown in FIG.
As shown in FIG. 4, it has a diameter of 10 mm and is opened at the same pitch of 22 mm as the cooling water pipe through-hole (13).

【0021】前述の第1実施例及び第2実施例では、吸
収液槽(10)から供給される吸収液が伝熱板(1)の表面を
濡らしながら流下し、この過程で、伝熱板(1)は、吸収
液が拡がって濡れた表面領域で前述の効果を発揮する
が、それ以外の吸収液が濡れない表面領域は、前述の効
果を十分に発揮しない。そこで本実施例では、伝熱板
(1)に濡れない表面領域が生じることに着目し、伝熱板
(1)に複数の蒸気流通孔(12)を開設して、伝熱板(1)を
貫通する冷媒蒸気の流れを生起させる。これによって、
冷媒蒸気は伝熱板(1)に流れを妨げられることなく、吸
収器室(32)内を偏りなく流れて、吸収液に十分に吸収さ
れることになる。尚、蒸気流通孔(12)の開設によって、
蒸気の流れが促進されるため、伝熱板(1)の配列ピッチ
は第1実施例及び第2実施例の場合よりも小さく設定す
ることが可能となり、これによって更に吸収能力を向上
させることが出来る。
In the first and second embodiments, the absorbing liquid supplied from the absorbing liquid tank (10) flows down while wetting the surface of the heat transfer plate (1). In (1), the above effect is exhibited in the surface area where the absorbing liquid spreads and is wet, but the other surface area where the absorbing liquid is not wet does not sufficiently exhibit the above effect. Therefore, in this embodiment, the heat transfer plate
Paying attention to the fact that a non-wetting surface area occurs in (1), the heat transfer plate
A plurality of steam circulation holes (12) are opened in (1) to generate a flow of refrigerant vapor passing through the heat transfer plate (1). by this,
The refrigerant vapor flows evenly in the absorber chamber (32) without being obstructed by the heat transfer plate (1), and is sufficiently absorbed by the absorbing liquid. In addition, by opening of steam circulation hole (12),
Since the steam flow is promoted, the arrangement pitch of the heat transfer plates (1) can be set smaller than in the case of the first embodiment and the second embodiment, thereby further improving the absorption capacity. I can do it.

【0022】本実施例の吸収器Aと従来の伝熱板を具え
ない吸収器Bの夫々について、同一体積を有する小型の
実験機を作製し、これを用いて吸収液流量と冷凍能力の
関係を調べたところ、図15に示す如く、本実施例の吸
収器Aについては破線、従来の吸収器Bについては実線
の関係が得られた。尚、図15の結果は、実験機で得ら
れた冷凍能力及び吸収液流量に基づいて、上述の諸元を
有する吸収器A、Bの冷凍能力及び吸収液流量を計算し
たものである。図15から明らかな様に、蒸気流通孔(1
2)が開設された伝熱板(1)を具えた本実施例の吸収器A
によれば、吸収液流量に拘わらず、従来の吸収器Bより
も大きな冷凍能力を得ることが出来る。
For each of the absorber A of the present embodiment and the conventional absorber B without a heat transfer plate, small experimental machines having the same volume were produced, and the relationship between the flow rate of the absorbing solution and the refrigerating capacity was determined using this. As a result, as shown in FIG. 15, a relationship indicated by a broken line was obtained for the absorber A of the present embodiment, and a relationship indicated by a solid line was obtained for the conventional absorber B. The results in FIG. 15 are obtained by calculating the refrigerating capacity and the flow rate of the absorbing solution of the absorbers A and B having the above-described specifications based on the refrigerating capacity and the absorbing solution flow rate obtained by the experimental machine. As is clear from FIG. 15, the steam flow holes (1
Absorber A of this embodiment equipped with a heat transfer plate (1) in which 2) has been established
According to the above, regardless of the flow rate of the absorbing solution, a larger refrigerating capacity than the conventional absorber B can be obtained.

【0023】尚、本発明の各部構成は上記実施の形態に
限らず、特許請求の範囲に記載の技術的範囲内で種々の
変形が可能である。例えば、複数本の冷却水配管(2)
は、図9に示す如く千鳥状に配列することも可能であ
る。
The configuration of each part of the present invention is not limited to the above embodiment, and various modifications can be made within the technical scope described in the claims. For example, a plurality of cooling water pipes (2)
Can be arranged in a staggered pattern as shown in FIG.

【0024】又、平板状の伝熱板(1)に替えて、図10
に示す如く鉛直方向に沿って波打つ波板状の伝熱板(9)
を採用することも可能である。又、図11(a)乃至(c)
に示す如く鉛直方向に沿って凹凸が現われる表面加工が
施された伝熱板(90)を採用することも可能である。これ
らの伝熱板(9)(90)を採用した場合、吸収液が流下する
際の流動抵抗が大きくなって、垂直平板状の伝熱板(1)
に比べて流下速度が減小すると共に、吸収液の吸収面積
と吸収液の濡れ面積が増大するため、より高い吸収能力
を得ることが出来る。
In place of the flat heat transfer plate (1), FIG.
Corrugated heat transfer plate (9) waving along the vertical direction as shown in (9)
It is also possible to employ. Also, FIGS. 11 (a) to 11 (c)
It is also possible to employ a heat transfer plate (90) that has been subjected to surface processing in which irregularities appear along the vertical direction as shown in FIG. When these heat transfer plates (9) and (90) are adopted, the flow resistance when the absorbing liquid flows down becomes large, and the heat transfer plate (1) having a vertical flat plate shape is obtained.
As compared with the above, the flow rate is reduced, and the absorption area of the absorbing liquid and the wetting area of the absorbing liquid are increased, so that a higher absorbing capacity can be obtained.

【0025】更に、図6に示す吸収液槽(8)の底部に
は、スリット状の吸収液流下孔(81)に替えて、図12に
示す如く複数の半円状の吸収液流下孔(82)を形成するこ
とも可能である。更に又、図13に示す蒸気流通孔(12)
は円形に限らず、例えば垂直方向に長いスリット状に開
設することも可能である。
Further, as shown in FIG. 12, a plurality of semicircular absorbing liquid flow holes (81) are provided at the bottom of the absorbing liquid tank (8) shown in FIG. 82) can also be formed. Furthermore, the steam flow holes (12) shown in FIG.
Is not limited to a circular shape, but may be formed, for example, in a vertically long slit shape.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1実施例の吸収器の要部を表わす一部破断斜
視図である。
FIG. 1 is a partially cutaway perspective view showing a main part of an absorber according to a first embodiment.

【図2】上記吸収器における冷却水配管の配列状態を表
わす正面図である。
FIG. 2 is a front view showing an arrangement of cooling water pipes in the absorber.

【図3】上記吸収器における伝熱板の配列状態を表わす
側面図である。
FIG. 3 is a side view showing an arrangement of heat transfer plates in the absorber.

【図4】本発明の効果を実証するために行なった吸収能
力に関する計算の結果を表わすグラフである。
FIG. 4 is a graph showing the results of calculations on absorption capacity performed to demonstrate the effects of the present invention.

【図5】上記計算に用いた伝熱板及び冷却水配管の形状
を表わす断面図である。
FIG. 5 is a cross-sectional view illustrating shapes of a heat transfer plate and a cooling water pipe used in the above calculation.

【図6】第2実施例の吸収器の要部を表わす一部破断斜
視図である。
FIG. 6 is a partially cutaway perspective view illustrating a main part of an absorber according to a second embodiment.

【図7】上記吸収器における冷却水配管の配列状態を表
わす正面図である。
FIG. 7 is a front view showing an arrangement of cooling water pipes in the absorber.

【図8】上記吸収器における伝熱板の配列状態を表わす
側面図である。
FIG. 8 is a side view showing an arrangement state of heat transfer plates in the absorber.

【図9】冷却水配管の他の配列状態を表わす正面図であ
る。
FIG. 9 is a front view showing another arrangement state of the cooling water pipe.

【図10】伝熱板の他の形状を表わす側面図である。FIG. 10 is a side view showing another shape of the heat transfer plate.

【図11】伝熱板の各種断面形状を表わす断面図であ
る。
FIG. 11 is a cross-sectional view illustrating various cross-sectional shapes of the heat transfer plate.

【図12】第2実施例の吸収器における吸収液流下孔の
他の構成例を表わす一部破断斜視図である。
FIG. 12 is a partially cutaway perspective view showing another example of the configuration of the absorption liquid flow-down hole in the absorber of the second embodiment.

【図13】第3実施例における吸収器の要部を表わす一
部破断斜視図である。
FIG. 13 is a partially cutaway perspective view showing a main part of an absorber according to a third embodiment.

【図14】伝熱板に開設された蒸気流通孔及び冷却水配
管貫通孔の寸法及びピッチを表わす図である。
FIG. 14 is a diagram illustrating dimensions and pitches of a steam flow hole and a cooling water pipe through hole formed in a heat transfer plate.

【図15】吸収液流量と冷凍能力の関係を表わすグラフ
である。
FIG. 15 is a graph showing the relationship between the absorption liquid flow rate and the refrigeration capacity.

【図16】二重効用型の吸収式冷凍機において、密閉ド
ラム内に設置された吸収器を表わす模式図である。
FIG. 16 is a schematic diagram showing an absorber installed in a closed drum in a double-effect absorption refrigerator.

【符号の説明】[Explanation of symbols]

(1) 伝熱板 (10) 吸収液槽 (11) 吸収液流下孔 (12) 蒸気流通孔 (2) 冷却水配管 (5) 吸収器 (1) Heat transfer plate (10) Absorbent tank (11) Absorbent downflow hole (12) Steam circulation hole (2) Cooling water pipe (5) Absorber

フロントページの続き (72)発明者 名迫 賢二 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内Continuation of the front page (72) Inventor Kenji Nasako 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 吸収式冷凍機の吸収器において、吸収液
及び冷媒蒸気が供給されるべき密閉室内に、吸収液供給
機構が設置され、吸収液供給機構の下方位置には、横方
向に伸びる複数本の冷却水配管を互いに直列或いは並列
に接続してなる冷却水配管系が設置されると共に、複数
枚の伝熱板が互いに間隔をおいて垂直の姿勢で横方向に
配列され、前記複数本の冷却水配管がこれらの伝熱板を
貫通している吸収式冷凍機の吸収器。
In an absorber of an absorption refrigerator, an absorption liquid supply mechanism is provided in a closed chamber to which the absorption liquid and the refrigerant vapor are to be supplied, and extends horizontally in a position below the absorption liquid supply mechanism. A cooling water piping system is installed by connecting a plurality of cooling water pipings in series or in parallel to each other, and a plurality of heat transfer plates are arranged in a horizontal direction in a vertical posture at intervals from each other. An absorber of an absorption refrigerator in which cooling water pipes penetrate these heat transfer plates.
【請求項2】 前記複数枚の伝熱板は、3mm乃至15
mmのピッチで配列されている請求項1に記載の吸収式
冷凍機の吸収器。
2. The heat transfer plate according to claim 1, wherein the plurality of heat transfer plates have a thickness of 3 mm to 15 mm.
The absorber of the absorption refrigerator according to claim 1, wherein the absorber is arranged at a pitch of mm.
【請求項3】 各伝熱板は、鉛直方向に沿って波打つ波
板状に形成されている請求項1又は請求項2に記載の吸
収式冷凍機の吸収器。
3. The absorber of an absorption refrigerator according to claim 1, wherein each heat transfer plate is formed in a corrugated shape waving along a vertical direction.
【請求項4】 各伝熱板には、鉛直方向に沿って凹凸が
現われる表面加工が施されている請求項1乃至請求項3
の何れかに記載の吸収式冷凍機の吸収器。
4. A heat treatment plate according to claim 1, wherein each heat transfer plate is subjected to surface processing in which irregularities appear along a vertical direction.
The absorber of the absorption refrigerator according to any one of the above.
【請求項5】 各伝熱板には、各冷却水配管の外周面か
ら離して、複数の蒸気流通孔が開設されている請求項1
に記載の吸収式冷凍機の吸収器。
5. A plurality of steam flow holes are formed in each heat transfer plate apart from an outer peripheral surface of each cooling water pipe.
The absorber of the absorption refrigerator described in 1.
【請求項6】 前記複数枚の伝熱板は、2mm乃至14
mmのピッチで配列されている請求項5に記載の吸収式
冷凍機の吸収器。
6. The heat transfer plate according to claim 1, wherein the plurality of heat transfer plates are from 2 mm to 14 mm.
The absorber of the absorption refrigerator according to claim 5, which is arranged at a pitch of mm.
JP01605798A 1997-03-25 1998-01-28 Absorption chiller absorber Expired - Fee Related JP3378785B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP01605798A JP3378785B2 (en) 1997-03-25 1998-01-28 Absorption chiller absorber
PCT/JP1998/001289 WO1998043027A1 (en) 1997-03-25 1998-03-23 Absorber of absorption system refrigerator
CN98803663A CN1251164A (en) 1997-03-25 1998-03-23 Absorber of absorption system refrigerator
EP98909857A EP0972999A4 (en) 1997-03-25 1998-03-23 Absorber of absorption system refrigerator
US09/381,700 US6192704B1 (en) 1997-03-25 1998-03-23 Absorber of absorption system refrigerator

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-72097 1997-03-25
JP7209797 1997-03-25
JP01605798A JP3378785B2 (en) 1997-03-25 1998-01-28 Absorption chiller absorber

Publications (2)

Publication Number Publication Date
JPH10325643A true JPH10325643A (en) 1998-12-08
JP3378785B2 JP3378785B2 (en) 2003-02-17

Family

ID=26352306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01605798A Expired - Fee Related JP3378785B2 (en) 1997-03-25 1998-01-28 Absorption chiller absorber

Country Status (1)

Country Link
JP (1) JP3378785B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101852518A (en) * 2009-02-17 2010-10-06 三洋电机株式会社 Absorber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101852518A (en) * 2009-02-17 2010-10-06 三洋电机株式会社 Absorber

Also Published As

Publication number Publication date
JP3378785B2 (en) 2003-02-17

Similar Documents

Publication Publication Date Title
JP2007532855A (en) Thermal mass exchange machine
WO1998043027A1 (en) Absorber of absorption system refrigerator
JP2000227262A (en) Absorption refrigerating machine and manufacture of same
US3240265A (en) Refrigeration evaporator system of the flooded type
JP2000179989A (en) Sprinkler of absorption water cooler/heater
JP2006200852A (en) Absorber in absorption type refrigerator
KR100338794B1 (en) Falling film-type heat and mass exchanger using capillary force
JP4721192B2 (en) Heat exchange heat transfer device for automobile
JPH10325643A (en) Absorber of absorption refrigerator
JP3367323B2 (en) High-temperature regenerator and absorption chiller / heater for absorption chiller / heater
KR100532516B1 (en) Absorption refrigerator
JP3604958B2 (en) Absorption chiller absorber
JPH10267458A (en) Absorbing device of absorption freezer
JP4318679B2 (en) Regenerative condenser
JP3604920B2 (en) Absorption chiller absorber
WO2017088772A1 (en) Refrigerant evaporator of no-circulation pump of absorption type refrigeration unit, refrigeration unit and matrix
JP3604959B2 (en) Absorption chiller absorber
JP2000304377A (en) Absorber for water-cooled absorption refrigerating device
EP0082018B1 (en) Absorption refrigeration system
KR20120080297A (en) Absorption chiller and heater with solution plate
JP2877420B2 (en) Absorption refrigerator
JP5036360B2 (en) Absorption refrigerator
JP2974005B2 (en) Absorption refrigerator
JP3862083B2 (en) High temperature regenerator for steam absorption refrigerator
JP2962866B2 (en) Absorber

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees