JP3862083B2 - High temperature regenerator for steam absorption refrigerator - Google Patents

High temperature regenerator for steam absorption refrigerator Download PDF

Info

Publication number
JP3862083B2
JP3862083B2 JP2003082244A JP2003082244A JP3862083B2 JP 3862083 B2 JP3862083 B2 JP 3862083B2 JP 2003082244 A JP2003082244 A JP 2003082244A JP 2003082244 A JP2003082244 A JP 2003082244A JP 3862083 B2 JP3862083 B2 JP 3862083B2
Authority
JP
Japan
Prior art keywords
steam
liquid
cylinder
heat transfer
absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003082244A
Other languages
Japanese (ja)
Other versions
JP2004286409A (en
Inventor
修 大石
富安 沖田
耕一 染矢
真二 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Thermal Engineering Co Ltd
Original Assignee
Kawasaki Thermal Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Thermal Engineering Co Ltd filed Critical Kawasaki Thermal Engineering Co Ltd
Priority to JP2003082244A priority Critical patent/JP3862083B2/en
Publication of JP2004286409A publication Critical patent/JP2004286409A/en
Application granted granted Critical
Publication of JP3862083B2 publication Critical patent/JP3862083B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、蒸気式の高温再生器構造の簡素化及び性能の向上を図ることができるようにした蒸気式吸収冷凍機の高温再生器に関するものである。
【0002】
【従来の技術】
従来の蒸気(スチーム)式吸収冷凍機の高温再生器を図8に示す。10は胴、12は蒸気(スチーム)が流れる伝熱管、14は蒸発した蒸気が流出する蒸気流出口、16はエリミネータ、18は液流出口である。この場合、高温再生器の全高が高く低温胴と平行に設置するケースが多い。この構造では、大型機になると高温再生器の設置面積が大きくなり、機械の運搬及び機械室設置制限の問題が生じる。なお、記載すべき先行技術文献情報は、調査したが見当たらなかった。
【0003】
【発明が解決しようとする課題】
上記の問題を解決するためには、高温再生器を扁平構造にして全高の低い高温再生器とし、この高温再生器を吸収冷凍機の低温胴の上側に配置することで、吸収冷凍機の設置スペースの軽減を図ることが考えられる。すなわち、蒸気式冷凍機の高温再生器において部品の構成及び配置を改良して全高を抑えるとともに、高性能化を図り、これにより、低温胴の上側に高温再生器を設置することが可能となり全高を抑えながら冷凍機の設置面積の低減を図ることができる。
【0004】
本発明は上記の点に鑑みなされたもので、本発明の目的は、高温再生器の管群の扁平・分割化、気液分離バッフルの省略、エリミネータ上側の蒸気通路の分割化等により、全高を低減しつつ高性能化を図るようにした蒸気式吸収冷凍機の高温再生器を提供することにある。
【0005】
【課題を解決するための手段】
上記の目的を達成するために、本発明の蒸気式吸収冷凍機の高温再生器は、胴内の伝熱管内に蒸気(スチーム)を流し、胴内の伝熱管外に吸収液を流して、蒸気により吸収液を間接的に加熱して濃吸収液とするようにした蒸気式吸収冷凍機の高温再生器において、伝熱管の管群を複数の扁平な管群に分割し、これらの分割扁平管群を縦方向の隙間を介して水平方向に配置し、これらの隙間に、下部に液通路を有し胴内を仕切る縦方向のバッフル(仕切板)を設け、胴底部に複数の液流出用孔を設け、これらの孔から流出した液を集めるための液流出用集合ヘッダを胴底部に設けるように構成されている。
【0006】
また、本発明の蒸気式吸収冷凍機の高温再生器は、胴内の伝熱管内に蒸気(スチーム)を流し、胴内の伝熱管外に吸収液を流して、蒸気により吸収液を間接的に加熱して濃吸収液とするようにした蒸気式吸収冷凍機の高温再生器において、伝熱管の管群を複数の扁平な管群に分割し、これらの分割扁平管群を縦方向の隙間を介して水平方向に配置し、これらの隙間に、下部に液通路を有し胴内を仕切る縦方向のバッフル(仕切板)を設け、胴内の幅方向(左右方向)両端部に蒸気ダクトを胴の長手方向に設け、これらの蒸気ダクトの一端左右に蒸気流出口を設け、前記バッフル間で、かつ分割扁平管群上側に、液から蒸発した蒸気が左右反対方向に流れるようにエリミネータを設けたことを特徴としている。
【0007】
また、本発明の蒸気式吸収冷凍機の高温再生器は、胴内の伝熱管内に蒸気(スチーム)を流し、胴内の伝熱管外に吸収液を流して、蒸気により吸収液を間接的に加熱して濃吸収液とするようにした蒸気式吸収冷凍機の高温再生器において、伝熱管の管群を複数の扁平な管群に分割し、これらの分割扁平管群を縦方向の隙間を介して水平方向に配置し、これらの隙間に、下部に液通路を有し胴内を仕切る縦方向のバッフル(仕切板)を設け、前記バッフルの上部長手方向に横断面積の異なる蒸気通路を、蒸気流出口に近ずくにつれて該横断面積が小さくなるように開口させたことを特徴としている。
【0008】
また、本発明の蒸気式吸収冷凍機の高温再生器は、胴内の伝熱管内に蒸気(スチーム)を流し、胴内の伝熱管外に吸収液を流して、蒸気により吸収液を間接的に加熱して濃吸収液とするようにした蒸気式吸収冷凍機の高温再生器において、胴底部に複数の液流出用孔を設け、これらの孔から流出した液を集めるための液流出用集合ヘッダを胴底部に設け、液流出用集合ヘッダが胴底部の一部を被覆するように設けられ、さらにこの液流出用集合ヘッダの上部に蒸気抜きが設けられたことを特徴としている。
【0009】
また、本発明の蒸気式吸収冷凍機の高温再生器は、胴内の伝熱管内に蒸気(スチーム)を流し、胴内の伝熱管外に吸収液を流して、蒸気により吸収液を間接的に加熱して濃吸収液とするようにした蒸気式吸収冷凍機の高温再生器において、伝熱管の管群を複数の扁平な管群に分割し、これらの分割扁平管群を縦方向の隙間を介して水平方向に配置し、これらの隙間に、下部に液通路を有し胴内を仕切る縦方向のバッフル(仕切板)を設け、胴底部に複数の液流出用孔を設け、これらの孔から流出した液を集めるための液流出用集合ヘッダを胴底部に設け、胴内の幅方向(左右方向)両端部に蒸気ダクトを胴の長手方向に設け、これらの蒸気ダクトの一端左右に蒸気流出口を設け、前記バッフル間で、かつ分割扁平管群上側に、液から蒸発した蒸気が左右反対方向に流れるようにエリミネータを設け、前記バッフルの上部長手方向に横断面積の異なる蒸気通路を、蒸気流出口に近ずくにつれて該横断面積が小さくなるように開口させたことを特徴としている。
【0010】
このように構成された高温再生器において、液流出用集合ヘッダが胴底部の一部を被覆するように設けられ、さらにこの液流出用集合ヘッダの上部に蒸気抜きが設けられた構成とすることが好ましい。
【0011】
【発明の実施の形態】
以下、本発明の実施の形態を説明するが、本発明は下記の実施の形態に何ら限定されるものではなく、適宜変更して実施することができるものである。
図1は本発明の実施の第1形態による蒸気式吸収冷凍機の高温再生器の横断面説明図、図2は同平断面説明図、図3は同縦断面説明図である。
【0012】
図1〜図3において、高温再生器は、胴20内の伝熱管22内に蒸気(スチーム)を流し、胴20内の伝熱管22外に吸収液を流して、蒸気により吸収液を間接的に加熱して濃吸収液とするように構成されている。
この高温再生器において、伝熱管22の管群は複数の扁平な管群24に分割されている。これらの分割扁平管群24は縦方向の隙間26を介して水平方向に配置され、これらの隙間26に、下部に液通路28を有し胴内を仕切る縦方向のバッフル(仕切板)30が設けられている。バッフル30は液流動の均一化と胴板補強材の役目を果す。また、胴底部に複数の液流出用孔32が設けられ、これらの孔32から流出した液を集めるための液流出用集合ヘッダ34が胴底部の一部を被覆するように設けられている。さらに、この液流出用集合ヘッダ34の上部に蒸気抜き36が設けられている。
【0013】
胴20内の幅方向(図1における左右方向)両端部には、蒸気ダクト38が胴20の長手方向(図2における上下方向)に設けられ、これらの蒸気ダクト38の一端左右に蒸気流出口40が設けられている。また、前記バッフル30間で、かつ分割扁平管群24上側に、液から蒸発した蒸気が左右反対方向に流れるようにエリミネータ42が設けられている。さらに、前記バッフル30の上部長手方向に横断面積の異なる蒸気通路44が、蒸気流出口40に近ずくにつれて該横断面積が小さくなるように開口している。46は液降り口、48は液流出口である。本実施形態では、一例として、蒸気通路44を複数個の略くさび(楔)形の開口とした場合を示している。
【0014】
蒸気式吸収冷凍機の吸収器で冷媒を吸収して濃度の低下した吸収液が高温再生器に流入する際、高温再生器管群で加熱され一部の冷媒が蒸発し濃度が上昇する。このとき、管群が高く全高が高いほど管群の下部は吸収液の液深が掛り液温度は上昇する。すなわち、管群の下部は吸収液の圧力がかかり蒸発し難くなり液温度が上昇する。
その結果、液温度と加熱源である蒸気温度との温度差が小さくなるため交換熱量が減少し高温再生器の性能は低下する。逆に、扁平で全高が低いと液深は小さくなり、高温再生器の性能は上昇する。
【0015】
その反面、管群の全幅は大きくなることから沸騰液の循環が悪くなることになる。その対策として、本実施形態におけるように、扁平管群に縦に隙間26を数箇所設けた。これにより、これらの隙間26を沸騰した液が流下し管群内の液循環の改善が図られる。結果として沸騰液内の気泡が多くなるため、さらにボイド率は高くなりさらに液深は改善する。さらに、これらの隙間26にバッフル30を設けることで、液流量の幅方向のばらつきを低減できる他、これらのバッフル30を胴板の補強材と兼ねることで胴板の板厚を薄くすることができる。
【0016】
従来の液降り口では管群幅が広い場合、液流動のばらつきが生じるほか、流動抵抗が増えることで液面が上昇する。これを改善するため、液降り口は従来の堰から液流出用孔32を数箇所設け、液流出用集合ヘッダ34を設ける構造とした。
吸収液の液滴が沸騰した蒸気に混合されると、再生された冷媒に吸収液が混ざり冷凍性能が悪化する。これを防止するために、気液分離装置としてエリミネータを設けているが、従来構造では、エリミネータ長さが短く、また蒸気流出口が一箇所であったため、エリミネータの通過流速のばらつきが大きくなり、局部的に吸収液がキャリオーバーすることもあった。これを防止するため、沸騰面とエリミネータとの距離を開け、さらに、バッフルを設けていたが結果として全高は高くなっていた。
【0017】
本実施形態においては、エリミネータ42と蒸気ダクト38を胴全長にわたって配置した。エリミネータ側と蒸気ダクト側はバッフル30で仕切り、バッフルに長手にわたって蒸気通路44を設けた。ただし、蒸気通路断面積は下流方向へ漸減させた。その理由は、蒸気ダクト内の静圧は流動抵抗、合流抵抗及び流速増加により下流方向に低下していくため、バッフルに設けた通路の断面積が長手方向に不変であれば、蒸気ダクト上流側よりも下流側の蒸気通路により多くの蒸気が流れ、下流側のエリミネータから吸収液のキャリーオーバーを生じることがあるためである。そこで、通路面積を下流方向へ漸減させ下流側の通路を流れにくくすることで、エリミネータ通過流速の長手方向均一化が図られている。
【0018】
また、エリミネータ42を左右反対勝手に設置し、蒸気流出口40を左右2箇所に設置した。これにより、エリミネータ42出口通路での抵抗を減らすことができ、エリミネータ通過流速の断面方向均一化を図ることができる。
通路面積の下流方向への漸減には、板を斜めにする、丸穴の面積を変える、角穴の面積を変える等の方法が考えられる、また蒸気ダクトそのものの面積を変えることも可能である。以下、これらを実施形態により説明する。
【0019】
図4は本発明の実施の第2形態による蒸気式吸収冷凍機の高温再生器の縦断面説明図である。本実施形態は、蒸気通路50を一つの略くさび(楔)形の開口としたものである。他の構成及び作用は実施の第1形態の場合と同様である。
【0020】
図5は本発明の実施の第3形態による蒸気式吸収冷凍機の高温再生器の縦断面説明図である。本実施形態は、蒸気通路52を略円弧形の開口としたものである。なお、丸形、楕円形等とすることも可能である。他の構成及び作用は実施の第1形態の場合と同様である。
【0021】
図6は本発明の実施の第4形態による蒸気式吸収冷凍機の高温再生器の縦断面説明図である。本実施形態は、蒸気通路54を略角形の開口としたものである。他の構成及び作用は実施の第1形態の場合と同様である。
【0022】
図7は本発明の実施の第5形態による蒸気式吸収冷凍機の高温再生器の縦断面説明図である。本実施形態は、蒸気通路56が、蒸気ダクトを横断面積を変えることにより、略くさび(楔)形の開口となるようにしたものである。他の構成及び作用は実施の第1形態の場合と同様である。
【0023】
【発明の効果】
本発明は上記のように構成されているので、つぎのような効果を奏する。
(1) 蒸気式吸収冷凍機の設置スペースの低減を図ることができる。
(2) 高温再生器の管群の扁平・分割化、従来必要としていた気液分離バッフルの省略、エリミネータ上側の蒸気通路の分割化等により、高温再生器の全高を低減することができるとともに、高性能化を図ることができる。
(3) 上記(2)により、高温再生器を蒸気式吸収冷凍機の低温胴の上側に配置することができるようになり、蒸気式吸収冷凍機の設置スペースのさらなる低減を図ることができる。
【図面の簡単な説明】
【図1】本発明の実施の第1形態による蒸気式吸収冷凍機の高温再生器を前から見た横断面説明図である。
【図2】同平断面説明図である。
【図3】同縦断面説明図である。
【図4】本発明の実施の第2形態による蒸気式吸収冷凍機の高温再生器の縦断面説明図である。
【図5】本発明の実施の第3形態による蒸気式吸収冷凍機の高温再生器の縦断面説明図である。
【図6】本発明の実施の第4形態による蒸気式吸収冷凍機の高温再生器の縦断面説明図である。
【図7】本発明の実施の第5形態による蒸気式吸収冷凍機の高温再生器の縦断面説明図である。
【図8】従来の高温再生器を前から見た横断面説明図である。
【符号の説明】
20 胴
22 伝熱管
24 分割扁平管群
26 隙間
28 液通路
30 バッフル
32 液流出用孔
34 液流出用集合ヘッダ
36 蒸気抜き
38 蒸気ダクト
40 蒸気流出口
42 エリミネータ
44、50、52、54、56 蒸気通路
46 液降り口
48 液流出口
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-temperature regenerator for a steam-type absorption refrigerator capable of simplifying a steam-type high-temperature regenerator structure and improving performance.
[0002]
[Prior art]
FIG. 8 shows a high-temperature regenerator of a conventional steam type absorption refrigerator. 10 is a cylinder, 12 is a heat transfer tube through which steam (steam) flows, 14 is a steam outlet through which evaporated steam flows, 16 is an eliminator, and 18 is a liquid outlet. In this case, the high-temperature regenerator has a high overall height and is often installed in parallel with the low-temperature cylinder. In this structure, when a large machine is used, the installation area of the high-temperature regenerator increases, which causes problems of machine transportation and machine room installation restrictions. In addition, although the prior art document information which should be described was investigated, it was not found.
[0003]
[Problems to be solved by the invention]
In order to solve the above problems, the high-temperature regenerator has a flat structure and a high-temperature regenerator with a low overall height, and this high-temperature regenerator is placed on the upper side of the low-temperature body of the absorption refrigerating machine, thereby installing the absorption refrigerating machine. It may be possible to reduce the space. That is, in the high-temperature regenerator of the steam refrigerator, the configuration and arrangement of parts are improved to suppress the overall height, and the performance is improved, so that a high-temperature regenerator can be installed on the upper side of the low-temperature barrel. The installation area of the refrigerator can be reduced while suppressing the above.
[0004]
The present invention has been made in view of the above points, and the object of the present invention is to achieve a total height by flattening and dividing the tube group of the high-temperature regenerator, omitting the gas-liquid separation baffle, dividing the steam passage above the eliminator, etc. Another object of the present invention is to provide a high-temperature regenerator for a vapor absorption chiller that achieves high performance while reducing the above.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the high-temperature regenerator of the steam absorption refrigerator of the present invention flows steam (steam) in the heat transfer tube in the trunk, and flows the absorbing liquid outside the heat transfer pipe in the drum, In a high-temperature regenerator of a vapor absorption refrigerator that heats the absorption liquid indirectly with steam to make a concentrated absorption liquid, the heat transfer tube group is divided into a plurality of flat tube groups, and these divided flats Tube groups are arranged horizontally through vertical gaps, and in these gaps, a vertical baffle (partition plate) that has a liquid passage in the lower part and partitions the inside of the cylinder is provided, and a plurality of liquid outflows at the bottom of the cylinder There are provided holes for use, and a liquid outflow collecting header for collecting liquid flowing out from these holes is provided in the trunk bottom.
[0006]
Moreover, the high-temperature regenerator of the steam absorption refrigerator of the present invention flows steam (steam) into the heat transfer tube in the cylinder, flows the absorption liquid outside the heat transfer pipe in the cylinder, and indirectly absorbs the absorption liquid with the steam. In a high-temperature regenerator of a steam absorption refrigerator that is heated to a concentrated absorption liquid, the heat transfer tube group is divided into a plurality of flat tube groups, and these divided flat tube groups are separated into vertical gaps. In the gaps, vertical baffles (partition plates) that have a liquid passage in the lower part and partition the interior of the cylinder are provided in these gaps, and steam ducts are provided at both ends in the width direction (left and right direction) of the cylinder. Are provided in the longitudinal direction of the cylinder, and steam outlets are provided on the left and right ends of these steam ducts, and an eliminator is provided between the baffles and above the divided flat tube group so that the vapor evaporated from the liquid flows in the opposite direction. It is characterized by providing.
[0007]
Moreover, the high-temperature regenerator of the steam absorption refrigerator of the present invention flows steam (steam) into the heat transfer tube in the cylinder, flows the absorption liquid outside the heat transfer pipe in the cylinder, and indirectly absorbs the absorption liquid with the steam. In a high-temperature regenerator of a steam absorption refrigerator that is heated to a concentrated absorption liquid, the heat transfer tube group is divided into a plurality of flat tube groups, and these divided flat tube groups are separated into vertical gaps. These are disposed in the horizontal direction through these, and in these gaps, a vertical baffle (partition plate) having a liquid passage in the lower part and partitioning the inside of the cylinder is provided, and the steam passages having different cross-sectional areas in the upper longitudinal direction of the baffle Is opened so that the cross-sectional area decreases as it approaches the steam outlet.
[0008]
Moreover, the high-temperature regenerator of the steam absorption refrigerator of the present invention flows steam (steam) into the heat transfer tube in the cylinder, flows the absorption liquid outside the heat transfer pipe in the cylinder, and indirectly absorbs the absorption liquid with the steam. In a high-temperature regenerator of a steam absorption refrigerator that is heated to a concentrated absorption liquid, a plurality of liquid outflow holes are provided at the bottom of the trunk, and a liquid outflow collection for collecting the liquid outflowing from these holes A header is provided on the trunk bottom, a liquid outflow collective header is provided so as to cover a part of the trunk bottom, and a vapor vent is provided in the upper part of the liquid outflow collective header.
[0009]
Moreover, the high-temperature regenerator of the steam absorption refrigerator of the present invention flows steam (steam) into the heat transfer tube in the cylinder, flows the absorption liquid outside the heat transfer pipe in the cylinder, and indirectly absorbs the absorption liquid with the steam. In a high-temperature regenerator of a steam absorption refrigerator that is heated to a concentrated absorption liquid, the heat transfer tube group is divided into a plurality of flat tube groups, and these divided flat tube groups are separated into vertical gaps. Are arranged in the horizontal direction through these, and in these gaps, a vertical baffle (partition plate) that has a liquid passage in the lower part and partitions the inside of the cylinder is provided, and a plurality of liquid outflow holes are provided in the cylinder bottom part. A liquid outflow collecting header for collecting liquid flowing out from the hole is provided at the bottom of the cylinder, and steam ducts are provided at both ends in the width direction (left and right direction) of the cylinder in the longitudinal direction of the cylinder. Vapor outlet was provided, evaporated from the liquid between the baffles and above the divided flat tube group An eliminator is provided so that air flows in opposite directions, and steam passages having different cross-sectional areas are opened in the upper longitudinal direction of the baffle so that the cross-sectional areas become smaller as they approach the steam outlet. It is said.
[0010]
In the high-temperature regenerator configured in this way, the liquid outflow collective header is provided so as to cover a part of the trunk bottom, and the liquid vent is provided in the upper part of the liquid outflow collective header. Is preferred.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described, but the present invention is not limited to the following embodiments, and can be implemented with appropriate modifications.
1 is a cross-sectional explanatory view of a high-temperature regenerator of a vapor absorption refrigerator according to a first embodiment of the present invention, FIG. 2 is a flat cross-sectional explanatory view thereof, and FIG. 3 is a vertical cross-sectional explanatory view thereof.
[0012]
1 to 3, the high-temperature regenerator causes steam (steam) to flow in the heat transfer tube 22 in the cylinder 20, and causes the absorbing liquid to flow outside the heat transfer tube 22 in the cylinder 20, so that the absorbing liquid is indirectly transferred by the steam. It is comprised so that it may be heated to a concentrated absorbent.
In this high temperature regenerator, the tube group of the heat transfer tubes 22 is divided into a plurality of flat tube groups 24. These divided flat tube groups 24 are arranged in the horizontal direction through vertical gaps 26, and in these gaps 26, vertical baffles (partition plates) 30 having a liquid passage 28 in the lower part and partitioning the inside of the cylinder are provided. Is provided. The baffle 30 plays the role of uniformizing the liquid flow and reinforcing the body plate. Also, a plurality of liquid outflow holes 32 are provided in the trunk bottom, and a liquid outflow collect header 34 for collecting the liquid flowing out of these holes 32 is provided so as to cover a part of the trunk bottom. Further, a vapor vent 36 is provided on the upper part of the liquid outflow collective header 34.
[0013]
Steam ducts 38 are provided in the longitudinal direction (vertical direction in FIG. 2) of the trunk 20 at both ends in the width direction (left and right direction in FIG. 1) in the trunk 20, and steam outlets are disposed on the left and right ends of the steam ducts 38. 40 is provided. Further, an eliminator 42 is provided between the baffles 30 and above the divided flat tube group 24 so that the vapor evaporated from the liquid flows in opposite directions. Further, steam passages 44 having different cross-sectional areas in the upper longitudinal direction of the baffle 30 are opened so that the cross-sectional areas become smaller as the steam outlets 40 are approached. 46 is a liquid outlet, and 48 is a liquid outlet. In the present embodiment, as an example, a case where the steam passage 44 has a plurality of substantially wedge-shaped openings is shown.
[0014]
When the absorbing liquid having a reduced concentration due to absorption of the refrigerant by the absorber of the vapor absorption refrigerator flows into the high-temperature regenerator, the refrigerant is heated by the high-temperature regenerator tube group and a part of the refrigerant evaporates to increase the concentration. At this time, the higher the tube group is and the higher the total height is, the lower the tube group is, the deeper the absorption liquid, and the higher the liquid temperature. That is, the pressure of the absorbing liquid is applied to the lower part of the tube group, and the liquid temperature is increased due to difficulty in evaporation.
As a result, the temperature difference between the liquid temperature and the steam temperature as a heating source is reduced, so that the amount of exchange heat is reduced and the performance of the high-temperature regenerator is lowered. On the contrary, if it is flat and the total height is low, the liquid depth becomes small and the performance of the high-temperature regenerator increases.
[0015]
On the other hand, since the entire width of the tube group is increased, the circulation of the boiling liquid is deteriorated. As a countermeasure, several gaps 26 are provided vertically in the flat tube group as in this embodiment. Thereby, the liquid which boiled through these clearance gaps 26 flows down, and the liquid circulation in a pipe group is improved. As a result, since the number of bubbles in the boiling liquid increases, the void ratio is further increased and the liquid depth is further improved. Furthermore, by providing baffles 30 in these gaps 26, variations in the liquid flow rate in the width direction can be reduced, and by using these baffles 30 also as a reinforcing material for the body plate, the thickness of the body plate can be reduced. it can.
[0016]
When the tube group width is wide at the conventional liquid outlet, the liquid flow varies, and the liquid level rises due to an increase in flow resistance. In order to improve this, the liquid outlet has a structure in which several liquid outflow holes 32 are provided from a conventional weir and a liquid outflow collective header 34 is provided.
When the droplets of the absorbing liquid are mixed with the boiled vapor, the absorbing liquid is mixed with the regenerated refrigerant, and the refrigeration performance is deteriorated. In order to prevent this, an eliminator is provided as a gas-liquid separator, but in the conventional structure, the length of the eliminator is short and the steam outlet is one place, so the variation in the flow velocity of the eliminator increases. The absorbent solution could carry over locally. In order to prevent this, the distance between the boiling surface and the eliminator was increased, and a baffle was provided. As a result, the overall height was high.
[0017]
In this embodiment, the eliminator 42 and the steam duct 38 are arranged over the entire length of the trunk. The eliminator side and the steam duct side were partitioned by a baffle 30, and a steam passage 44 was provided in the baffle over the length. However, the steam passage cross-sectional area was gradually decreased in the downstream direction. The reason for this is that the static pressure in the steam duct decreases in the downstream direction due to flow resistance, confluence resistance, and flow rate increase, so if the cross-sectional area of the passage provided in the baffle remains unchanged in the longitudinal direction, the upstream side of the steam duct This is because a large amount of steam flows through the steam passage on the downstream side, and the carryover of the absorption liquid may occur from the downstream eliminator. Therefore, the passage area is gradually reduced in the downstream direction to make it difficult for the downstream passage to flow, thereby achieving uniform longitudinal flow rate of the eliminator passage.
[0018]
Moreover, the eliminator 42 was installed in the opposite direction, and the steam outlets 40 were installed in two places on the left and right. Thereby, the resistance in the exit passage of the eliminator 42 can be reduced, and the cross-sectional direction of the eliminator passage flow rate can be made uniform.
In order to gradually reduce the passage area in the downstream direction, it is possible to change the area of the steam duct itself by inclining the plate, changing the area of the round hole, changing the area of the square hole, etc. . Hereinafter, these will be described by embodiments.
[0019]
FIG. 4 is a longitudinal cross-sectional explanatory view of a high-temperature regenerator of a vapor absorption refrigerator according to the second embodiment of the present invention. In the present embodiment, the steam passage 50 is formed as one substantially wedge-shaped opening. Other configurations and operations are the same as those in the first embodiment.
[0020]
FIG. 5 is a longitudinal cross-sectional explanatory view of a high temperature regenerator of a vapor absorption refrigerator according to a third embodiment of the present invention. In the present embodiment, the steam passage 52 has a substantially arc-shaped opening. A round shape, an oval shape, or the like is also possible. Other configurations and operations are the same as those in the first embodiment.
[0021]
FIG. 6 is a longitudinal sectional explanatory view of a high temperature regenerator of a vapor absorption refrigerator according to a fourth embodiment of the present invention. In the present embodiment, the steam passage 54 has a substantially square opening. Other configurations and operations are the same as those in the first embodiment.
[0022]
FIG. 7 is a longitudinal cross-sectional explanatory view of a high temperature regenerator of a vapor absorption refrigerator according to a fifth embodiment of the present invention. In the present embodiment, the steam passage 56 is formed to have a substantially wedge-shaped opening by changing the cross-sectional area of the steam duct. Other configurations and operations are the same as those in the first embodiment.
[0023]
【The invention's effect】
Since this invention is comprised as mentioned above, there exist the following effects.
(1) The installation space for the vapor absorption refrigerator can be reduced.
(2) The total height of the high-temperature regenerator can be reduced by flattening and dividing the tube group of the high-temperature regenerator, omitting the gas-liquid separation baffle that was required in the past, and dividing the steam passage above the eliminator. High performance can be achieved.
(3) According to the above (2), the high temperature regenerator can be disposed on the upper side of the low temperature drum of the vapor absorption refrigerator, and the installation space of the vapor absorption refrigerator can be further reduced.
[Brief description of the drawings]
FIG. 1 is a cross-sectional explanatory view of a high-temperature regenerator of a vapor absorption refrigerator according to a first embodiment of the present invention as seen from the front.
FIG. 2 is an explanatory view of the same flat section.
FIG. 3 is an explanatory view of the same longitudinal section.
FIG. 4 is a longitudinal cross-sectional explanatory view of a high-temperature regenerator of a vapor absorption refrigerator according to a second embodiment of the present invention.
FIG. 5 is a longitudinal cross-sectional explanatory view of a high-temperature regenerator of a vapor absorption refrigerator according to a third embodiment of the present invention.
FIG. 6 is an explanatory longitudinal sectional view of a high-temperature regenerator of a vapor absorption refrigerator according to a fourth embodiment of the present invention.
FIG. 7 is an explanatory longitudinal sectional view of a high-temperature regenerator of a vapor absorption refrigerator according to a fifth embodiment of the present invention.
FIG. 8 is a cross-sectional explanatory view of a conventional high-temperature regenerator as seen from the front.
[Explanation of symbols]
20 Body 22 Heat transfer tube 24 Divided flat tube group 26 Clearance 28 Liquid passage 30 Baffle 32 Liquid outflow hole 34 Liquid outflow collective header 36 Steam vent 38 Steam duct 40 Steam outlet 42 Eliminator 44, 50, 52, 54, 56 Steam Passage 46 Liquid outlet 48 Liquid outlet

Claims (6)

胴内の伝熱管内に蒸気を流し、胴内の伝熱管外に吸収液を流して、蒸気により吸収液を間接的に加熱して濃吸収液とするようにした蒸気式吸収冷凍機の高温再生器において、伝熱管の管群を複数の扁平な管群に分割し、これらの分割扁平管群を縦方向の隙間を介して水平方向に配置し、これらの隙間に、下部に液通路を有し胴内を仕切る縦方向のバッフルを設け、胴底部に複数の液流出用孔を設け、これらの孔から流出した液を集めるための液流出用集合ヘッダを胴底部に設けたことを特徴とする蒸気式吸収冷凍機の高温再生器。High temperature of a steam absorption refrigerator where steam flows into the heat transfer tube inside the cylinder, absorption liquid flows outside the heat transfer tube inside the cylinder, and the absorption liquid is heated indirectly with the steam to make a concentrated absorption liquid. In the regenerator, the tube group of the heat transfer tubes is divided into a plurality of flat tube groups, and these divided flat tube groups are arranged in a horizontal direction through vertical gaps, and a liquid passage is formed in these gaps in the lower part. A vertical baffle that partitions the inside of the cylinder is provided, a plurality of liquid outflow holes are provided in the cylinder bottom, and a liquid outflow collect header for collecting the liquid flowing out from these holes is provided in the cylinder bottom. A high-temperature regenerator for a vapor absorption refrigerator. 胴内の伝熱管内に蒸気を流し、胴内の伝熱管外に吸収液を流して、蒸気により吸収液を間接的に加熱して濃吸収液とするようにした蒸気式吸収冷凍機の高温再生器において、伝熱管の管群を複数の扁平な管群に分割し、これらの分割扁平管群を縦方向の隙間を介して水平方向に配置し、これらの隙間に、下部に液通路を有し胴内を仕切る縦方向のバッフルを設け、胴内の幅方向両端部に蒸気ダクトを胴の長手方向に設け、これらの蒸気ダクトの一端左右に蒸気流出口を設け、前記バッフル間で、かつ分割扁平管群上側に、液から蒸発した蒸気が左右反対方向に流れるようにエリミネータを設けたことを特徴とする蒸気式吸収冷凍機の高温再生器。High temperature of a steam absorption refrigerator where steam flows into the heat transfer tube inside the cylinder, absorption liquid flows outside the heat transfer tube inside the cylinder, and the absorption liquid is heated indirectly with the steam to make a concentrated absorption liquid. In the regenerator, the tube group of the heat transfer tubes is divided into a plurality of flat tube groups, and these divided flat tube groups are arranged in a horizontal direction through vertical gaps, and a liquid passage is formed in these gaps in the lower part. A vertical baffle for partitioning the inside of the cylinder is provided, steam ducts are provided at both longitudinal ends of the cylinder in the longitudinal direction of the cylinder, steam outlets are provided at the left and right ends of these steam ducts, and between the baffles, A high temperature regenerator for a vapor absorption refrigerator, wherein an eliminator is provided on the upper side of the divided flat tube group so that the vapor evaporated from the liquid flows in the opposite direction. 胴内の伝熱管内に蒸気を流し、胴内の伝熱管外に吸収液を流して、蒸気により吸収液を間接的に加熱して濃吸収液とするようにした蒸気式吸収冷凍機の高温再生器において、伝熱管の管群を複数の扁平な管群に分割し、これらの分割扁平管群を縦方向の隙間を介して水平方向に配置し、これらの隙間に、下部に液通路を有し胴内を仕切る縦方向のバッフルを設け、前記バッフルの上部長手方向に横断面積の異なる蒸気通路を、蒸気流出口に近ずくにつれて該横断面積が小さくなるように開口させたことを特徴とする蒸気式吸収冷凍機の高温再生器。High temperature of a steam absorption refrigerator where steam flows into the heat transfer tube inside the cylinder, absorption liquid flows outside the heat transfer tube inside the cylinder, and the absorption liquid is heated indirectly with the steam to make a concentrated absorption liquid. In the regenerator, the tube group of the heat transfer tubes is divided into a plurality of flat tube groups, and these divided flat tube groups are arranged in a horizontal direction through vertical gaps, and a liquid passage is formed in these gaps in the lower part. A vertical baffle for partitioning the inside of the barrel is provided, and steam passages having different cross-sectional areas are opened in the upper longitudinal direction of the baffle so that the cross-sectional area becomes smaller as it approaches the steam outlet. A high-temperature regenerator for a vapor absorption refrigerator. 胴内の伝熱管内に蒸気を流し、胴内の伝熱管外に吸収液を流して、蒸気により吸収液を間接的に加熱して濃吸収液とするようにした蒸気式吸収冷凍機の高温再生器において、胴底部に複数の液流出用孔を設け、これらの孔から流出した液を集めるための液流出用集合ヘッダを胴底部に設け、液流出用集合ヘッダが胴底部の一部を被覆するように設けられ、さらにこの液流出用集合ヘッダの上部に蒸気抜きが設けられたことを特徴とする蒸気式吸収冷凍機の高温再生器。High temperature of a steam absorption refrigerator where steam flows into the heat transfer tube inside the cylinder, absorption liquid flows outside the heat transfer tube inside the cylinder, and the absorption liquid is heated indirectly with the steam to make a concentrated absorption liquid. In the regenerator, a plurality of liquid outflow holes are provided in the trunk bottom, and a liquid outflow collecting header for collecting liquid flowing out from these holes is provided in the trunk bottom, and the liquid outflow collecting header covers a part of the trunk bottom. A high-temperature regenerator for a steam absorption refrigerator, characterized in that it is provided so as to be covered and a steam vent is provided on the upper part of the liquid outflow collective header. 胴内の伝熱管内に蒸気を流し、胴内の伝熱管外に吸収液を流して、蒸気により吸収液を間接的に加熱して濃吸収液とするようにした蒸気式吸収冷凍機の高温再生器において、伝熱管の管群を複数の扁平な管群に分割し、これらの分割扁平管群を縦方向の隙間を介して水平方向に配置し、これらの隙間に、下部に液通路を有し胴内を仕切る縦方向のバッフルを設け、胴底部に複数の液流出用孔を設け、これらの孔から流出した液を集めるための液流出用集合ヘッダを胴底部に設け、胴内の幅方向両端部に蒸気ダクトを胴の長手方向に設け、これらの蒸気ダクトの一端左右に蒸気流出口を設け、前記バッフル間で、かつ分割扁平管群上側に、液から蒸発した蒸気が左右反対方向に流れるようにエリミネータを設け、前記バッフルの上部長手方向に横断面積の異なる蒸気通路を、蒸気流出口に近ずくにつれて該横断面積が小さくなるように開口させたことを特徴とする蒸気式吸収冷凍機の高温再生器。High temperature of a steam absorption refrigerator where steam flows into the heat transfer tube inside the cylinder, absorption liquid flows outside the heat transfer tube inside the cylinder, and the absorption liquid is heated indirectly with the steam to make a concentrated absorption liquid. In the regenerator, the tube group of the heat transfer tubes is divided into a plurality of flat tube groups, and these divided flat tube groups are arranged in a horizontal direction through vertical gaps, and a liquid passage is formed in these gaps in the lower part. A vertical baffle that divides the interior of the cylinder is provided, a plurality of liquid outflow holes are provided in the cylinder bottom, and a liquid outflow collecting header for collecting the liquid flowing out from these holes is provided in the cylinder bottom. Steam ducts are provided at both ends in the width direction in the longitudinal direction of the cylinder, steam outlets are provided at the left and right ends of these steam ducts, and the steam evaporated from the liquid is opposite between the baffles and above the divided flat tube group. In the upper longitudinal direction of the baffle, an eliminator is installed to flow in the direction Different steam passage cross-sectional areas, the high temperature generator of a steam absorption chiller which is characterized in that is opened such that the cross-sectional area becomes smaller as close mutual agreement to the steam outlet. 液流出用集合ヘッダが胴底部の一部を被覆するように設けられ、さらにこの液流出用集合ヘッダの上部に蒸気抜きが設けられた請求項5記載の蒸気式吸収冷凍機の高温再生器。6. The high-temperature regenerator for a steam absorption refrigerator according to claim 5, wherein the liquid outflow collective header is provided so as to cover a part of the trunk bottom, and further, a vapor vent is provided on the upper part of the liquid outflow collective header.
JP2003082244A 2003-03-25 2003-03-25 High temperature regenerator for steam absorption refrigerator Expired - Lifetime JP3862083B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003082244A JP3862083B2 (en) 2003-03-25 2003-03-25 High temperature regenerator for steam absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003082244A JP3862083B2 (en) 2003-03-25 2003-03-25 High temperature regenerator for steam absorption refrigerator

Publications (2)

Publication Number Publication Date
JP2004286409A JP2004286409A (en) 2004-10-14
JP3862083B2 true JP3862083B2 (en) 2006-12-27

Family

ID=33295584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003082244A Expired - Lifetime JP3862083B2 (en) 2003-03-25 2003-03-25 High temperature regenerator for steam absorption refrigerator

Country Status (1)

Country Link
JP (1) JP3862083B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102013284B1 (en) * 2018-05-02 2019-08-22 주식회사 센추리 Generator of absorption chiller

Also Published As

Publication number Publication date
JP2004286409A (en) 2004-10-14

Similar Documents

Publication Publication Date Title
US8640490B2 (en) Evaporator/absorbers combination, absorption cooling device and associated motor vehicle
US9157690B2 (en) Distribution system and heat exchanger apparatus
US6213197B1 (en) Air conditioning apparatus as well as components thereof
BR112015014024B1 (en) heat exchange method
ES2929231T3 (en) Heat exchanger
JP2007271197A (en) Absorption type refrigerating device
JP4701147B2 (en) 2-stage absorption refrigerator
FI127511B (en) An evaporator and a method for vaporizing a substance in an evaporator
JP3862083B2 (en) High temperature regenerator for steam absorption refrigerator
JP2568769B2 (en) Absorption refrigerator
CN206176823U (en) Tubular flooded evaporator
US7065981B2 (en) Sorption unit for an air conditioning apparatus
JP4879125B2 (en) Absorption refrigerator
KR880009254A (en) Dual-effect air-cooled freezer
JP4547205B2 (en) Evaporator
KR101037311B1 (en) Absorption refrigerating machine
CN111981870B (en) Falling film type heat exchanger and heat pump unit comprising same
CN210689338U (en) Jacket gas-equalizing structure, supporting plate assembly and heat exchange device
CN218545333U (en) Condenser
CN218764653U (en) Horizontal condenser
CN112461033A (en) Jacket gas-equalizing structure, supporting plate assembly and heat exchange device
CN112944746B (en) Liquid distributor, falling film type heat exchanger and air conditioner
WO2022213504A1 (en) Middle partition plate for air conditioner, and air conditioner
JP3674079B2 (en) Laminate heat exchanger
JP3871324B2 (en) Plate heat exchanger and refrigeration system using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060920

R150 Certificate of patent or registration of utility model

Ref document number: 3862083

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101006

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111006

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131006

Year of fee payment: 7

EXPY Cancellation because of completion of term