JP3367323B2 - High-temperature regenerator and absorption chiller / heater for absorption chiller / heater - Google Patents

High-temperature regenerator and absorption chiller / heater for absorption chiller / heater

Info

Publication number
JP3367323B2
JP3367323B2 JP06248896A JP6248896A JP3367323B2 JP 3367323 B2 JP3367323 B2 JP 3367323B2 JP 06248896 A JP06248896 A JP 06248896A JP 6248896 A JP6248896 A JP 6248896A JP 3367323 B2 JP3367323 B2 JP 3367323B2
Authority
JP
Japan
Prior art keywords
solution
pipe
temperature regenerator
inner cylinder
combustion gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06248896A
Other languages
Japanese (ja)
Other versions
JPH09250840A (en
Inventor
保志 船場
富久 大内
雅之 嶋村
賢司 八重樫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP06248896A priority Critical patent/JP3367323B2/en
Priority to CN97103498A priority patent/CN1105276C/en
Priority to KR1019970009245A priority patent/KR100200905B1/en
Publication of JPH09250840A publication Critical patent/JPH09250840A/en
Application granted granted Critical
Publication of JP3367323B2 publication Critical patent/JP3367323B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/124Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and being formed of pins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/04Assemblies of fins having different features, e.g. with different fin densities
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Description

【発明の詳細な説明】Detailed Description of the Invention

【発明の属する技術分野】本発明は、吸収式冷温水機の
高温再生器及び吸収式冷温水機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high temperature regenerator for an absorption chiller-heater and an absorption chiller-heater.

【0002】[0002]

【従来の技術】吸収式冷温水機の高温再生器としては例
えば特開平6-221718号公報に記載のものがある。具体的
には高温再生器は外筒と内筒との間に溶液を保持する液
室を形成し、前記内筒の内部は溶液を加熱する燃焼室と
し、前記燃焼室の下流に前記内筒の上下の液室に連通し
燃焼ガスと交差するように断面が流れ方向に扁平な溶液
管を配置している。前記溶液管にはフィンがついてお
り、溶液管伝熱面において熱流束の均一化を図ってい
る。
2. Description of the Related Art As a high temperature regenerator for an absorption chiller-heater, there is one disclosed in, for example, JP-A-6-221718. Specifically, the high temperature regenerator forms a liquid chamber that holds a solution between an outer cylinder and an inner cylinder, the inside of the inner cylinder is a combustion chamber that heats the solution, and the inner cylinder is provided downstream of the combustion chamber. A solution pipe having a flat cross section in the flow direction is arranged so as to communicate with the upper and lower liquid chambers and intersect with the combustion gas. The solution tube is provided with fins to make the heat flux uniform on the heat transfer surface of the solution tube.

【0003】[0003]

【発明が解決しようとする課題】高温再生器で加熱沸騰
させる臭化リチウム水溶液(LiBr水溶液)は、高温におい
て腐食性が強くなる。上記のような従来例においては、
燃焼室から伝熱管を通過する燃焼ガスの流れは均一に流
れ、熱流束分布は伝熱面全体で均一となるため、臭化リ
チウム水溶液の沸騰よって熱伝達率が沸騰前よりも沸騰
後の方が大きくなる場合には沸騰前の溶液が接する伝熱
面の温度が上昇して腐食が進行するという問題が発生す
る。
The aqueous solution of lithium bromide (LiBr aqueous solution) heated and boiled in a high temperature regenerator has strong corrosiveness at high temperature. In the conventional example as described above,
The flow of the combustion gas from the combustion chamber through the heat transfer tube is uniform, and the heat flux distribution is uniform over the entire heat transfer surface.Therefore, due to the boiling of the aqueous solution of lithium bromide, the heat transfer coefficient after boiling is higher than that before boiling. When becomes larger, there is a problem that the temperature of the heat transfer surface that comes in contact with the solution before boiling rises and corrosion progresses.

【0004】例えば、断面形状が円形の重力方向に長い
管があり、内部はLiBr水溶液で満たされており、前記管
の上端からも下端からもLiBr水溶液が自由に出入りでき
る実験装置を考える。図20は前記管に均一な熱流束を
与え、管内部の63%LiBr水溶液を器内圧53.7kPaのもとで
沸騰させた場合の実験結果である。図20の横軸は管内
壁温度と管出口部液温度との温度差(K)であり、縦軸
は管の下端から測った上端までの管の長さである。図2
0から管内壁温度は熱流束の大きさに影響されず、常に
管下部が上部より高い傾向を示すことがわかる。つま
り、LiBr水溶液が沸騰を始める前後で液側伝熱面におけ
る熱伝達率は液深さが深い場合に較べて、液深さが浅い
場合の方が高い。
For example, consider an experimental apparatus in which there is a tube having a circular cross section which is long in the direction of gravity, the interior is filled with a LiBr aqueous solution, and the LiBr aqueous solution can freely enter and exit from the upper end and the lower end of the tube. FIG. 20 shows the experimental results when a uniform heat flux was applied to the tube and the 63% LiBr aqueous solution inside the tube was boiled under the internal pressure of 53.7 kPa. The horizontal axis of FIG. 20 is the temperature difference (K) between the inner wall temperature of the tube and the liquid temperature at the outlet of the tube, and the vertical axis is the length of the tube from the lower end to the upper end measured. Figure 2
From 0, it can be seen that the temperature of the inner wall of the tube is not affected by the magnitude of the heat flux, and the lower part of the tube always tends to be higher than the upper part. That is, the heat transfer coefficient at the liquid-side heat transfer surface before and after the boiling of the LiBr aqueous solution is higher when the liquid depth is shallower than when the liquid depth is deep.

【0005】本発明は、高温再生器の液側伝熱面の腐食
劣化が緩和されて、長寿命、高信頼性、省エネルギー化
が図れる吸収式冷温水機の高温再生器及び吸収式冷温水
機を提供することを目的とする。
The present invention is directed to a high temperature regenerator and an absorption chiller / heater of an absorption chiller / heater in which corrosion deterioration of the liquid-side heat transfer surface of the high temperature regenerator is mitigated to achieve long life, high reliability and energy saving. The purpose is to provide.

【0006】[0006]

【課題を解決するための手段】上記目的は、外筒と内筒
との間に溶液を保持する液室を形成し、前記内筒の内部
は溶液を加熱する燃焼室とし、前記燃焼室の下流に前記
内筒の上下の液室に連通し燃焼ガスと交差するように溶
液管を有する吸収式冷温水機の高温再生器において、前
記溶液管の燃焼ガス側に液深さが深い溶液管部の方が液
深さが浅い溶液管部よりもピッチが密であるフィンを設
置する、ことによって達成される。
The above-mentioned object is to form a liquid chamber for holding a solution between an outer cylinder and an inner cylinder, the inside of the inner cylinder being a combustion chamber for heating the solution, In a high-temperature regenerator of an absorption chiller-heater having a solution pipe communicating downstream with the upper and lower liquid chambers of the inner cylinder and intersecting with combustion gas, a solution pipe having a deep liquid depth on the combustion gas side of the solution pipe This is achieved by installing fins that are denser in pitch than in the solution tube where the depth is shallower.

【0007】また上記目的は、溶液管の燃焼ガス側に液
深さが深い溶液管部の方が液深さが浅い溶液管部よりも
高いフィンを設ける、ことによって達成される。
Further, the above object can be achieved by providing a fin on the combustion gas side of the solution pipe, the fin having a deeper depth in the solution pipe portion than the solution pipe portion having a shallow liquid depth.

【0008】更に上記目的は、溶液管の燃焼ガス側に液
深さが深い溶液管部の方が液深さが浅い溶液管部よりも
厚さの厚いフィンを設ける、ことによって達成される。
Further, the above object can be achieved by providing a fin on the combustion gas side of the solution pipe, the fin having a larger depth in the solution pipe portion having a deeper liquid depth than in the solution pipe portion having a shallow liquid depth.

【0009】フインのピッチを液深さが深い溶液管部の
方が液深さが浅い溶液管部よりも密にすることにより接
液側伝熱面における熱負荷が伝熱管の下部では低く上部
では高くなり、接液側伝熱面内の温度分布を均一化する
ことができる。
By making the fin pitch denser in the solution pipe portion having the deeper liquid depth than in the solution pipe portion having the shallower liquid depth, the heat load on the heat transfer surface on the liquid contact side is lower at the lower portion of the heat transfer tube and at the upper portion. Then, the temperature distribution becomes higher, and the temperature distribution in the liquid contact side heat transfer surface can be made uniform.

【0010】[0010]

【発明の実施の形態】図1は本発明の実施例の高温再生
器の切欠き斜視図であり、図2は図1の高温再生器の垂
直断面図であり、図3は図1の水平断面図である。
1 is a cutaway perspective view of a high temperature regenerator according to an embodiment of the present invention, FIG. 2 is a vertical sectional view of the high temperature regenerator of FIG. 1, and FIG. 3 is a horizontal view of FIG. FIG.

【0011】図において、高温再生器1は外筒101と
内筒102、複数の溶液管103、バーナ104、溶液
流入管105、気液分離板106からなっている。内筒
102は外筒101の内部にあり、両者の間には溶液1
09が保持されて、内筒102はこの溶液109に没し
ている。バーナ104は内筒102に貫通して外筒10
1の側面に取り付けられており、内筒102の内部が燃
焼室111となっている。前記外筒101と内筒102
とで液室112を形成し、燃焼室111の下流(図の右
方)に内筒102の液室112の上下を連通する複数の
溶液管103が設置され、内部は溶液109で満たされ
ている。溶液管103は水平断面が長円形(もしくは偏
平形)をしており、長円形の直線部が平行になるように
複数本一列に配列されている。隣合う溶液管103の間
は燃焼ガス通路となっており、溶液管103の燃焼ガス
側表面にはフィン121が溶液管103の下部ほど密に
なるように配置(取り付け構造は溶接による接合、もし
くはネジ締結など)している。液深さが浅い場所も深い
場所も溶液管103の壁温を均一な温度にするには、好
ましくは、下部は上部より1.2〜4倍の範囲で除除に
密にする。その理由は1.2倍以下では液深さが深い部
分の方の壁温が低くなるので好ましくない。また、4倍
以上では液深さが浅い部分の方の壁温が高くなるので好
ましくない。また、外筒101の内部で溶液109の上
方には溶液流入管105、気液分離板106が設置さ
れ、外筒101の側面には溶液流出孔107、上面には
冷媒蒸気流出孔108が設けられている。フロートボッ
クス110は溶液流出孔107により外筒101と連通
しており、溶液流入管105はフロートボックス110
内を通って外筒101内につながっている。フロートボ
ックス110内の溶液流入管105の途中にフロート弁
が設けられており、フロートボックス内の液面高さに応
じて高温再生器1に送り込む溶液流量が調節される。
In the figure, the high temperature regenerator 1 comprises an outer cylinder 101, an inner cylinder 102, a plurality of solution tubes 103, a burner 104, a solution inflow tube 105, and a gas-liquid separation plate 106. The inner cylinder 102 is inside the outer cylinder 101, and the solution 1 is placed between them.
09 is held, and the inner cylinder 102 is submerged in this solution 109. The burner 104 penetrates the inner cylinder 102 and penetrates the outer cylinder 10.
It is attached to the side surface of No. 1 and the inside of the inner cylinder 102 is a combustion chamber 111. The outer cylinder 101 and the inner cylinder 102
Form a liquid chamber 112, and a plurality of solution pipes 103 that communicate with the upper and lower sides of the liquid chamber 112 of the inner cylinder 102 are installed downstream of the combustion chamber 111 (on the right side of the drawing), and the inside is filled with the solution 109. There is. The solution tube 103 has an oval (or flat) horizontal cross section, and a plurality of the solution tubes 103 are arranged in a line so that the linear parts of the oval are parallel to each other. A combustion gas passage is formed between the adjacent solution pipes 103, and fins 121 are arranged on the combustion gas side surface of the solution pipe 103 such that the fins 121 are closer to the lower part of the solution pipe 103 (the mounting structure is welded or Screw tightening etc.). In order to make the wall temperature of the solution tube 103 uniform in both the shallow and deep places, it is preferable that the lower portion is denser than the upper portion in the range of 1.2 to 4 times. The reason is that if the ratio is 1.2 times or less, the wall temperature becomes lower in the portion where the liquid depth is deeper, which is not preferable. Further, if it is 4 times or more, the wall temperature becomes higher in the portion where the liquid depth is shallow, which is not preferable. Further, inside the outer cylinder 101, a solution inflow pipe 105 and a gas-liquid separation plate 106 are installed above the solution 109, a solution outflow hole 107 is provided on a side surface of the outer cylinder 101, and a refrigerant vapor outflow hole 108 is provided on an upper surface. Has been. The float box 110 communicates with the outer cylinder 101 through the solution outflow hole 107, and the solution inflow pipe 105 is connected to the float box 110.
It is connected to the inside of the outer cylinder 101 through the inside. A float valve is provided in the middle of the solution inflow pipe 105 in the float box 110, and the flow rate of the solution fed into the high temperature regenerator 1 is adjusted according to the height of the liquid surface in the float box.

【0012】バーナ104からの燃焼ガスは、内筒10
2の壁面を通して主に輻射伝熱により溶液109を加熱
した後、隣合う溶液管103の平板面で挟まれた流路を
通過しつつ、対流伝熱により溶液管103内の溶液10
9を加熱して、煙道ボックス113に流入し、煙道ボッ
クス113(溶液管103とほぼ同じ高さか、もしくは
高くする)の上部に接続する煙突114を通って、外へ
放出される。加熱された溶液109は沸騰して冷媒蒸気
を発生し、発生した冷媒蒸気は上昇流となって溶液管1
03内や外筒101と内筒102の間の流路を上昇し、
液面上にでて気液分離板106を迂回して、冷媒蒸気流
出孔108から出ていく。一方、溶液は溶液流入管10
5を通って高温再生器1内に導かれ、高温再生器1内で
加熱沸騰して濃度の濃くなった溶液は、溶液流出孔10
7からフロートボックス110へ送られる。溶液はフロ
ートボックス内110に一旦溜められて液面を形成した
後出ていく。
The combustion gas from the burner 104 is supplied to the inner cylinder 10
After heating the solution 109 mainly by radiant heat transfer through the wall surface of 2, the solution 10 in the solution tube 103 is transferred by convective heat transfer while passing through the flow path sandwiched by the flat plate surfaces of the adjacent solution tubes 103.
9 is heated, flows into the flue box 113, and is discharged to the outside through a chimney 114 connected to the upper part of the flue box 113 (almost the same height as or higher than the solution tube 103). The heated solution 109 boils to generate a refrigerant vapor, and the generated refrigerant vapor becomes an upward flow and the solution pipe 1
03, ascending the flow path between the inner cylinder 102 and the outer cylinder 101,
It goes out on the liquid surface, bypasses the gas-liquid separation plate 106, and exits from the refrigerant vapor outflow hole 108. On the other hand, the solution is the solution inflow pipe 10
The solution, which is introduced into the high temperature regenerator 1 through 5 and is heated and boiled in the high temperature regenerator 1 to have a high concentration, flows into the solution outflow port 10
7 to the float box 110. The solution is temporarily stored in the float box 110 to form a liquid surface, and then exits.

【0013】以上説明したように本実施例によれば、前
記溶液管の下流に煙突が上向きに配置しているために、
燃焼ガスが上側に偏流し、液側伝熱面における熱負荷が
伝熱管の下部では低く、上部では高いので、伝熱面内接
液側の温度分布を均一化することができ、腐食劣化を緩
和できる。
As described above, according to this embodiment, since the chimney is arranged downstream of the solution pipe,
Combustion gas drifts upward, and the heat load on the liquid side heat transfer surface is low at the bottom of the heat transfer tube and high at the top, so the temperature distribution on the liquid contact side in the heat transfer surface can be made uniform and corrosion deterioration can be prevented. Can be relaxed.

【0014】次に、本発明の他の実施例を図4、図5を
用いて説明する。図4は高温再生器の垂直断面図を示
し、図5は高温再生器の水平断面図である。高温再生器
2は外筒101と内筒102、複数の溶液管303、バ
ーナ104、溶液流入管105、気液分離板106から
なっている。内筒102は外筒101の内部にあり、両
者の間には溶液109が保持されて、内筒102はこの
溶液109に没している。バーナ104は内筒102に
貫通して外筒101の側面に取り付けられており、内筒
102の内部が燃焼室111となっている。前記外筒1
01と内筒102とで液室112を形成し、燃焼室11
1の下流に内筒102の上下の液室112を連通する複
数の溶液管303が設置され、内部は溶液109で満た
されている。溶液管303は水平断面が円形であり、隣
合う溶液管303の間は燃焼ガス通路となっており、溶
液管303の燃焼ガス側表面にはフィン321が溶液管
303の下部ほど密になるように配置している。その他
の構成は図1、図2、図3の実施例と同様である。
Next, another embodiment of the present invention will be described with reference to FIGS. FIG. 4 is a vertical sectional view of the high temperature regenerator, and FIG. 5 is a horizontal sectional view of the high temperature regenerator. The high temperature regenerator 2 includes an outer cylinder 101, an inner cylinder 102, a plurality of solution pipes 303, a burner 104, a solution inflow pipe 105, and a gas-liquid separation plate 106. The inner cylinder 102 is inside the outer cylinder 101, a solution 109 is held between the two, and the inner cylinder 102 is submerged in the solution 109. The burner 104 penetrates the inner cylinder 102 and is attached to the side surface of the outer cylinder 101, and the inside of the inner cylinder 102 serves as a combustion chamber 111. The outer cylinder 1
01 and the inner cylinder 102 form a liquid chamber 112, and the combustion chamber 11
A plurality of solution pipes 303 that communicate the upper and lower liquid chambers 112 of the inner cylinder 102 are installed downstream of the inner cylinder 102, and the inside thereof is filled with the solution 109. The solution pipe 303 has a circular horizontal cross section, and a combustion gas passage is provided between the adjacent solution pipes 303. The fins 321 are formed on the surface of the solution pipe 303 on the combustion gas side so that the fins 321 are denser in the lower part of the solution pipe 303. It is located in. Other configurations are the same as those of the embodiment shown in FIGS. 1, 2 and 3.

【0015】更に本発明の他の実施例を図6、図7、図
8を用いて説明する。図6は実施例の高温再生器の切欠
き斜視図であり、図7は図6の高温再生器の垂直断面図
であり、図8は図6の水平断面図である。高温再生器3
は外筒101と内筒102、複数の煙管403、バーナ
104、溶液流入管105、気液分離板106からなっ
ている。内筒102及び煙管403は外筒101の内部
にあり、内筒102及び煙管403と外筒101との間
には溶液109が保持されて、内筒102及び煙管40
3はこの溶液109に没している。バーナ104は内筒
102に貫通して外筒101の側面に取り付けられてお
り、内筒102の内部が燃焼室111となっている。前
記外筒101と内筒102及び煙管403とで液室11
2を形成し、燃焼室111の下流の外壁面から外筒10
1の後部管板に貫通した複数の煙管403が設置されて
いる。煙管403は垂直断面が長方形をしており、長方
形の長い方の直線部が平行になるように複数本一列に配
列されている。隣合う煙管403の間は溶液通路となっ
ている。煙管403の燃焼ガス側表面にはフィン421
が煙管403の下部ほど密になるように配置している。
また、外筒101の内部で溶液109の上方には溶液流
入管105、気液分離板106が設置され、外筒101
の側面には溶液流出孔107、上面には冷媒蒸気流出孔
108が設けられている。フロートボックス110は溶
液流出孔107により外筒101と連通しており、溶液
流入管105はフロートボックス110内を通って外筒
101内につながっている。フロートボックス110内
の溶液流入管105の途中にフロート弁が設けられてお
り、フロートボックス内の液面高さに応じて高温再生器
3に送り込む溶液流量が調節される。
Another embodiment of the present invention will be described with reference to FIGS. 6, 7 and 8. 6 is a cutaway perspective view of the high temperature regenerator of the embodiment, FIG. 7 is a vertical sectional view of the high temperature regenerator of FIG. 6, and FIG. 8 is a horizontal sectional view of FIG. High temperature regenerator 3
Is composed of an outer cylinder 101, an inner cylinder 102, a plurality of smoke pipes 403, a burner 104, a solution inflow pipe 105, and a gas-liquid separation plate 106. The inner cylinder 102 and the smoke tube 403 are inside the outer cylinder 101, and the solution 109 is held between the inner cylinder 102 and the smoke tube 403 and the outer cylinder 101.
3 is submerged in this solution 109. The burner 104 penetrates the inner cylinder 102 and is attached to the side surface of the outer cylinder 101, and the inside of the inner cylinder 102 serves as a combustion chamber 111. The liquid chamber 11 includes the outer cylinder 101, the inner cylinder 102, and the smoke pipe 403.
2 from the outer wall surface downstream of the combustion chamber 111 to the outer cylinder 10
A plurality of smoke pipes 403 are installed through the rear tube sheet of one. The smoke tubes 403 have a rectangular vertical cross section, and a plurality of the smoke tubes 403 are arranged in a line so that the long straight portions of the rectangle are parallel to each other. A solution passage is provided between adjacent smoke tubes 403. Fins 421 are formed on the surface of the smoke pipe 403 on the combustion gas side.
Are arranged so that the lower part of the smoke pipe 403 becomes denser.
A solution inflow pipe 105 and a gas-liquid separation plate 106 are installed above the solution 109 inside the outer cylinder 101.
A solution outflow hole 107 is provided on the side surface of and the refrigerant vapor outflow hole 108 is provided on the upper surface. The float box 110 is in communication with the outer cylinder 101 through the solution outflow hole 107, and the solution inflow pipe 105 is connected to the inside of the outer cylinder 101 through the inside of the float box 110. A float valve is provided in the middle of the solution inflow pipe 105 in the float box 110, and the flow rate of the solution fed into the high temperature regenerator 3 is adjusted according to the liquid level height in the float box.

【0016】バーナ104からの燃焼ガスは、内筒10
2の壁面を通して主に輻射伝熱により溶液109を加熱
した後、複数の煙管403を通過しつつ、対流伝熱によ
り煙管403近傍の溶液109を加熱して、煙道ボック
ス113に流入し、煙道ボックス113の上部に接続す
る煙突114を通って、外へ放出される。加熱された溶
液109は沸騰して冷媒蒸気を発生し、発生した冷媒蒸
気は上昇流となって隣合う煙管403の間の流路や外筒
101と内筒102の間の流路を上昇し、液面上にでて
気液分離板106を迂回して、冷媒蒸気流出孔108か
ら出ていく。一方、溶液は溶液流入管105を通って高
温再生器3内に導かれ、高温再生器3内で加熱沸騰して
濃度の濃くなった溶液は、溶液流出孔107からフロー
トボックス110へ送られる。溶液はフロートボックス
内110に一旦溜められて液面を形成した後出ていく。
The combustion gas from the burner 104 is supplied to the inner cylinder 10
After heating the solution 109 mainly by radiant heat transfer through the wall surface of 2, the solution 109 in the vicinity of the smoke tube 403 is heated by convective heat transfer while passing through the plurality of smoke tubes 403, and flows into the flue box 113 to emit smoke. It is discharged to the outside through a chimney 114 connected to the upper part of the road box 113. The heated solution 109 boils to generate refrigerant vapor, and the generated refrigerant vapor becomes an upward flow and rises in the flow path between the adjacent smoke tubes 403 and the flow path between the outer cylinder 101 and the inner cylinder 102. , Goes out of the vapor-liquid separation plate 106 and goes out from the refrigerant vapor outflow hole 108 on the liquid surface. On the other hand, the solution is introduced into the high temperature regenerator 3 through the solution inflow pipe 105, and the solution that has been heated and boiled in the high temperature regenerator 3 to have a high concentration is sent from the solution outflow hole 107 to the float box 110. The solution is temporarily stored in the float box 110 to form a liquid surface, and then exits.

【0017】以上説明したように本実施例によれば、前
記煙管の下流に煙突を上向きに配置しているために、燃
焼ガスが上側に偏流し、液側伝熱面における熱負荷が伝
熱管の下部では低く、上部では高いので、伝熱面内の温
度分布を均一化することができ、腐食劣化を緩和でき
る。
As described above, according to the present embodiment, since the chimney is arranged in the upward direction on the downstream side of the smoke pipe, the combustion gas is deflected upward and the heat load on the liquid-side heat transfer surface is increased. Since the temperature is low in the lower part and high in the upper part, the temperature distribution in the heat transfer surface can be made uniform and the corrosion deterioration can be mitigated.

【0018】また、図6、図7、図8では伝熱面内接液
側の温度分布を均一にするために燃焼ガス側にフィン4
21を取り付けたが、図9に示すように伝熱管の下部液
面表面にフィン422を設置し、伝熱面積を増やしても
伝熱面内接液側の温度分布を均一化でき、同様の効果が
得られる。
Further, in FIGS. 6, 7, and 8, the fins 4 are provided on the combustion gas side in order to make the temperature distribution on the liquid contact side in the heat transfer surface uniform.
Although 21 is attached, even if a fin 422 is installed on the lower liquid surface of the heat transfer tube as shown in FIG. 9 to increase the heat transfer area, the temperature distribution on the liquid contact side in the heat transfer surface can be made uniform, and The effect is obtained.

【0019】以上の実施例においては、煙突114を煙
道ボックス113の上面に接続しているが、図10と図
11に示すように煙道ボックス113の側面の上側に接
続しても同様の効果が得られる。
Although the chimney 114 is connected to the upper surface of the flue box 113 in the above embodiment, the same effect can be obtained by connecting it to the upper side of the side surface of the flue box 113 as shown in FIGS. 10 and 11. The effect is obtained.

【0020】更に、本発明の他の実施例を図12、図1
3、図14を用いて説明する。図12は本発明の実施例
の高温再生器の切欠き斜視図であり、気液分離器Aと高
温再生器本体Bに分かれている。図13は図12の高温
再生器4の本体Bの垂直断面図であり、図14は図12
の水平断面図である。高温再生器4の本体Bは外筒10
1と内筒102、複数の煙管403、バーナ104から
なっている。内筒102及び煙管403は外筒101の
内部にあり、内筒102及び煙管403と外筒101と
の間には溶液109が保持されて、内筒102及び煙管
403はこの溶液109に没している。バーナ104は
内筒102に貫通して外筒101の側面に取り付けられ
ており、内筒102の内部が燃焼室111となってい
る。前記外筒101と内筒102及び煙管103とで液
室112を形成し、燃焼室111の下流の外壁面から外
筒101の後部管板に貫通した複数の煙管403が設置
されている。煙管403は垂直断面が長方形をしてお
り、長方形の長い方の直線部が平行になるように複数本
一列に配列されている。煙管403の燃焼ガス側表面に
はフィン421が煙管403の下部ほど密になるように
配置している。煙管403と煙管403の間は溶液通路
となっており、前記溶液通路下部から希溶液が流入する
ように外筒101の側面下部に溶液流入管105が設置
されている。また、気液分離器Aは高温再生器本体Bの
外筒101の外部上方に接続され、気液分離板151、
溶液流出管152、冷媒蒸気流出管153からなってい
る。
Furthermore, another embodiment of the present invention is shown in FIGS.
3 and FIG. 14 will be described. FIG. 12 is a cutaway perspective view of a high temperature regenerator according to an embodiment of the present invention, which is divided into a gas-liquid separator A and a high temperature regenerator body B. 13 is a vertical sectional view of the main body B of the high temperature regenerator 4 of FIG. 12, and FIG.
FIG. The main body B of the high temperature regenerator 4 is an outer cylinder
1 and an inner cylinder 102, a plurality of smoke tubes 403, and a burner 104. The inner cylinder 102 and the smoke tube 403 are inside the outer cylinder 101, the solution 109 is held between the inner cylinder 102 and the smoke tube 403, and the outer cylinder 101, and the inner cylinder 102 and the smoke tube 403 are submerged in the solution 109. ing. The burner 104 penetrates the inner cylinder 102 and is attached to the side surface of the outer cylinder 101, and the inside of the inner cylinder 102 serves as a combustion chamber 111. A liquid chamber 112 is formed by the outer cylinder 101, the inner cylinder 102, and the smoke tube 103, and a plurality of smoke tubes 403 are installed so as to penetrate from a downstream wall surface of the combustion chamber 111 to a rear tube plate of the outer cylinder 101. The smoke tubes 403 have a rectangular vertical cross section, and a plurality of the smoke tubes 403 are arranged in a line so that the long straight portions of the rectangle are parallel to each other. Fins 421 are arranged on the surface of the smoke pipe 403 on the combustion gas side so that the lower part of the smoke pipe 403 is denser. A solution passage is provided between the smoke pipe 403 and the smoke pipe 403, and a solution inflow pipe 105 is installed in the lower portion of the side surface of the outer cylinder 101 so that the dilute solution flows in from the lower portion of the solution passage. Further, the gas-liquid separator A is connected to the upper outside of the outer cylinder 101 of the high temperature regenerator body B, and the gas-liquid separation plate 151,
It comprises a solution outflow pipe 152 and a refrigerant vapor outflow pipe 153.

【0021】以上説明したように本実施例によれば、前
記煙管の下流に煙突が上向きに配置しているために、燃
焼ガスが上側に偏流し、上部の燃焼ガス量が多く、下部
の燃焼ガス量が少ないため、液側伝熱面における熱負荷
が伝熱管の下部では低く、上部では高いので、伝熱面内
接液側の温度分布を均一化することができ、腐食劣化を
緩和できる。
As described above, according to the present embodiment, since the chimney is arranged upward in the downstream of the smoke pipe, the combustion gas is distributed upward, the combustion gas amount in the upper portion is large, and the combustion gas in the lower portion is large. Since the amount of gas is small, the heat load on the liquid-side heat transfer surface is low in the lower part of the heat transfer tube and high in the upper part, so that the temperature distribution on the liquid contact side within the heat transfer surface can be made uniform and corrosion deterioration can be mitigated. .

【0022】以上の実施例においては、煙管内部のフィ
ン配列が伝熱管下部において密になっているが、フィン
の厚さを伝熱管下部ほど厚くしたり、フィン高さを伝熱
管下部ほど高くしたりしても同様の効果が得られる。こ
の場合においても、液深さが浅い場所も深い場所も溶液
管103の壁温を均一な温度にするには、好ましくは、
下部は上部より1.2〜4倍の範囲で除除にフインの厚
さを厚くするか、もしくは高くする。その理由は1.2
倍以下では液深さが深い部分の方の壁温が低くなるので
好ましくない。また、4倍以上では液深さが浅い部分の
方の壁温が高くなるので好ましくない。
In the above embodiments, the fin arrangement inside the smoke tube is dense in the lower part of the heat transfer tube. However, the fins may be thicker in the lower part of the heat transfer tube, or the fin height may be higher in the lower part of the heat transfer tube. Even if it does, the same effect can be obtained. Also in this case, in order to make the wall temperature of the solution tube 103 uniform at both the shallow and deep places, it is preferable that
The thickness of the fin is made thicker or thicker in the lower part in the range of 1.2 to 4 times that of the upper part. The reason is 1.2
If it is less than twice, the wall temperature becomes lower at the portion where the liquid depth is deeper, which is not preferable. Further, if it is 4 times or more, the wall temperature becomes higher in the portion where the liquid depth is shallow, which is not preferable.

【0023】更に本発明の他の実施例を図15、図16
を用いて説明する。図15は高温再生器の垂直断面図で
あり、図16は高温再生器の水平断面図である。高温再
生器5は外筒101と内筒102、複数の煙管503、
バーナ104、溶液流入管105、気液分離板106か
らなっている。内筒102及び煙管503は外筒101
の内部にあり、内筒102及び煙管503と外筒101
との間には溶液109が保持されて、内筒102及び煙
管503はこの溶液109に没している。バーナ104
は内筒102に貫通して外筒101の側面に取り付けら
れており、内筒102の内部が燃焼室111となってい
る。前記外筒101と内筒102及び煙管503とで液
室112を形成し、燃焼室111の下流の外壁面から外
筒101の後部管板に貫通した複数の煙管503が設置
されている。煙管503は垂直断面が円形をしている。
煙管503と煙管503の間は溶液通路となっている。
煙管503で形成される管群の下流出口の下側には、じ
ゃま板115を煙道ボックス113の内部に設置する。
その他の構成は図6、図7、図8の実施例と同様であ
る。
Further, another embodiment of the present invention is shown in FIGS.
Will be explained. FIG. 15 is a vertical sectional view of the high temperature regenerator, and FIG. 16 is a horizontal sectional view of the high temperature regenerator. The high temperature regenerator 5 includes an outer cylinder 101, an inner cylinder 102, a plurality of smoke tubes 503,
It comprises a burner 104, a solution inflow pipe 105, and a gas-liquid separation plate 106. The inner cylinder 102 and the smoke pipe 503 are the outer cylinder 101.
Inside the inner tube 102, the inner tube 102, the smoke pipe 503, and the outer tube 101.
A solution 109 is held between and, and the inner cylinder 102 and the smoke pipe 503 are submerged in the solution 109. Burner 104
Is attached to the side surface of the outer cylinder 101 penetrating the inner cylinder 102, and the inside of the inner cylinder 102 serves as a combustion chamber 111. A liquid chamber 112 is formed by the outer cylinder 101, the inner cylinder 102, and the smoke pipe 503, and a plurality of smoke pipes 503 are installed so as to penetrate from a downstream wall surface of the combustion chamber 111 to a rear tube plate of the outer cylinder 101. The smoke tube 503 has a circular vertical cross section.
A solution passage is provided between the smoke pipe 503 and the smoke pipe 503.
A baffle plate 115 is installed inside the flue box 113 below the downstream outlet of the tube group formed by the smoke tube 503.
Other configurations are the same as those in the embodiments of FIGS. 6, 7, and 8.

【0024】以上説明したように本実施例によれば、管
群下側の下流にじゃま板を付けて燃焼ガスの管群下側へ
の流入量を制限することで、管群下側の熱負荷を低くで
き、局部加熱を避けることができる。
As described above, according to this embodiment, the baffle plate is provided on the downstream side of the lower side of the tube group to limit the inflow amount of the combustion gas to the lower side of the tube group. The load can be reduced and local heating can be avoided.

【0025】また、管径が同じで上側の管群の方が下側
の管群よりも密にしたり、管径を上側の管群の方が大き
くなるようにしても同様の効果が得られる。
The same effect can be obtained by making the upper tube group denser than the lower tube group with the same tube diameter or making the upper tube group larger in tube diameter. .

【0026】更にまた、図15、図16では伝熱面内接
液側の温度分布を均一にするために燃焼ガス側にじゃま
板を取り付けたが、図17に示すように伝熱管の下部液
面表面にフィン522を設置し、伝熱面積を増やしても
伝熱面内の温度分布を均一化でき、同様の効果が得られ
る。
Further, in FIGS. 15 and 16, a baffle plate is attached to the combustion gas side in order to make the temperature distribution on the liquid contact side in the heat transfer surface uniform, but as shown in FIG. Even if the fins 522 are installed on the surface to increase the heat transfer area, the temperature distribution in the heat transfer surface can be made uniform, and the same effect can be obtained.

【0027】更に本発明の他の実施例を図18、図19
を用いて説明する。図18は実施例の高温再生器の垂直
断面図であり、図19は水平断面図である。高温再生器
6は気液分離器Aと高温再生器本体Bに分かれており、
本体Bは外筒101と内筒102、複数の煙管503、
バーナ104からなっている。内筒102及び煙管50
3は外筒101の内部にあり、内筒102及び煙管50
3と外筒101との間には溶液109が保持されて、内
筒102及び煙管503はこの溶液109に没してい
る。バーナ104は内筒102に貫通して外筒101の
側面に取り付けられており、内筒102の内部が燃焼室
111となっている。前記外筒101と内筒102及び
煙管103とで液室112を形成し、燃焼室111の下
流上面の外壁面から外筒101の上面後部管板には、重
力方向に貫通した複数の煙管503が設置されている。
煙管503は垂直断面が円形をしており、煙管503内
部上側には伝熱促進体が設置されている。煙管503と
煙管503の間は溶液通路となっている。また、前記内
筒102の下部から希溶液が流入するように外筒101
の下部に溶液流入管105が設置されている。
Still another embodiment of the present invention is shown in FIGS.
Will be explained. FIG. 18 is a vertical sectional view of the high temperature regenerator of the embodiment, and FIG. 19 is a horizontal sectional view. The high temperature regenerator 6 is divided into a gas-liquid separator A and a high temperature regenerator body B,
The main body B includes an outer cylinder 101, an inner cylinder 102, a plurality of smoke tubes 503,
It consists of a burner 104. Inner cylinder 102 and smoke pipe 50
3 is inside the outer cylinder 101, and the inner cylinder 102 and the smoke pipe 50
A solution 109 is held between the outer cylinder 3 and the outer cylinder 101, and the inner cylinder 102 and the smoke tube 503 are submerged in the solution 109. The burner 104 penetrates the inner cylinder 102 and is attached to the side surface of the outer cylinder 101, and the inside of the inner cylinder 102 serves as a combustion chamber 111. A liquid chamber 112 is formed by the outer cylinder 101, the inner cylinder 102, and the smoke tube 103, and a plurality of smoke tubes 503 penetrating in the direction of gravity is formed from the outer wall surface of the downstream upper surface of the combustion chamber 111 to the upper rear tube plate of the outer cylinder 101. Is installed.
The smoke pipe 503 has a circular vertical cross section, and a heat transfer promoter is installed inside the smoke pipe 503. A solution passage is provided between the smoke pipe 503 and the smoke pipe 503. In addition, the outer cylinder 101 is provided so that the dilute solution flows from the lower portion of the inner cylinder 102.
A solution inflow pipe 105 is installed in the lower part of the.

【0028】気液分離器Aは高温再生器6の本体Bの外
筒101の上部側面に接続され、気液分離板151、溶
液流出管152、冷媒蒸気流出管153からなってい
る。
The gas-liquid separator A is connected to the upper side surface of the outer cylinder 101 of the main body B of the high temperature regenerator 6 and comprises a gas-liquid separation plate 151, a solution outflow pipe 152 and a refrigerant vapor outflow pipe 153.

【0029】以上説明したように本実施例によれば、伝
熱促進体を煙管の内部上側に設置したので液側伝熱面に
おける熱負荷が伝熱管の下部では低く、上部では高いの
で、伝熱面内接液側の温度分布を均一化することがで
き、腐食劣化を緩和できる。
As described above, according to this embodiment, since the heat transfer enhancer is installed inside the smoke tube, the heat load on the liquid side heat transfer surface is low at the lower part of the heat transfer tube and high at the upper part of the heat transfer tube. The temperature distribution on the side of the in-plane hot liquid contact can be made uniform, and corrosion deterioration can be mitigated.

【0030】また、断面形状が円形の煙管503の代わ
りに図12、図13、図14の断面形状の扁平な煙管4
03を使用して、煙管403の内部上面のフィンを密に
しても同様の効果が得られる。
Further, instead of the smoke pipe 503 having a circular cross-sectional shape, the flat smoke pipe 4 having the cross-sectional shape shown in FIGS. 12, 13 and 14 is used.
The same effect can be obtained even if the fins on the inner upper surface of the smoke pipe 403 are made dense by using 03.

【0031】図21は、本発明の実施例の吸収式冷温水
機を用いた吸収式空調システムである。図に示すように
吸収式冷温水機は、高温再生器201、低温再生器20
2、凝縮器203、蒸発器204、吸収機205、低温
熱交換器206、高温熱交換器207、溶液循環ポンプ
208、冷媒ポンプ209、加熱用のバーナ304、低
温再生器202内に配置し高温再生器201で発生した
冷媒蒸気を凝縮して管外を流下する溶液と熱交換する伝
熱管211、この伝熱管211を凝縮器203に導く配
管の途中に設けられた絞り212、凝縮器203の底部
に設けられた冷媒タンク213、凝縮器203からU字
シール、絞り215を介して液冷媒を蒸発器204に導
く冷媒液管214、弁217を介して凝縮器203の気
相部と蒸発器を結び、途中にUシール部を持つ冷媒蒸気
管216、冷媒ポンプ209の吐出と冷媒散布装置22
0とをフロート弁219を介して連結する冷媒管21
8、蒸発器204の下部に配置した冷媒タンク221、
凝縮器203の冷媒タンク213と、蒸発器204及び
吸収器205の上部に設けられた冷媒受け224とを、
冷媒ブロー弁222を介して結ぶ冷媒ブロー管223、
冷媒蒸気管216のUシールの底部と気泡ポンプの気泡
吹出し部226を結ぶ冷媒配管225、気泡ポンプの気
泡吹出し部226の上部に配置し冷媒受け224に上部
を開口した気泡ポンプの揚液管227、冷媒管218の
途中のから分岐して気泡ポンプの気泡吹出し部226へ
接続する冷媒管228と、低温熱交換器206とエジェ
クタポンプ230を結ぶ溶液戻り管229、溶液循環ポ
ンプ208から低温熱交換器206へ溶液を送る配管の
途中から分岐してエジェクタポンプ230へ溶液を送る
溶液管231、エジェクタポンプ230から溶液を溶液
散布装置233へ導く溶液管232と、吸収器205の
下部に設けられた溶液トレイ234、溶液トレイ234
と吸収器下部の溶液タンク235を結ぶ溶液管236、
冷媒受け224からの冷媒を溶液トレイ234へ散布す
る冷媒散布管237と蒸発器204内に設置された蒸発
伝熱管251と室内機252の間を冷温水ポンプ253
により冷温水を循環させる冷温水配管254、吸収器2
05内に設置された吸収伝熱管255と凝縮器203内
に設置された凝縮伝熱管256と冷却塔257の間を冷
却水ポンプ258により冷却水を循環させる冷却水配管
259から構成されている。
FIG. 21 shows an absorption type air conditioning system using an absorption type chiller-heater according to an embodiment of the present invention. As shown in the figure, the absorption chiller-heater includes a high temperature regenerator 201 and a low temperature regenerator 20.
2, the condenser 203, the evaporator 204, the absorber 205, the low temperature heat exchanger 206, the high temperature heat exchanger 207, the solution circulation pump 208, the refrigerant pump 209, the heating burner 304, and the low temperature regenerator 202. A heat transfer tube 211 for condensing the refrigerant vapor generated in the regenerator 201 and exchanging heat with a solution flowing out of the tube, a throttle 212 provided in the middle of a pipe for guiding the heat transfer tube 211 to the condenser 203, and a condenser 203. A refrigerant tank 213 provided at the bottom, a U-seal from the condenser 203, a refrigerant liquid pipe 214 that guides a liquid refrigerant to the evaporator 204 via a U-seal and a throttle 215, and a vapor phase portion of the condenser 203 and an evaporator via a valve 217. , A refrigerant vapor pipe 216 having a U seal part in the middle, a discharge of the refrigerant pump 209 and a refrigerant spraying device 22.
Refrigerant pipe 21 for connecting 0 with a float valve 219.
8, a refrigerant tank 221 arranged at the bottom of the evaporator 204,
The refrigerant tank 213 of the condenser 203 and the refrigerant receiver 224 provided above the evaporator 204 and the absorber 205,
A refrigerant blow pipe 223 connected through a refrigerant blow valve 222,
The refrigerant pipe 225 connecting the bottom of the U-seal of the refrigerant vapor pipe 216 and the bubble blowing part 226 of the bubble pump, and the pumping pipe 227 of the bubble pump which is arranged at the upper part of the bubble blowing part 226 of the bubble pump and has the upper part opened to the refrigerant receiver 224. , A refrigerant pipe 228 branched from the middle of the refrigerant pipe 218 and connected to the bubble blowing portion 226 of the bubble pump, a solution return pipe 229 connecting the low temperature heat exchanger 206 and the ejector pump 230, and a low temperature heat exchange from the solution circulation pump 208. Provided in the lower part of the absorber 205, and a solution pipe 231 branching from the middle of the pipe for sending the solution to the container 206 and sending the solution to the ejector pump 230, a solution pipe 232 for guiding the solution from the ejector pump 230 to the solution spraying device 233. Solution tray 234, solution tray 234
And a solution pipe 236 connecting the solution tank 235 at the bottom of the absorber,
A cold / hot water pump 253 is provided between the refrigerant distribution pipe 237 for distributing the refrigerant from the refrigerant receiver 224 to the solution tray 234, the evaporation heat transfer pipe 251 installed in the evaporator 204, and the indoor unit 252.
Hot / cold water pipe 254 for circulating cold / hot water by means of the absorber 2
The cooling water pipe 259 is configured to circulate the cooling water by the cooling water pump 258 between the absorption heat transfer tube 255 installed inside the condenser 05, the condensation heat transfer tube 256 installed inside the condenser 203, and the cooling tower 257.

【0032】冷房運転時システムは次のように動作す
る。冷房運転時には弁217及び弁222は閉となって
いる。吸収器205の下部にある溶液タンク235の溶
液は、溶液循環ポンプ208により低温熱交換器206
に送られた後、一部は高温熱交換器207を通って高温
再生器201へ送られ、残りは低温再生器202へ送ら
れて散布装置210から散布される。高温再生器201
に送られた溶液はバーナ304に加熱されて沸騰し冷媒
蒸気を発生する。発生した冷媒蒸気は低温再生器202
に送られ伝熱管211の管内で凝縮した後、絞り212
を通って凝縮器203へ送られる。この時の凝縮熱は、
散布装置210から散布されて伝熱管211の管外を流
下する溶液を加熱して、再び冷媒蒸気を発生させる。発
生した冷媒蒸気は凝縮器203へ送られ、凝縮伝熱管2
56内を流れる冷却水により冷却されて凝縮し、高温再
生器201からの冷媒と合流して冷媒タンク213に溜
められる。一方、高温再生器201で冷媒蒸気を発生し
て濃縮された濃溶液は、高温再生器201から溢れてフ
ロートボックス310を経由して高温熱交換器207に
送られる。高温熱交換器207で吸収器からの希溶液と
熱交換して温度を下げた後、低温再生器202からの濃
溶液と合流する。合流した濃溶液は、低温熱交換器20
6で吸収器205から希溶液と熱交換してさらに温度を
下げ、エジェクトポンプ230によって溶液戻り管22
9及び溶液管232を通って溶液散布装置233へ送ら
れ、吸収器205内に散布される。散布された濃溶液
は、吸収伝熱管255内を流れる冷却水により冷却され
つつ蒸発器204からの冷媒蒸気を吸収して濃度が薄く
なり、溶液トレイ234で集められ溶液管236を通っ
て溶液タンク235に戻る。一方、凝縮器203の下部
の冷媒タンク213に溜められた液冷媒は、冷媒タンク
213から溢れて冷媒液管214、絞り215を経由し
て蒸発器204に流入する。蒸発器204では、下部に
設けられた冷媒タンク221の液冷媒が、冷媒ポンプ2
09により冷媒管218、フロート弁219を通って冷
媒散布装置220に送られ、蒸発器204内の蒸発伝熱
管251上に散布され、管群内を流れる冷水と熱交換し
て蒸発し、その結果冷水から蒸発潜熱を奪い冷凍作用が
得られる。蒸発した冷媒は、吸収器205へ流出して、
吸収器205内を流下する濃溶液に吸収される。
The system during cooling operation operates as follows. The valves 217 and 222 are closed during the cooling operation. The solution in the solution tank 235 at the lower part of the absorber 205 is cooled by the solution circulation pump 208.
After being sent to the low temperature regenerator 202, a part thereof is sent to the high temperature regenerator 201 through the high temperature heat exchanger 207, and the rest is sent to the low temperature regenerator 202 and sprayed from the spraying device 210. High temperature regenerator 201
The solution sent to is heated by the burner 304 and boils to generate a refrigerant vapor. The generated refrigerant vapor is the low temperature regenerator 202.
After being sent to the heat transfer tube 211 and condensed in the tube, the throttle 212
Through to the condenser 203. The heat of condensation at this time is
The solution sprayed from the spraying device 210 and flowing down the outside of the heat transfer tube 211 is heated to generate refrigerant vapor again. The generated refrigerant vapor is sent to the condenser 203, and the condensation heat transfer tube 2
It is cooled by the cooling water flowing in 56, condensed, and merges with the refrigerant from the high temperature regenerator 201 to be stored in the refrigerant tank 213. On the other hand, the concentrated solution that has generated the refrigerant vapor in the high temperature regenerator 201 and has been concentrated overflows from the high temperature regenerator 201 and is sent to the high temperature heat exchanger 207 via the float box 310. The high temperature heat exchanger 207 exchanges heat with the dilute solution from the absorber to lower the temperature, and then merges with the concentrated solution from the low temperature regenerator 202. The combined concentrated solution is used in the low temperature heat exchanger 20.
At 6 the heat is exchanged with the dilute solution from the absorber 205 to further lower the temperature, and the eject pump 230 is used to remove the solution return pipe 22.
9 and the solution pipe 232, and is sent to the solution spraying device 233 and sprayed in the absorber 205. The dispersed concentrated solution is cooled by the cooling water flowing in the absorption heat transfer tube 255, absorbs the refrigerant vapor from the evaporator 204 and becomes thin in concentration, is collected in the solution tray 234, passes through the solution tube 236, and passes through the solution tank. Return to 235. On the other hand, the liquid refrigerant stored in the refrigerant tank 213 below the condenser 203 overflows from the refrigerant tank 213 and flows into the evaporator 204 via the refrigerant liquid pipe 214 and the throttle 215. In the evaporator 204, the liquid refrigerant in the refrigerant tank 221 provided in the lower portion is transferred to the refrigerant pump 2
09, it is sent to the refrigerant distribution device 220 through the refrigerant pipe 218 and the float valve 219, is sprayed on the evaporation heat transfer pipe 251 in the evaporator 204, is heat-exchanged with the cold water flowing in the pipe group, and is evaporated. The latent heat of vaporization is removed from the cold water, and the freezing action is obtained. The evaporated refrigerant flows out to the absorber 205,
It is absorbed by the concentrated solution flowing down in the absorber 205.

【0033】一方、冷却塔257で冷却された冷却水
は、冷却水ポンプ258により吸収器205に送られ吸
収伝熱管255で吸収熱を奪って温度上昇し、次に凝縮
器203に送られ凝縮伝熱管256で凝縮熱を奪ってさ
らに温度上昇する。その後冷却塔257に戻って冷却さ
れる。また、蒸発器204内の蒸発伝熱管251で冷却
された冷水は冷温水ポンプ253で室内機252に送ら
れ、室内を冷房して温度上昇し、再び蒸発器に戻る。
On the other hand, the cooling water cooled in the cooling tower 257 is sent to the absorber 205 by the cooling water pump 258, and the absorption heat is taken up by the absorption heat transfer pipe 255 to raise its temperature, and then sent to the condenser 203 to be condensed. The heat transfer tube 256 takes away the condensation heat to further raise the temperature. Then, it returns to the cooling tower 257 and is cooled. Further, the cold water cooled by the evaporation heat transfer tube 251 in the evaporator 204 is sent to the indoor unit 252 by the cold / hot water pump 253, the room is cooled to increase the temperature, and then returns to the evaporator again.

【0034】冷房運転中に冷房負荷がなくなった場合に
は、吸収冷温水機停止信号が与えられ、冷温水ポンプ2
53、冷却水ポンプ258、冷却塔257、バーナ30
4がただちに停止し、冷媒ポンプ209も同時に停止す
るが、溶液ポンプ208はサイクル内の濃溶液を希釈す
るために一定時間運転を継続し、冷媒の凍結を防止する
ために冷媒ブロー弁を222を開いて冷媒タンク213
の冷媒を冷媒ブロー管223、冷媒受け224、冷媒散
布管237を通って溶液トレイ234上の溶液に混合し
て希釈する。溶液の濃度を低下させることにより溶液の
冷媒蒸気吸収能力を低下させ、冷媒及び冷温水の凍結を
防止できる。
When the cooling load disappears during the cooling operation, the absorption chiller / hot water generator stop signal is given and the chiller / hot water pump 2 is supplied.
53, cooling water pump 258, cooling tower 257, burner 30
4 immediately stops, and the refrigerant pump 209 also stops at the same time, but the solution pump 208 continues to operate for a certain time to dilute the concentrated solution in the cycle, and the refrigerant blow valve 222 is turned on to prevent the refrigerant from freezing. Open refrigerant tank 213
Of the refrigerant is mixed with the solution on the solution tray 234 through the refrigerant blow pipe 223, the refrigerant receiver 224, and the refrigerant spray pipe 237 to be diluted. By reducing the concentration of the solution, it is possible to reduce the refrigerant vapor absorption capacity of the solution and prevent freezing of the refrigerant and cold / hot water.

【0035】一方、暖房運転時にシステムは次のように
動作する。暖房運転時には弁217及び弁222は開と
なっており、冷却水ポンプ258を停止し吸収器205
内の吸収伝熱管255及び凝縮器203内の凝縮伝熱管
256に冷却水は流さない。また、冷媒ポンプ209は
停止とする。
On the other hand, during heating operation, the system operates as follows. During the heating operation, the valves 217 and 222 are open, the cooling water pump 258 is stopped, and the absorber 205 is closed.
Cooling water does not flow to the absorption heat transfer tube 255 inside and the condensation heat transfer tube 256 inside the condenser 203. Further, the refrigerant pump 209 is stopped.

【0036】吸収器205の下部にある溶液タンク23
5の溶液は、溶液循環ポンプ208により低温熱交換器
206に送られた後、一部は高温熱交換器207を通っ
て高温再生器201へ送られ、残りは低温再生器202
へ送られて散布装置210から散布される。高温再生器
201に送られた溶液はバーナ304に加熱沸騰されて
冷媒蒸気を発生する。発生した冷媒蒸気は低温再生器2
02に送られて伝熱管211の管内で凝縮した後、絞り
212を通って凝縮器203へ送られる。この時の凝縮
熱は、散布装置210から散布されて伝熱管211の管
外を流下する溶液を加熱して、再び冷媒蒸気を発生させ
る。発生した冷媒蒸気は凝縮器203へ送られるが、凝
縮器203内に設けられた管群内に冷却水が流されてい
ないので、凝縮液化せず、弁217、冷媒蒸気管216
を経由して蒸発器204に送られる。また、冷媒蒸気の
一部は冷媒蒸気管216のUシール部から冷媒管22
5、気泡ポンプの気泡吹出し部226、揚液管227を
通って冷媒受け224へ送られ、冷媒散布管237から
吸収器205の溶液トレイ234上へ送られる。また、
高温再生器からの液冷媒は、冷媒ブロー管223、冷媒
ブロー弁222を経由して蒸発器204へ送られる蒸発
器204では凝縮器からの冷媒蒸気が、蒸発伝熱管25
1を流れる温水と熱交換して凝縮液化し、この時の凝縮
潜熱により温水を加熱して暖房能力を発生する。凝縮液
化した液冷媒は冷媒タンク221に溜められ、冷媒管2
18から分岐した冷媒管228を通って気泡ポンプの気
泡吹出し部226へ送られ、気泡ポンプの作用により揚
液管227を上昇して冷媒受け224へ流入し、冷媒散
布管237から吸収器205の溶液トレイ234上へ送
られる。一方、高温再生器201で冷媒蒸気を発生して
濃縮された濃溶液は、高温再生器201からフロートボ
ックス310を経由して高温熱交換器207に送られ
る。高温熱交換器207で吸収器からの希溶液と熱交換
して温度を下げた後、低温再生器202からの濃溶液と
合流する。合流した濃溶液は、低温熱交換器206で吸
収器205からの希溶液と熱交換してさらに温度を下
げ、エジェクタポンプ230によって溶液戻り管229
及び溶液管232を通って溶液散布装置233へ送ら
れ、吸収器205内に散布される。吸収伝熱管255内
には冷却水が流れていないので、散布された濃溶液は吸
収伝熱管255を流下し、溶液トレイ234上液冷媒と
混合して、溶液管236を通って溶液タンク235に戻
る。
Solution tank 23 at the bottom of absorber 205
The solution of No. 5 is sent to the low temperature heat exchanger 206 by the solution circulation pump 208, then a part is sent to the high temperature regenerator 201 through the high temperature heat exchanger 207, and the rest is the low temperature regenerator 202.
And is sprayed from the spraying device 210. The solution sent to the high temperature regenerator 201 is heated and boiled by the burner 304 to generate refrigerant vapor. The generated refrigerant vapor is the low temperature regenerator 2
After being sent to No. 02 and condensed in the tube of the heat transfer tube 211, it is sent to the condenser 203 through the throttle 212. The condensation heat at this time heats the solution that is scattered from the spray device 210 and flows down the outside of the heat transfer tube 211, and again generates the refrigerant vapor. The generated refrigerant vapor is sent to the condenser 203, but since the cooling water does not flow in the tube group provided in the condenser 203, it does not condense and liquefy, and the valve 217 and the refrigerant vapor pipe 216.
To the evaporator 204. In addition, a part of the refrigerant vapor flows from the U seal portion of the refrigerant vapor pipe 216 to the refrigerant pipe 22.
5, it is sent to the refrigerant receiver 224 through the bubble blowing section 226 of the bubble pump and the pumping pipe 227, and is sent from the refrigerant spraying pipe 237 to the solution tray 234 of the absorber 205. Also,
The liquid refrigerant from the high temperature regenerator is sent to the evaporator 204 via the refrigerant blow pipe 223 and the refrigerant blow valve 222. In the evaporator 204, the refrigerant vapor from the condenser is the evaporation heat transfer tube 25.
Heat exchange with the hot water flowing through 1 to condense into liquefaction, and the latent heat of condensation at this time heats the hot water to generate heating capacity. The condensed and liquefied liquid refrigerant is stored in the refrigerant tank 221 and the refrigerant pipe 2
It is sent to the bubble blow-out part 226 of the bubble pump through the refrigerant pipe 228 branched from 18, and moves up the pumping pipe 227 by the action of the bubble pump to flow into the refrigerant receiver 224, and from the refrigerant distribution pipe 237 to the absorber 205. It is sent onto the solution tray 234. On the other hand, the concentrated solution generated by generating the refrigerant vapor in the high temperature regenerator 201 and concentrated is sent from the high temperature regenerator 201 to the high temperature heat exchanger 207 via the float box 310. The high temperature heat exchanger 207 exchanges heat with the dilute solution from the absorber to lower the temperature, and then merges with the concentrated solution from the low temperature regenerator 202. The combined concentrated solution exchanges heat with the dilute solution from the absorber 205 in the low temperature heat exchanger 206 to further lower the temperature, and the ejector pump 230 causes the solution return pipe 229.
And, it is sent to the solution spraying device 233 through the solution pipe 232 and sprayed in the absorber 205. Since cooling water does not flow in the absorption heat transfer tube 255, the concentrated solution that has been sprayed flows down the absorption heat transfer tube 255, mixes with the liquid refrigerant on the solution tray 234, and passes through the solution tube 236 to the solution tank 235. Return.

【0037】また、蒸発器204内の蒸発伝熱管251
で加熱された温水は冷温水ポンプ253で室内機252
に送られ、室内を暖房して温度低下し、再び蒸発器に戻
る。
Further, the evaporation heat transfer tube 251 in the evaporator 204
The hot water heated in the indoor unit 252 is cooled by the cold / hot water pump 253.
Sent to, the room is heated and the temperature drops, and it returns to the evaporator again.

【0038】本実施例によれば、高温再生器を小形化し
たことにより吸収式冷温水機の小形化が図れる。
According to the present embodiment, the absorption chiller-heater can be downsized by downsizing the high temperature regenerator.

【0039】[0039]

【発明の効果】接液側伝熱面における熱負荷が伝熱管の
下部では低く上部では高いので、接液側伝熱面内の温度
分布を均一化することができる。その結果、液側の腐食
劣化の緩和されて寿命が伸び、省エネルギー、信頼性向
上が図れ,また、薄肉化、軽量化ができる。
Since the heat load on the liquid contact side heat transfer surface is low in the lower part of the heat transfer tube and high in the upper part, the temperature distribution in the liquid contact side heat transfer surface can be made uniform. As a result, corrosion deterioration on the liquid side is alleviated, the life is extended, energy saving and reliability are improved, and the thickness and weight can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の高温再生器の切欠き斜視
図。
FIG. 1 is a cutaway perspective view of a high temperature regenerator according to an embodiment of the present invention.

【図2】図1の実施例の垂直断面図。2 is a vertical cross-sectional view of the embodiment of FIG.

【図3】図1の実施例の水平断面図。FIG. 3 is a horizontal sectional view of the embodiment shown in FIG.

【図4】本発明の他の実施例の高温再生器の垂直断面
図。
FIG. 4 is a vertical sectional view of a high temperature regenerator according to another embodiment of the present invention.

【図5】図4の実施例の水平断面図。5 is a horizontal sectional view of the embodiment of FIG.

【図6】本発明の他の実施例の高温再生器の切欠き斜視
図。
FIG. 6 is a cutaway perspective view of a high temperature regenerator according to another embodiment of the present invention.

【図7】図6の実施例の垂直断面図。7 is a vertical cross-sectional view of the embodiment of FIG.

【図8】図6の実施例の水平断面図。FIG. 8 is a horizontal sectional view of the embodiment shown in FIG.

【図9】本発明の他の実施例の高温再生器の切欠き斜視
図。
FIG. 9 is a cutaway perspective view of a high temperature regenerator according to another embodiment of the present invention.

【図10】本発明の他の実施例の高温再生器の垂直断面
図。
FIG. 10 is a vertical sectional view of a high temperature regenerator according to another embodiment of the present invention.

【図11】図10の実施例の水平断面図。11 is a horizontal sectional view of the embodiment of FIG.

【図12】本発明の他の実施例の高温再生器の切欠き斜
視図。
FIG. 12 is a cutaway perspective view of a high temperature regenerator according to another embodiment of the present invention.

【図13】図12の実施例の垂直断面図。13 is a vertical sectional view of the embodiment of FIG.

【図14】図12の実施例の水平断面図。FIG. 14 is a horizontal sectional view of the embodiment of FIG.

【図15】本発明の他の実施例の高温再生器の垂直断面
図。
FIG. 15 is a vertical sectional view of a high temperature regenerator according to another embodiment of the present invention.

【図16】図15の実施例の水平断面図。16 is a horizontal sectional view of the embodiment of FIG.

【図17】本発明の他の実施例の高温再生器の垂直断面
図。
FIG. 17 is a vertical sectional view of a high temperature regenerator according to another embodiment of the present invention.

【図18】本発明の他の実施例の高温再生器の垂直断面
図。
FIG. 18 is a vertical sectional view of a high temperature regenerator according to another embodiment of the present invention.

【図19】図18の実施例の水平断面図。FIG. 19 is a horizontal sectional view of the embodiment of FIG.

【図20】管に均一な熱流束を与え、管内のLiBr水溶液
を沸騰させた場合の管上下における管内壁温度と管出口
部液温度の温度差。
FIG. 20 is a temperature difference between a pipe inner wall temperature and a pipe outlet liquid temperature at the top and bottom of the pipe when a uniform heat flux is applied to the pipe and the LiBr aqueous solution in the pipe is boiled.

【図21】本発明の高温再生器を用いた吸収式冷凍機に
よる空調システム。
FIG. 21 is an air conditioning system using an absorption chiller using the high temperature regenerator of the present invention.

【符号の説明】[Explanation of symbols]

1,2,3,4,5,6,201…高温再生器、101
…外筒、102…内筒、103…扁平溶液管、104…
バーナ、105…溶液流入管、106…気液分離板、1
07…溶液流出孔、108…冷媒蒸気流出孔、109…
溶液、110…フロートボックス、111…燃焼室、1
12…液室、113…煙道ボックス、114…煙突、1
21,321,421…伝熱フィン、151…気液分離
板、152…溶液流出管、153…冷媒蒸気流出管、3
03…溶液管、403…扁平煙管、422,522…液
側伝熱フィン、503…煙管、523…伝熱促進体。
1, 2, 3, 4, 5, 6, 201 ... High temperature regenerator, 101
... Outer cylinder, 102 ... Inner cylinder, 103 ... Flat solution tube, 104 ...
Burner, 105 ... Solution inflow pipe, 106 ... Gas-liquid separation plate, 1
07 ... Solution outflow hole, 108 ... Refrigerant vapor outflow hole, 109 ...
Solution, 110 ... Float box, 111 ... Combustion chamber, 1
12 ... Liquid chamber, 113 ... Flue box, 114 ... Chimney, 1
21, 321, 421 ... Heat transfer fins, 151 ... Gas-liquid separation plate, 152 ... Solution outflow pipe, 153 ... Refrigerant vapor outflow pipe, 3
03 ... solution pipe, 403 ... flat smoke pipe, 422, 522 ... liquid side heat transfer fins, 503 ... smoke pipe, 523 ... heat transfer accelerator.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 八重樫 賢司 茨城県土浦市神立町603番地 株式会社 日立製作所 土浦工場内 (56)参考文献 特開 昭63−311059(JP,A) 特開 昭63−302270(JP,A) 特開 平3−39871(JP,A) 特開 平6−221718(JP,A) (58)調査した分野(Int.Cl.7,DB名) F25B 33/00 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Kenji Yaegashi Kenji Yaegashi 603, Jinrachi-cho, Tsuchiura-shi, Ibaraki Hitachi Ltd. Tsuchiura factory (56) Reference JP 63-311059 (JP, A) JP 63- 302270 (JP, A) JP-A-3-39871 (JP, A) JP-A-6-221718 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) F25B 33/00

Claims (11)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】内部に溶液を加熱する燃焼室が形成された
内筒と、この内筒の外側に形成された外筒とを有し、前
記内筒と外筒との間に溶液を保持する液室を形成し、少
なくとも前記燃焼室の下流に前記内筒の上下の液室に連
通し燃焼ガスと交差する溶液管を配設するか、または前
記燃焼室の下流の外壁面に断面が燃焼ガスの流れに垂直
方向かつ上下方向に長い煙管を配設した吸収式冷温水機
の高温再生器において、前記溶液管または煙管の燃焼ガ
ス側に複数のフィンを設け、このフィンは溶液管または
煙管の下部側の方がその溶液管または煙管の上部側のも
のよりピッチが密であることを特徴とする吸収式冷温水
機の高温再生器。
1. An inner cylinder having a combustion chamber for heating the solution formed therein, and an outer cylinder formed outside the inner cylinder, wherein the solution is held between the inner cylinder and the outer cylinder. Or a solution pipe that communicates with the upper and lower liquid chambers of the inner cylinder and intersects the combustion gas is formed at least downstream of the combustion chamber, or a cross section is formed on the outer wall surface of the downstream of the combustion chamber. In a high temperature regenerator of an absorption chiller-heater in which a long smoke pipe is arranged vertically and vertically to the flow of combustion gas, a plurality of fins are provided on the combustion gas side of the solution pipe or smoke pipe, and the fins are solution pipes or A high-temperature regenerator for an absorption chiller-heater, characterized in that the lower side of the smoke pipe has a denser pitch than that of the solution pipe or the upper side of the smoke pipe.
【請求項2】内部に溶液を加熱する燃焼室が形成された
内筒と、この内筒の外側に形成された外筒とを有し、前
記内筒と外筒との間に溶液を保持する液室を形成し、少
なくとも前記燃焼室の下流に前記内筒の上下の液室に連
通し燃焼ガスと交差する溶液管を配設するか、または前
記燃焼室の下流の外壁面に断面が燃焼ガスの流れに垂直
方向かつ上下方向に長い煙管を配設した吸収式冷温水機
の高温再生器において、前記溶液管または煙管の燃焼ガ
ス側に複数のフィンを設け、このフィンは溶液管または
煙管の下部側の方がその溶液管または煙管の上部側のも
のよりもフィン高さが高いことを特徴とする吸収式冷温
水機の高温再生器。
2. An inner cylinder having a combustion chamber for heating the solution formed therein, and an outer cylinder formed outside the inner cylinder, wherein the solution is held between the inner cylinder and the outer cylinder. Or a solution pipe that communicates with the upper and lower liquid chambers of the inner cylinder and intersects the combustion gas is formed at least downstream of the combustion chamber, or a cross section is formed on the outer wall surface of the downstream of the combustion chamber. In a high temperature regenerator of an absorption chiller-heater in which a long smoke pipe is arranged vertically and vertically to the flow of combustion gas, a plurality of fins are provided on the combustion gas side of the solution pipe or smoke pipe, and the fins are solution pipes or A high-temperature regenerator for an absorption chiller-heater, characterized in that the lower side of the smoke pipe has a higher fin height than that of the solution pipe or the upper side of the smoke pipe.
【請求項3】内部に溶液を加熱する燃焼室が形成された
内筒と、この内筒の外側に形成された外筒とを有し、前
記内筒と外筒との間に溶液を保持する液室を形成し、少
なくとも前記燃焼室の下流に前記内筒の上下の液室に連
通し燃焼ガスと交差する溶液管を配設するか、または前
記燃焼室の下流の外壁面に断面が燃焼ガスの流れに垂直
方向かつ上下方向に長い煙管を配設した吸収式冷温水機
の高温再生器において、前記溶液管または煙管の燃焼ガ
ス側に複数のフィンを設け、このフィンは溶液管または
煙管の下部側の方がその溶液管または煙管の上部側のも
のよりもフィン厚さが厚いことを特徴とする吸収式冷温
水機の高温再生器。
3. An inner cylinder having a combustion chamber for heating the solution formed therein, and an outer cylinder formed outside the inner cylinder, wherein the solution is held between the inner cylinder and the outer cylinder. Or a solution pipe that communicates with the upper and lower liquid chambers of the inner cylinder and intersects the combustion gas is formed at least downstream of the combustion chamber, or a cross section is formed on the outer wall surface of the downstream of the combustion chamber. In a high temperature regenerator of an absorption chiller-heater in which a long smoke pipe is arranged vertically and vertically to the flow of combustion gas, a plurality of fins are provided on the combustion gas side of the solution pipe or smoke pipe, and the fins are solution pipes or A high temperature regenerator for an absorption chiller-heater, characterized in that the lower side of the smoke pipe has a larger fin thickness than that of the upper side of the solution pipe or the smoke pipe.
【請求項4】前記フィンの厚さは、下部側で上部側より
も1.2〜4倍厚いことを特徴とする請求項3に記載の
吸収式冷温水機の高温再生器。
4. The high temperature regenerator for an absorption chiller-heater according to claim 3, wherein the thickness of the fin is 1.2 to 4 times thicker on the lower side than on the upper side.
【請求項5】前記溶液管又は煙管の下流に煙突を上向き
に配置することを特徴とする請求項1ないし4のいずれ
か1項に記載の吸収式冷温水機の高温再生器。
5. A high temperature regenerator for an absorption chiller-heater according to any one of claims 1 to 4, wherein a chimney is arranged upwardly downstream of the solution pipe or the smoke pipe .
【請求項6】高温再生器、低温再生器、凝縮器、吸収器
を接続して冷凍サイクルを構成する吸収式冷温水機にお
いて、前記高温再生器は溶液が流入する液室の下部の伝
熱面の熱流束を低く、上部の伝熱面の熱流束を高くした
ことを特徴とする吸収式冷温水機。
6. An absorption chiller-heater in which a high-temperature regenerator, a low-temperature regenerator, a condenser, and an absorber are connected to form a refrigeration cycle, wherein the high-temperature regenerator transfers heat to a lower part of a liquid chamber into which a solution flows. An absorption chiller-heater characterized by having a low heat flux on the surface and a high heat flux on the upper heat transfer surface.
【請求項7】高温再生器、低温再生器、凝縮器、吸収器
を接続して冷凍サイクルを構成する吸収式冷温水機にお
いて、前記高温再生器は溶液が流入する液室の下部のガ
ス流量が、上部のガス流量より少ないことを特徴とする
吸収式冷温水機。
7. An absorption chiller-heater comprising a refrigerating cycle in which a high temperature regenerator, a low temperature regenerator, a condenser and an absorber are connected to each other, wherein the high temperature regenerator is a gas flow rate of a lower portion of a liquid chamber into which a solution flows. However, the absorption chiller-heater is characterized by having a smaller gas flow rate than the upper part.
【請求項8】高温再生器、低温再生器、凝縮器、吸収器
を接続して冷凍サイクルを構成する吸収式冷温水機にお
いて、前記高温再生器は溶液が流入する液室の下部の燃
焼ガスの質量流が上部の燃焼ガスの質量流束よりも遅
いことを特徴とする吸収式冷温水機。
8. An absorption chiller-heater in which a refrigeration cycle is constituted by connecting a high temperature regenerator, a low temperature regenerator, a condenser and an absorber, wherein the high temperature regenerator is a combustion gas in a lower part of a liquid chamber into which a solution flows. The absorption chiller-heater is characterized in that the mass flux of is lower than the mass flux of the combustion gas in the upper part.
【請求項9】外筒と内筒との間の周囲に溶液を保持する
液室を形成し、この液室の上方に気液を分離する空間を
有し、前記内筒の内部は加熱源が燃焼して溶液を加熱す
る燃焼室とし、前記燃焼室の燃焼ガスの流れる下流には
前記内筒の上下の液室に連通して燃焼ガスと交差する方
向に溶液管を配置する吸収式冷温水機の高温再生器にお
いて、前記燃焼室の一方の側面に加熱源を配置し、前記
加熱源からの燃焼ガスと交差する方向に配置した溶液管
は燃焼ガスの流れる方向に扁平に形成し、液深さが深い
溶液管部の方が液深さが浅い溶液管部よりもピッチが
1.2〜4倍密であるフィンを燃焼ガスが流れる方向に
沿って前記溶液管の燃焼ガス側に接合し、前記燃焼ガス
の流れる溶液管の下流に溶液管と同じ高さの煙道ボック
スを配置し、この煙道ボックスの上部に上向きに煙突を
設けることを特徴とする吸収式冷温水機の高温再生器。
9. A liquid chamber for holding a solution is formed around an outer cylinder and an inner cylinder, and a space for separating gas and liquid is formed above the liquid chamber, and the inside of the inner cylinder has a heating source. Is a combustion chamber that burns and heats the solution, and an absorption type cold temperature in which a solution pipe is arranged in a direction that intersects with the combustion gas and communicates with the liquid chambers above and below the inner cylinder in the combustion chamber where the combustion gas flows. In a high-temperature regenerator of a water machine, a heating source is arranged on one side surface of the combustion chamber, and a solution pipe arranged in a direction intersecting with the combustion gas from the heating source is formed flat in a direction in which the combustion gas flows, A solution pipe having a deep liquid depth has a pitch 1.2 to 4 times denser than a solution pipe having a shallow liquid depth, and a fin is provided on the combustion gas side of the solution pipe along a direction in which the combustion gas flows. A flue box having the same height as the solution pipe is arranged downstream of the solution pipe through which the combustion gas flows, High temperature regenerator of an absorption chiller-heater and providing a upwardly chimney on top of the box.
【請求項10】外筒と内筒との間の周囲に溶液を保持す
る液室を形成し、この液室の上方に気液を分離する空間
を有し、前記内筒の内部は加熱源が燃焼して溶液を加熱
する燃焼室とし、前記燃焼室の燃焼ガスの流れる下流に
は前記内筒の上下の液室に連通して燃焼ガスと交差する
方向に管を配置する吸収式冷温水機の高温再生器にお
いて、前記燃焼室の一方の側面に加熱源を配置し、前記
加熱源からの燃焼ガスと交差する方向に配置した管は
燃焼ガスの流れる方向に扁平に形成し、液深さが深い溶
液管部の方が液深さが浅い溶液管部よりもピッチが1.
2〜4倍密であるフィンを燃焼ガスが流れる方向に沿っ
て前記管の燃焼ガス側に接合し、前記燃焼ガスの流れ
管の下流に管と同じ高さの煙道ボックスを配置
し、この煙道ボックスの上部に上向きに煙突を設けるこ
とを特徴とする吸収式冷温水機の高温再生器。
10. A liquid chamber for holding a solution is formed around an outer cylinder and an inner cylinder, and a space for separating gas and liquid is formed above the liquid chamber, and the inside of the inner cylinder has a heating source. absorption type cold but the combustion chamber for heating the solution to combustion, wherein the downstream flow of the combustion gas in the combustion chamber to place the smoke pipe in a direction intersecting with the combustion gases communicates with the upper and lower liquid chamber of said inner tube in the high-temperature regenerator of water machine, a heat source on one side of the combustion chamber is arranged, smoke tubes arranged in a direction intersecting with the combustion gases from the heating source is flattened form in the direction of flow of the combustion gases, The solution pipe with a deep liquid depth has a pitch of 1. compared to the solution pipe with a shallow liquid depth.
2-4 times a Dense fin along the direction of flow of combustion gases joined to the combustion gas side of the smoke tube, place the flue box of the same height as the smoke tube downstream of the smoke tube of flow of the combustion gas A high temperature regenerator for an absorption chiller-heater, which is characterized in that a chimney is provided upward on the upper part of the flue box.
【請求項11】外筒と内筒との間の周囲に溶液を保持す
る液室を形成し、この液室の上方に気液を分離する空間
を有し、前記内筒の内部は加熱源が燃焼して溶液を加熱
する燃焼室とし、前記燃焼室の燃焼ガスの流れる下流に
は前記内筒の上下の液室に連通して燃焼ガスの流れ方向
複数の煙管を配置する吸収式冷温水機の高温再生器に
おいて、前記燃焼室の一方の側面に加熱源を配置し、前
記加熱源からの燃焼ガスの流れ方向に配置した複数の煙
管は円管で形成し、この円管は下側の煙管群よりも上側
の煙管群ほど密に配置し、前記燃焼ガスの流れる煙管群
の下流に煙管群と同じ高さの煙道ボックスを配置し、こ
の煙道ボックスの上部に上向きに煙突を設けることを特
徴とする吸収式冷温水機の高温再生器。 【0001】
11. A liquid chamber for holding a solution is formed around an outer cylinder and an inner cylinder, and a space for separating gas and liquid is formed above the liquid chamber, and the inside of the inner cylinder has a heating source. Is a combustion chamber that burns and heats the solution, and a plurality of smoke pipes are provided downstream of the combustion gas in the combustion chamber where the combustion gas flows and communicate with upper and lower liquid chambers of the inner cylinder in the combustion gas flow direction. In a high temperature regenerator of a water machine, a heating source is arranged on one side surface of the combustion chamber, and a plurality of smokes are arranged in a flow direction of combustion gas from the heating source.
The tube is formed by a circular tube, and this circular tube is above the lower smoke tube group.
The smoke tubes that are closer to each other are arranged closer to each other, and the smoke tubes through which the combustion gas flows
A high temperature regenerator for an absorption chiller-heater characterized in that a flue box having the same height as the smoke pipe group is arranged downstream of the flue group, and a chimney is provided upward on the flue box. [0001]
JP06248896A 1996-03-19 1996-03-19 High-temperature regenerator and absorption chiller / heater for absorption chiller / heater Expired - Fee Related JP3367323B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP06248896A JP3367323B2 (en) 1996-03-19 1996-03-19 High-temperature regenerator and absorption chiller / heater for absorption chiller / heater
CN97103498A CN1105276C (en) 1996-03-19 1997-03-18 high-temp regenerator for absorption-type cold/hot water apparatus and its absorption-type cold/hot water apparatus
KR1019970009245A KR100200905B1 (en) 1996-03-19 1997-03-19 Absorption type cool & hot water supplier and its high-temp. regenerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06248896A JP3367323B2 (en) 1996-03-19 1996-03-19 High-temperature regenerator and absorption chiller / heater for absorption chiller / heater

Publications (2)

Publication Number Publication Date
JPH09250840A JPH09250840A (en) 1997-09-22
JP3367323B2 true JP3367323B2 (en) 2003-01-14

Family

ID=13201618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06248896A Expired - Fee Related JP3367323B2 (en) 1996-03-19 1996-03-19 High-temperature regenerator and absorption chiller / heater for absorption chiller / heater

Country Status (3)

Country Link
JP (1) JP3367323B2 (en)
KR (1) KR100200905B1 (en)
CN (1) CN1105276C (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011099598A (en) * 2009-11-05 2011-05-19 Kawasaki Thermal Engineering Co Ltd Fluid heating device
JP5457145B2 (en) * 2009-11-20 2014-04-02 川重冷熱工業株式会社 Fluid heating device
JP2011185511A (en) * 2010-03-08 2011-09-22 Kawasaki Thermal Engineering Co Ltd Fluid heating device
JP5461269B2 (en) * 2010-03-29 2014-04-02 三洋電機株式会社 Exhaust gas outlet chimney structure of exhaust gas heat recovery unit
JP2011220623A (en) * 2010-04-12 2011-11-04 Kawasaki Thermal Engineering Co Ltd Fluid heating device
JP2011220622A (en) * 2010-04-12 2011-11-04 Kawasaki Thermal Engineering Co Ltd Fluid heating device
JP2011226678A (en) * 2010-04-16 2011-11-10 Kawasaki Thermal Engineering Co Ltd Fluid heating device
JP2011226681A (en) * 2010-04-16 2011-11-10 Kawasaki Thermal Engineering Co Ltd Fluid heating device
JP2011226679A (en) * 2010-04-16 2011-11-10 Kawasaki Thermal Engineering Co Ltd Fluid heating device

Also Published As

Publication number Publication date
CN1164008A (en) 1997-11-05
KR100200905B1 (en) 1999-06-15
CN1105276C (en) 2003-04-09
KR970066413A (en) 1997-10-13
JPH09250840A (en) 1997-09-22

Similar Documents

Publication Publication Date Title
JP5261073B2 (en) Gas-liquid separator, high-temperature regenerator, absorption refrigerator, and absorption heat pump
US6470702B2 (en) Absorption water heater/chiller and high temperature regenerator therefor
JP3195100B2 (en) High-temperature regenerator of absorption chiller / heater and absorption chiller / heater
US4748830A (en) Air-cooled absorption heating and cooling system
KR100346049B1 (en) Absorptive refrigerator and method for manufacturing the same
JP3367323B2 (en) High-temperature regenerator and absorption chiller / heater for absorption chiller / heater
JP2008095976A (en) Two-stage absorption refrigerating machine
JP3789815B2 (en) High temperature regenerator and absorption chiller / heater equipped with the same
JPS6135902Y2 (en)
KR890004392B1 (en) Air cooled absorption refrigeration system
JPS6133483Y2 (en)
US4468934A (en) Absorption refrigeration system
JP3140376B2 (en) Absorption air conditioner
JPH0979690A (en) High temperature regenerator of absorbing type cold water or hot water machine
JP3117631B2 (en) Absorption air conditioner
JP2846583B2 (en) Absorption air conditioner
JP3938712B2 (en) High-temperature regenerator and absorption chiller / heater
JP2994253B2 (en) Absorption air conditioner
JPS6018906B2 (en) absorption refrigerator
KR100188892B1 (en) Absorption air-conditioning apparatus
JP3408116B2 (en) Absorption refrigeration equipment
JP3031847B2 (en) Absorption air conditioner
JPS60599Y2 (en) low temperature generator
JP3432864B2 (en) Rectification unit for absorption refrigerator
JP2004251466A (en) High-temperature regenerator and absorption water chilling/heating device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees