JP3604959B2 - Absorption chiller absorber - Google Patents

Absorption chiller absorber Download PDF

Info

Publication number
JP3604959B2
JP3604959B2 JP17607599A JP17607599A JP3604959B2 JP 3604959 B2 JP3604959 B2 JP 3604959B2 JP 17607599 A JP17607599 A JP 17607599A JP 17607599 A JP17607599 A JP 17607599A JP 3604959 B2 JP3604959 B2 JP 3604959B2
Authority
JP
Japan
Prior art keywords
heat transfer
cooling water
transfer plate
water pipe
absorber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17607599A
Other languages
Japanese (ja)
Other versions
JP2001004249A (en
Inventor
裕之 橋本
直樹 広
芳男 小澤
賢二 名迫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP17607599A priority Critical patent/JP3604959B2/en
Publication of JP2001004249A publication Critical patent/JP2001004249A/en
Application granted granted Critical
Publication of JP3604959B2 publication Critical patent/JP3604959B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、吸収式冷凍機において、蒸発器から発生した冷媒蒸気を吸収液に吸収させる吸収器に関するものである。
【0002】
【従来の技術】
二重効用型の吸収式冷凍機においては、図4に示す如く密閉ドラム3の内部にエリミネータ30を設置して、その両側に蒸発器室31及び吸収器室32を形成し、蒸発器室31には蒸発器(図示省略)を設置すると共に吸収器室32には吸収器50を設置する。又、密閉ドラム3の底部には、低温熱交換器及び高温熱交換器を経て高温再生器へ伸びる配管62が接続され、該配管62の途中には、吸収液ポンプ6が取り付けられている。
【0003】
吸収器50は、低温熱交換器から伸びる配管61の先端に接続された吸収液散布機構4と、水平方向に伸びる複数本の冷却水配管2を具えた冷却水配管系とから構成される。
【0004】
吸収器50においては、吸収液散布機構4から冷却水配管2へ向けて破線で示す如く吸収液(臭化リチウム水溶液)が散布される。吸収液は、落下する過程で、蒸発器から発生した冷媒蒸気を吸収し、この際に発生する凝縮熱及び混合熱(吸収熱)により温度が上昇した吸収液は、冷却水配管2内を流れる冷却水によって冷却される。
【0005】
【発明が解決しようとする課題】
従来の吸収器50においては、吸収液散布機構4から散布された吸収液は、先ず、最上段の冷却水配管2の外周面上に落下し、滴状のまま外周面を伝って下方に流れた後、その下段の冷却水配管2の外周面上に落下する。この様にして吸収液は、滴状のまま、順に下段の冷却水配管2へ伝わっていくことになる。従って、吸収液は、重力の作用によって比較的高速で落下するばかりでなく、冷却水配管2の外周面に充分に拡がらず、冷媒蒸気を吸収すべき吸収液の吸収面積と、管表面に対する濡れ面積(板状伝熱手段表面に付着した吸収液の板状伝熱手段表面との接触面積;m2)は小さなものとなる。この結果、充分な吸収と熱交換が行なわれず、このために、吸収器の吸収能力が低い問題があった。
【0006】
そこで本発明の目的は、従来よりも高い吸収能力が得られる吸収器を提供することである。
【0007】
【課題を解決する為の手段】
本発明に係る吸収式冷凍機の吸収器は、吸収液及び冷媒蒸気が供給されるべき密閉室内に、吸収液供給機構が設置され、吸収液供給機構の下方位置には、横方向に伸びる複数本の冷却水配管を上下方向に互いに間隔をおいて複数段に配列して、これらを互いに直列或いは並列に接続してなる冷却水配管系が設置されると共に、複数の板状伝熱手段が互いに間隔をおいて垂直の姿勢で前記冷却水配管と交差する方向に配列され、各板状伝熱手段は、前記冷却水配管の配列の1或いは複数段毎に設けられた複数枚の伝熱板から構成され、各伝熱板は水平方向に伸びて、上下に隣接する2枚の伝熱板の内、上位の伝熱板の下端面と下位の伝熱板の上端面の間には所定の間隙が設けられ、各伝熱板に、前記冷却水配管の配列の1或いは複数段が貫通している吸収式冷凍機の吸収器であって、伝熱板を貫通する最上段の冷却水配管の上側外面に、該冷却水配管と交差する方向に配列された各伝熱板に跨って該冷却水配管の長手方向に沿って伸びる複数の突条部材が設けられ、前記各突条部材には、該突条部材間に貯溜される吸収液を下方に流下させるスリットが形成されていることを特徴とするものである。
【0008】
この構成を用いることにより、吸収液は広い面積で冷媒蒸気と接触して冷媒蒸気を吸収すると共に、これによって発生する熱は充分な熱交換によって効果的に冷却される。
【0009】
また、上下に隣接する2枚の伝熱板の内、上位の伝熱板の下端面と下位の伝熱板の上端面の間には所定の間隙が設けられているので、冷却水配管の外周面を流下した吸収液の一部が、冷却水配管から離脱して伝熱板の表面を流下する際、水平方向に隣接する冷却水配管から離脱して流下する吸収液の一部と合流し、そのまま、その下段に配置されている2本の冷却水配管の間を通過する流れが発生したとしても、吸収液の流れが伝熱板の下端面に達すると、吸収液の一部は、伝熱板の下端面やその下位の伝熱板の上端面を伝って左右に拡散する。そして、吸収液が、下位の伝熱板を貫通する最上段の冷却水配管の外周面の上端に達すると、その後、吸収液は、冷却水配管の外周面を伝って流下することになる。
【0010】
更に、伝熱板を貫通する最上段の冷却水配管の上側外面に、冷却水配管の長手方向に沿って伸びる複数の突条部材が設けられ、各突条部材には該突条部材間に貯溜される吸収液を下方に流下させるスリットが形成されているので、上位の伝熱板表面を伝って流下する吸収液は、その一部が突条部材間に一時貯溜された後、スリットから該最上段の冷却水配管の外周面に充分拡がって流下する。
【0011】
従って、伝熱板の表面を伝って流下する吸収液は、伝熱板の間隙部を通過する度に上述の拡散作用を受けると共に、吸収液が伝熱板表面を伝って流下するのを抑制して冷却水配管の外周面の濡れ性を向上させ、より一層の吸収量と熱交換量を得ることができる。
【0012】
そして、前記突条部材は、前記最上段の冷却水配管と交差する方向に配列された全ての伝熱板を貫通するように、該冷却水配管の長手方向に沿って設けられている構成としても良い。この構成を用いることにより、吸収器全体において上述の効果が期待できる。
【0013】
また、前記突条部材の上面が、該突条部材と交差する各伝熱板の上端面より突出するように設けられている構成としても良い。この構成を用いることにより、上位の伝熱板表面を伝って流下する吸収液が、突条部材間により多く貯溜させてスリットから冷却水配管の外周面に拡がって流下させることができる。
【0014】
更に、上下に隣接する全ての伝熱板、或いは最上位の伝熱板を除く他の伝熱板において、各伝熱板の上端面と、各伝熱板を貫通する最上段の冷却水配管の外周面の上端とが、同一或いは略同一の高さに揃っている構成としても良い。この構成を用いることにより、伝熱板の間隙部を通過する度に上述の拡散作用が一層促進されることになる。
【0015】
また、前記突条部材は、少なくとも下位の伝熱板を貫通する最上段の冷却水配管の上側外面に設けられている構成としても良い。この構成を用いることにより、吸収器の下位部分での吸収能力低下を防止することができる。
【0016】
【発明の実施の形態】
以下、本発明を二重効用型吸収式冷凍機の吸収器に実施した形態につき、図面に沿って具体的に説明する。
【0017】
本実施例の吸収器5は、図4に示す従来と同様に、密閉ドラム3内に形成された吸収器室32内に設置される。
【0018】
図1及び図2に示す如く、本実施形態例の吸収器5においては、吸収器室32内に、横方向に伸びる複数本の冷却水配管2が上下左右共に、例えば22mmのピッチで配列される。又、複数の板状伝熱手段1が互いに間隔をおいて垂直の姿勢で横方向に配列され、前記複数本の冷却水配管2がこれらの伝熱手段1を垂直に貫通している。伝熱手段1としては、例えば肉厚Tdが0.5mmの板状の銅板が採用される。尚、伝熱手段1としては、周知の他の材料、例えばアルミニウム等からなるものを採用することも可能である。又、伝熱手段1のピッチPdは、3〜15mmに設定される。
【0019】
この吸収器5では、冷却水配管2内に冷却水が供給され、板状伝熱手段1及び冷却水配管2の表面は、冷却水によって充分に温度が低下することになる。
【0020】
吸収液供給手段としての吸収液散布機構4から板状伝熱手段1の表面へ吸収液が供給され、その後、吸収液は、板状伝熱手段1の表面に拡がりつつ、板状伝熱手段1及び冷却水配管2の外周面を伝って流下する。この過程で吸収液は、板状伝熱手段1の間を通過する冷媒蒸気と充分な面積で接触して冷媒蒸気を吸収することになる。また、吸収液は、板状伝熱手段1の表面を伝って流下する過程で、板状伝熱手段1の表面を広い面積で濡らすことになり、然も吸収液は、流動抵抗により減速されて、板状伝熱手段1の表面を充分な時間をかけて流れることになる。従って、板状伝熱手段1表面との間で充分な熱交換が行われて、吸収液は効果的に冷却されることになる。
【0021】
この様に、吸収液は広い面積で冷媒蒸気と接触して冷媒蒸気を吸収すると共に、これによって発生する熱は充分な熱交換によって効果的に冷却され、この結果、高い吸収能力が得られる。
【0022】
そして、具体的には各板状伝熱手段1は、冷却水配管2の配列の上下1段毎に設けられた複数枚の伝熱板11から構成され、各伝熱板11は水平方向に伸びて、上下に隣接する2枚の伝熱板11の内、上位の伝熱板11の下端面と下位の伝熱板11の上端面の間には、互いに上下方向に後述の効果を有する2〜5mmの間隙Gが設けられ、各伝熱板11に、前記冷却水配管2の配列の上下1段が貫通している。そして、最上位の伝熱板11を除く他の伝熱板11においては、各伝熱板11の上端面と、各伝熱板11を貫通する上段の冷却水配管2の外周面の上端とが、同じ高さ位置に揃っている。
【0023】
尚、吸収液供給手段として上述したように従来の散布機構4を装備した吸収器においては、最上位の伝熱板11を含めて全ての伝熱板11の上端面が各伝熱板11を貫通する最上段の冷却水配管2(本実施形態例では各冷却水配管2を表している)の外周面の上端と同一高さに揃った構成を採ることも可能であり、或いは上記同様に、最上位の伝熱板11を除く2段目以下の伝熱板11の上端面が各伝熱板11を貫通する最上段の冷却水配管2の外周面の上端と同一高さに揃った構成を採用することも可能である。さらに、本実施形態例では各伝熱板11を貫通する冷却水配管2の配列が上下1段の場合について説明しているが、これに限らず上下複数段が貫通する構成としても良い。
【0024】
この様に、上下に隣接する2枚の伝熱板11、11の内、上位の伝熱板11の下端面と下位の伝熱板11の上端面の間には上記間隙Gが設けられているので、冷却水配管2の外周面を流下した吸収液の一部が、冷却水配管2から離脱して伝熱板の表面を流下する際、水平方向に隣接する冷却水配管2から離脱して流下する吸収液の一部と合流し、そのまま、伝熱板11表面を伝って冷却水配管2の間を通過する流れが発生したとしても、吸収液の流れが伝熱板11の下端面に達すると、吸収液の一部は、伝熱板11の下端面やその下位の伝熱板11の上端面を伝って左右に拡散することになる。
【0025】
また、最上位の伝熱板11を除く各伝熱板11を貫通する冷却水配管2上側外面には、その長手方向に沿って伸びる突条部材21が、冷却水配管2と交差する方向に配列された各伝熱板11を貫通するように2列に設けられており、この両突条部材21は、両突条部材21と冷却水配管2の上側外面及び伝熱板11により形成される凹部に上方から流下してくる吸収液が貯溜されるように配設されている。
【0026】
そして、各突条部材21には、突条部材21間に貯溜された吸収液を下方に流下させるスリット22が形成されている。このスリット22は、各突条部材21が貫通している各伝熱板11の間に位置する箇所に開設されており、伝熱板11表面を伝って流下する吸収液の一部が、突条部材21間に一時貯溜された後、スリット22から冷却水配管2の外周面に充分拡がって流下することになる。
【0027】
また、突条部材21は、その上面が各伝熱板11の上端面より若干突出するように設けられている。これは伝熱板11表面を伝って流下する吸収液を、突条部材21間により多く貯溜させてスリット22から冷却水配管2の外周面に拡がって流下させるためである。
【0028】
すなわち、図3に示すごとく、吸収液散布機構4から伝熱板11の表面に移った吸収液が伝熱板11及び冷却水配管2の表面を伝って流下する過程で、図3に矢印で示す如く、伝熱板11表面を伝って流下する吸収液の流れと共に、スリット22から冷却水配管2の外周面に拡がって流下する吸収液の流れを生じさせることができる。従って、吸収液が伝熱板21表面を伝って流下するのを緩和して冷却水配管2の外周面の濡れ性を向上させ、より一層の吸収量と熱交換量を得ることができる。
【0029】
以上のように、吸収液は伝熱板11の表面を流下する過程で、伝熱板11の間を通過する冷媒蒸気と充分な面積で接触して冷媒蒸気を吸収すると共に、伝熱板11の表面の流動抵抗により減速されて伝熱板11の表面を上端部から下端部まで充分な時間をかけて流れることになり、大きな熱交換量が得られる。また、伝熱板11及び冷却水配管2の表面を伝って流下する吸収液は、伝熱板11、11の間隙部を通過する度に上述の拡散作用を受けると共に、伝熱板11表面を伝って流下する吸収液の一部を突条部材21間に一時貯溜させて、スリット22から冷却水配管2の外周面に流下させているので、伝熱板11のみならず、冷却水配管2の表面にも充分に拡がって流下する。この結果、伝熱板11による上述の効果に加えて冷却水配管2による充分な冷却効果が発揮され、高い吸収能力が得られることになる。
【0030】
尚、本発明の各部構成は上記実施の形態に限らず、特許請求の範囲に記載の技術的範囲内で種々の変形が可能である。例えば、上記実施形態例において、複数本の冷却水配管2を千鳥状に配列することも可能である。
【0031】
また、上記実施形態例では、突条部材21を冷却水配管2の略全長に亘って設けた場合について説明したが、これに限らず、冷却水配管2の上側外面の一部に設けても良い。例えば、冷却水配管2と交差する方向に配列された各伝熱板11間に、一つおきに突条部材21を設けても良い。但し、伝熱板11、冷却水配管2,突条部材21、21によって凹部が形成される必要がある。
【0032】
さらに、上記実施形態例では、最上位の伝熱板11を除く各伝熱板11を貫通する冷却水配管2上側外面に突条部材21を設ける場合について説明したがこれに限る必要はない。但し、一部の最上段の冷却水配管2に突条部材21を設ける場合には、特に、少なくとも下位の伝熱板11を貫通する最上段の冷却水配管2の上側外面に設けるのが効果的である。これは、一般に吸収器の下位部分での吸収能力低下しているためである。
【0033】
【発明の効果】
本発明に係る吸収式冷凍機の吸収器によれば、従来の吸収器に比べて、吸収液は広い面積で冷媒蒸気と接触して冷媒蒸気を吸収すると共に、これによって発生する熱は充分な熱交換によって効果的に冷却されるので、吸収能力が飛躍的に向上する。
【0034】
さらに、伝熱板の表面を伝って流下する吸収液は、伝熱板の間隙部を通過する度に拡散作用を受けると共に、吸収液が伝熱板表面を伝って流下するのを抑制して冷却水配管の外周面の濡れ性を向上させ、より一層の吸収量と熱交換量を得ることができる。
【図面の簡単な説明】
【図1】本発明の一実施形態例を示す吸収器における、冷却水配管と伝熱板との配列状態を表す側面図である。
【図2】図1の吸収器における冷却水配管の配列状態を表わす正面図である。
【図3】図1の吸収器の要部における吸収液の流れを示す説明図である。
【図4】二重効用型の吸収式冷凍機において、密閉ドラム内に設置された吸収器を表わす模式図である。
【符号の説明】
1 板状伝熱手段
2 冷却水配管
3 密閉ドラム
4 吸収液散布機構(吸収液供給手段)
5、50 吸収器
11 伝熱板
21 突条部材
22 スリット
[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to an absorber for absorbing refrigerant vapor generated from an evaporator into an absorption liquid in an absorption refrigerator.
[0002]
[Prior art]
In the double effect absorption refrigerator, as shown in FIG. 4, an eliminator 30 is installed inside a closed drum 3, and an evaporator chamber 31 and an absorber chamber 32 are formed on both sides thereof. , An evaporator (not shown) is installed, and an absorber 50 is installed in the absorber chamber 32. Further, a pipe 62 extending to a high-temperature regenerator through a low-temperature heat exchanger and a high-temperature heat exchanger is connected to the bottom of the closed drum 3, and an absorbent pump 6 is mounted in the middle of the pipe 62.
[0003]
The absorber 50 is composed of an absorption liquid spraying mechanism 4 connected to a tip of a pipe 61 extending from the low-temperature heat exchanger, and a cooling water piping system including a plurality of cooling water pipes 2 extending in a horizontal direction.
[0004]
In the absorber 50, an absorbing liquid (aqueous lithium bromide solution) is sprayed from the absorbing liquid spraying mechanism 4 toward the cooling water pipe 2 as shown by a broken line. The absorbing liquid absorbs the refrigerant vapor generated from the evaporator in the process of falling, and the absorbing liquid whose temperature has risen due to the heat of condensation and the heat of mixing (heat of absorption) generated at this time flows through the cooling water pipe 2. Cooled by cooling water.
[0005]
[Problems to be solved by the invention]
In the conventional absorber 50, the absorbing liquid sprayed from the absorbing liquid spraying mechanism 4 first falls onto the outer peripheral surface of the uppermost cooling water pipe 2, and flows downward along the outer peripheral surface in a droplet form. Then, it falls on the outer peripheral surface of the cooling water pipe 2 at the lower stage. In this way, the absorbing liquid is transmitted to the lower cooling water pipe 2 in the order of droplets. Therefore, the absorbing liquid not only falls at a relatively high speed due to the action of gravity, but also does not spread sufficiently on the outer peripheral surface of the cooling water pipe 2, and the absorption area of the absorbing liquid to absorb the refrigerant vapor and the pipe surface The wet area (the contact area of the absorbing liquid adhering to the surface of the plate-shaped heat transfer means with the surface of the plate-shaped heat transfer means; m2) is small. As a result, sufficient absorption and heat exchange were not performed, and there was a problem that the absorption capacity of the absorber was low.
[0006]
Therefore, an object of the present invention is to provide an absorber capable of obtaining higher absorption capacity than before.
[0007]
[Means for solving the problem]
In the absorber of the absorption refrigerator according to the present invention, an absorption liquid supply mechanism is provided in a closed chamber to which the absorption liquid and the refrigerant vapor are to be supplied. A plurality of cooling water pipes are arranged in a plurality of stages at intervals in the vertical direction, and a cooling water piping system in which these are connected in series or in parallel to each other is installed. The plate-like heat transfer means are arranged in a direction intersecting with the cooling water pipe in a vertical posture with an interval therebetween, and each of the plate-like heat transfer means is provided with a plurality of heat transfer Each heat transfer plate extends in the horizontal direction, and between two vertically adjacent heat transfer plates, between the lower end surface of the upper heat transfer plate and the upper end surface of the lower heat transfer plate. A predetermined gap is provided, and one or more stages of the cooling water pipe arrangement penetrate through each heat transfer plate. An absorber of an absorption refrigerator, wherein the cooling is carried out on the upper outer surface of the uppermost cooling water pipe penetrating the heat transfer plate, straddling each heat transfer plate arranged in a direction intersecting with the cooling water pipe. A plurality of ridge members extending along the longitudinal direction of the water pipe are provided, and each of the ridge members is formed with a slit for causing the absorbent stored between the ridge members to flow downward. It is a feature.
[0008]
By using this configuration, the absorbing liquid comes into contact with the refrigerant vapor over a large area to absorb the refrigerant vapor, and the heat generated thereby is effectively cooled by sufficient heat exchange.
[0009]
In addition, a predetermined gap is provided between the lower end surface of the upper heat transfer plate and the upper end surface of the lower heat transfer plate of the two vertically adjacent heat transfer plates. When a part of the absorbing liquid flowing down the outer peripheral surface separates from the cooling water pipe and flows down the surface of the heat transfer plate, it merges with a part of the absorbing liquid that separates and flows down from the horizontally adjacent cooling water pipe. Then, even if a flow passing between the two cooling water pipes arranged at the lower stage occurs as it is, when the flow of the absorbent reaches the lower end surface of the heat transfer plate, a part of the absorbent is And diffuses right and left along the lower end surface of the heat transfer plate and the upper end surface of the lower heat transfer plate. Then, when the absorbing liquid reaches the upper end of the outer peripheral surface of the uppermost cooling water pipe penetrating the lower heat transfer plate, thereafter, the absorbing liquid flows down along the outer peripheral surface of the cooling water pipe.
[0010]
Further, on the upper outer surface of the uppermost cooling water pipe penetrating the heat transfer plate, a plurality of ridge members extending along the longitudinal direction of the cooling water pipe are provided, and each ridge member is provided between the ridge members. Since the slit that allows the stored absorbent to flow down is formed, the absorbing liquid that flows down the upper heat transfer plate surface is temporarily stored between the ridge members, The cooling water pipe at the uppermost stage spreads sufficiently and flows down on the outer peripheral surface.
[0011]
Therefore, the absorbing liquid that flows down along the surface of the heat transfer plate receives the above-described diffusion action each time it passes through the gap between the heat transfer plates, and suppresses the absorption liquid from flowing down along the surface of the heat transfer plate. As a result, the wettability of the outer peripheral surface of the cooling water pipe can be improved, and a further absorption amount and heat exchange amount can be obtained.
[0012]
Then, the ridge member is provided along the longitudinal direction of the cooling water pipe so as to penetrate all the heat transfer plates arranged in a direction intersecting with the uppermost cooling water pipe. Is also good. By using this configuration, the above effects can be expected in the entire absorber.
[0013]
Further, the upper surface of the ridge member may be provided so as to protrude from the upper end surface of each heat transfer plate crossing the ridge member. By using this configuration, the absorption liquid flowing down along the upper heat transfer plate surface can be accumulated more between the ridge members and spread from the slit to the outer peripheral surface of the cooling water pipe to flow down.
[0014]
Further, in all the heat transfer plates vertically adjacent to each other or other heat transfer plates except the top heat transfer plate, the upper end face of each heat transfer plate and the uppermost cooling water pipe penetrating each heat transfer plate. The upper end of the outer peripheral surface may be arranged at the same or substantially the same height. By using this configuration, the above-described diffusion action is further promoted every time the sheet passes through the gap of the heat transfer plate.
[0015]
Further, the ridge member may be provided on the upper outer surface of the uppermost cooling water pipe penetrating at least the lower heat transfer plate. By using this configuration, it is possible to prevent a lowering of the absorption capacity in the lower part of the absorber.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment in which the present invention is applied to an absorber of a double-effect absorption refrigerator will be specifically described with reference to the drawings.
[0017]
The absorber 5 of this embodiment is installed in an absorber chamber 32 formed in the closed drum 3 as in the conventional case shown in FIG.
[0018]
As shown in FIGS. 1 and 2, in the absorber 5 of the present embodiment, a plurality of cooling water pipes 2 extending in the lateral direction are arranged in the absorber chamber 32 at a pitch of, for example, 22 mm both vertically and horizontally. You. Further, a plurality of plate-shaped heat transfer means 1 are arranged in a horizontal direction at an interval from each other in a vertical posture, and the plurality of cooling water pipes 2 penetrate the heat transfer means 1 vertically. As the heat transfer means 1, for example, a plate-shaped copper plate having a thickness Td of 0.5 mm is adopted. The heat transfer means 1 may be made of another known material such as aluminum. Further, the pitch Pd of the heat transfer means 1 is set to 3 to 15 mm.
[0019]
In the absorber 5, the cooling water is supplied into the cooling water pipe 2, and the surfaces of the plate-shaped heat transfer means 1 and the cooling water pipe 2 are sufficiently cooled by the cooling water.
[0020]
The absorbing liquid is supplied to the surface of the plate-shaped heat transfer means 1 from the absorbing liquid spraying mechanism 4 serving as the absorbing liquid supply means. It flows down along the outer peripheral surface of the cooling water pipe 1 and 1. In this process, the absorbing liquid comes into contact with the refrigerant vapor passing between the plate-shaped heat transfer means 1 with a sufficient area to absorb the refrigerant vapor. Moreover, in the process of flowing down along the surface of the plate-shaped heat transfer means 1, the absorption liquid wets the surface of the plate-shaped heat transfer means 1 over a wide area, and the absorption liquid is decelerated by the flow resistance. As a result, it flows over the surface of the plate-shaped heat transfer means 1 over a sufficient time. Therefore, sufficient heat exchange is performed with the surface of the plate-shaped heat transfer means 1, and the absorbing liquid is effectively cooled.
[0021]
As described above, the absorbing liquid comes into contact with the refrigerant vapor over a wide area to absorb the refrigerant vapor, and the heat generated thereby is effectively cooled by sufficient heat exchange, and as a result, a high absorption capacity is obtained.
[0022]
And, specifically, each plate-shaped heat transfer means 1 is composed of a plurality of heat transfer plates 11 provided in each of the upper and lower stages of the arrangement of the cooling water pipes 2, and each heat transfer plate 11 is arranged in a horizontal direction. Of the two vertically adjacent heat transfer plates 11 extending between the lower end surface of the upper heat transfer plate 11 and the upper end surface of the lower heat transfer plate 11, the following effects are provided in the up and down direction. A gap G of 2 to 5 mm is provided, and each heat transfer plate 11 penetrates the upper and lower stages of the arrangement of the cooling water pipes 2. In the other heat transfer plates 11 except for the uppermost heat transfer plate 11, the upper end surface of each heat transfer plate 11 and the upper end of the outer peripheral surface of the upper cooling water pipe 2 penetrating each heat transfer plate 11. But are aligned at the same height.
[0023]
In addition, in the absorber equipped with the conventional spraying mechanism 4 as described above as the absorbing liquid supply means, the upper end surfaces of all the heat transfer plates 11 including the uppermost heat transfer plate 11 correspond to each heat transfer plate 11. It is also possible to adopt a configuration in which the uppermost cooling water pipe 2 (each cooling water pipe 2 is represented in this embodiment) penetrating the uppermost level is flush with the upper end of the outer peripheral surface, or as described above. The upper end surfaces of the second and lower heat transfer plates 11 excluding the uppermost heat transfer plate 11 are flush with the upper end of the outer peripheral surface of the uppermost cooling water pipe 2 penetrating each heat transfer plate 11. It is also possible to adopt a configuration. Further, in the present embodiment, the case where the arrangement of the cooling water pipes 2 penetrating the heat transfer plates 11 is one in the upper and lower stages is described, but the present invention is not limited to this, and a configuration in which a plurality of upper and lower stages penetrate may be used.
[0024]
As described above, the gap G is provided between the lower end surface of the upper heat transfer plate 11 and the upper end surface of the lower heat transfer plate 11 among the two heat transfer plates 11 vertically adjacent to each other. Therefore, when a part of the absorbing liquid flowing down the outer peripheral surface of the cooling water pipe 2 separates from the cooling water pipe 2 and flows down the surface of the heat transfer plate, the part of the absorbing liquid separates from the cooling water pipe 2 adjacent in the horizontal direction. Even if a flow that flows along the surface of the heat transfer plate 11 and passes between the cooling water pipes 2 is generated as it is, the flow of the absorbent flows into the lower end surface of the heat transfer plate 11. , Part of the absorbing liquid diffuses right and left along the lower end surface of the heat transfer plate 11 and the upper end surface of the lower heat transfer plate 11.
[0025]
In addition, on the upper outer surface of the cooling water pipe 2 penetrating each heat transfer plate 11 except the uppermost heat transfer plate 11, a ridge member 21 extending along the longitudinal direction thereof is provided in a direction intersecting with the cooling water pipe 2. The two ridge members 21 are provided in two rows so as to penetrate the arranged heat transfer plates 11, and are formed by the two ridge members 21, the upper outer surface of the cooling water pipe 2, and the heat transfer plate 11. The absorption liquid flowing down from above is stored in the recess.
[0026]
Each of the ridge members 21 is formed with a slit 22 for causing the absorbent stored between the ridge members 21 to flow downward. The slit 22 is provided at a position between the heat transfer plates 11 through which the ridge members 21 penetrate, and a part of the absorbing liquid flowing down along the surface of the heat transfer plate 11 is projected. After being temporarily stored between the strip members 21, the water is sufficiently spread from the slit 22 to the outer peripheral surface of the cooling water pipe 2 and flows down.
[0027]
Further, the ridge member 21 is provided so that the upper surface thereof slightly protrudes from the upper end surface of each heat transfer plate 11. This is because the absorbing liquid flowing down along the surface of the heat transfer plate 11 is stored more between the ridge members 21 and spreads from the slit 22 to the outer peripheral surface of the cooling water pipe 2 to flow down.
[0028]
That is, as shown in FIG. 3, in a process in which the absorbing liquid transferred from the absorbing liquid spraying mechanism 4 to the surface of the heat transfer plate 11 flows down along the surface of the heat transfer plate 11 and the cooling water pipe 2, as indicated by an arrow in FIG. As shown in the figure, the flow of the absorbing liquid flowing down from the slit 22 to the outer peripheral surface of the cooling water pipe 2 can be generated together with the flow of the absorbing liquid flowing down the surface of the heat transfer plate 11. Therefore, it is possible to alleviate the absorption liquid flowing down along the surface of the heat transfer plate 21, improve the wettability of the outer peripheral surface of the cooling water pipe 2, and obtain more absorption and heat exchange.
[0029]
As described above, in the process of flowing down the surface of the heat transfer plate 11, the absorbing liquid contacts the refrigerant vapor passing between the heat transfer plates 11 with a sufficient area to absorb the refrigerant vapor, and at the same time, absorbs the refrigerant vapor. Is decelerated by the flow resistance of the surface, and flows over the surface of the heat transfer plate 11 from the upper end to the lower end in a sufficient time, and a large heat exchange amount can be obtained. Further, the absorbing liquid flowing down along the surfaces of the heat transfer plate 11 and the cooling water pipe 2 is subjected to the above-described diffusion action each time it passes through the gap between the heat transfer plates 11, 11, and the surface of the heat transfer plate 11 is subjected to the above-described diffusion action. Since a part of the absorbing liquid that flows down is temporarily stored between the ridge members 21 and flows down from the slit 22 to the outer peripheral surface of the cooling water pipe 2, not only the heat transfer plate 11 but also the cooling water pipe 2 It spreads well on the surface of the water and flows down. As a result, in addition to the above-described effects of the heat transfer plate 11, a sufficient cooling effect by the cooling water pipe 2 is exhibited, and a high absorption capacity is obtained.
[0030]
The configuration of each part of the present invention is not limited to the above embodiment, and various modifications can be made within the technical scope described in the claims. For example, in the above embodiment, a plurality of cooling water pipes 2 can be arranged in a staggered manner.
[0031]
Further, in the above embodiment, the case where the ridge member 21 is provided over substantially the entire length of the cooling water pipe 2 has been described. However, the present invention is not limited to this, and the ridge member 21 may be provided on a part of the upper outer surface of the cooling water pipe 2. good. For example, between the heat transfer plates 11 arranged in a direction intersecting with the cooling water pipe 2, every other ridge member 21 may be provided. However, a concave portion needs to be formed by the heat transfer plate 11, the cooling water pipe 2, and the ridge members 21, 21.
[0032]
Further, in the above-described embodiment, the case where the ridge member 21 is provided on the upper outer surface of the cooling water pipe 2 penetrating each heat transfer plate 11 except the uppermost heat transfer plate 11 has been described, but the present invention is not limited thereto. However, when the ridge member 21 is provided on a part of the uppermost cooling water pipe 2, it is particularly effective to provide the ridge member 21 on the upper outer surface of the uppermost cooling water pipe 2 penetrating at least the lower heat transfer plate 11. It is a target. This is because the absorption capacity in the lower part of the absorber is generally reduced.
[0033]
【The invention's effect】
According to the absorber of the absorption refrigerator according to the present invention, as compared with the conventional absorber, the absorbing liquid comes into contact with the refrigerant vapor in a wide area to absorb the refrigerant vapor, and the heat generated thereby is sufficient. Since it is cooled effectively by heat exchange, the absorption capacity is dramatically improved.
[0034]
Furthermore, the absorbing liquid flowing down along the surface of the heat transfer plate undergoes a diffusing action each time it passes through the gap of the heat transfer plate, and suppresses the absorption liquid flowing down along the surface of the heat transfer plate. It is possible to improve the wettability of the outer peripheral surface of the cooling water pipe, and to obtain more absorption and heat exchange.
[Brief description of the drawings]
FIG. 1 is a side view showing an arrangement state of a cooling water pipe and a heat transfer plate in an absorber according to an embodiment of the present invention.
FIG. 2 is a front view showing an arrangement state of cooling water pipes in the absorber of FIG.
FIG. 3 is an explanatory diagram showing a flow of an absorbing liquid in a main part of the absorber of FIG.
FIG. 4 is a schematic diagram showing an absorber installed in a closed drum in a double-effect absorption refrigerator.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Plate-shaped heat transfer means 2 Cooling water pipe 3 Sealed drum 4 Absorbing liquid spraying mechanism (absorbing liquid supply means)
5, 50 Absorber 11 Heat transfer plate 21 Ridge member 22 Slit

Claims (5)

吸収液及び冷媒蒸気が供給されるべき密閉室内に、吸収液供給機構が設置され、吸収液供給機構の下方位置には、横方向に伸びる複数本の冷却水配管を上下方向に互いに間隔をおいて複数段に配列して、これらを互いに直列或いは並列に接続してなる冷却水配管系が設置されると共に、複数の板状伝熱手段が互いに間隔をおいて垂直の姿勢で前記冷却水配管と交差する方向に配列され、各板状伝熱手段は、前記冷却水配管の配列の1或いは複数段毎に設けられた複数枚の伝熱板から構成され、各伝熱板は水平方向に伸びて、上下に隣接する2枚の伝熱板の内、上位の伝熱板の下端面と下位の伝熱板の上端面の間には所定の間隙が設けられ、各伝熱板に、前記冷却水配管の配列の1或いは複数段が貫通している吸収式冷凍機の吸収器であって、
伝熱板を貫通する最上段の冷却水配管の上側外面に、該冷却水配管と交差する方向に配列された各伝熱板に跨って該冷却水配管の長手方向に沿って伸びる複数の突条部材が設けられ、前記各突条部材には、該突条部材間に貯溜される吸収液を下方に流下させるスリットが形成されていることを特徴とする吸収式冷凍機の吸収器。
An absorption liquid supply mechanism is installed in a closed chamber to which the absorption liquid and the refrigerant vapor are to be supplied, and a plurality of cooling water pipes extending in the horizontal direction are vertically spaced below the absorption liquid supply mechanism. And a cooling water piping system is provided in which the cooling water piping systems are connected in series or in parallel to each other, and a plurality of plate-shaped heat transfer means are spaced apart from each other in a vertical posture. Are arranged in a direction intersecting with each other, and each plate-like heat transfer means is constituted by a plurality of heat transfer plates provided for one or more stages of the cooling water pipe arrangement, and each heat transfer plate is arranged in a horizontal direction. Extending, of the two vertically adjacent heat transfer plates, a predetermined gap is provided between the lower end surface of the upper heat transfer plate and the upper end surface of the lower heat transfer plate, each heat transfer plate, An absorber of an absorption refrigerator in which one or a plurality of stages of the cooling water pipe array penetrates,
On the upper outer surface of the uppermost cooling water pipe penetrating the heat transfer plate, a plurality of protrusions extending along the longitudinal direction of the cooling water pipe over each heat transfer plate arranged in a direction crossing the cooling water pipe. An absorber for an absorption refrigerator, wherein a strip member is provided, and each of the protrusion members is formed with a slit for causing the absorbent stored between the protrusion members to flow downward.
前記突条部材は、前記最上段の冷却水配管と交差する方向に配列された全ての伝熱板を貫通するように、該冷却水配管の長手方向に沿って設けられていることを特徴とする請求項1記載の吸収式冷凍機の吸収器。The ridge member is provided along the longitudinal direction of the cooling water pipe so as to penetrate all the heat transfer plates arranged in a direction intersecting with the uppermost cooling water pipe. The absorber of the absorption refrigerator according to claim 1. 前記突条部材の上面が、各伝熱板の上端面より突出するように設けられていることを特徴とする請求項1又は2に記載の吸収式冷凍機の吸収器。The absorber according to claim 1, wherein an upper surface of the ridge member is provided so as to protrude from an upper end surface of each heat transfer plate. 上下に隣接する全ての伝熱板、或いは最上位の伝熱板を除く他の伝熱板において、各伝熱板の上端面と、各伝熱板を貫通する最上段の冷却水配管の外周面の上端とが、同一或いは略同一の高さに揃っていることを特徴とする請求項1乃至3のいずれかに記載の吸収式冷凍機の吸収器。In the upper and lower adjacent heat transfer plates or other heat transfer plates except the top heat transfer plate, the upper end surface of each heat transfer plate and the outer periphery of the top cooling water pipe passing through each heat transfer plate The absorber according to any one of claims 1 to 3, wherein the upper end of the surface is arranged at the same or substantially the same height. 前記突条部材は、少なくとも下位の伝熱板を貫通する最上段の冷却水配管の上側外面に設けられていることを特徴とする請求項1乃至4のいずれかに記載の吸収式冷凍機の吸収器。The absorption chiller according to any one of claims 1 to 4, wherein the ridge member is provided on an upper outer surface of a top cooling water pipe penetrating at least a lower heat transfer plate. Absorber.
JP17607599A 1999-06-22 1999-06-22 Absorption chiller absorber Expired - Fee Related JP3604959B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17607599A JP3604959B2 (en) 1999-06-22 1999-06-22 Absorption chiller absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17607599A JP3604959B2 (en) 1999-06-22 1999-06-22 Absorption chiller absorber

Publications (2)

Publication Number Publication Date
JP2001004249A JP2001004249A (en) 2001-01-12
JP3604959B2 true JP3604959B2 (en) 2004-12-22

Family

ID=16007293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17607599A Expired - Fee Related JP3604959B2 (en) 1999-06-22 1999-06-22 Absorption chiller absorber

Country Status (1)

Country Link
JP (1) JP3604959B2 (en)

Also Published As

Publication number Publication date
JP2001004249A (en) 2001-01-12

Similar Documents

Publication Publication Date Title
JP2007532855A (en) Thermal mass exchange machine
WO2001038802A1 (en) Absorption refrigerating machine
WO2017088768A1 (en) Absorption type refrigerating unit inclined flow guide condenser, refrigerating unit and refrigerating matrix
WO1998043027A1 (en) Absorber of absorption system refrigerator
JP3305653B2 (en) Plate type evaporator and absorber of absorption refrigerator
JP2000179989A (en) Sprinkler of absorption water cooler/heater
JP2006200852A (en) Absorber in absorption type refrigerator
JP3604959B2 (en) Absorption chiller absorber
KR100338794B1 (en) Falling film-type heat and mass exchanger using capillary force
US7900472B2 (en) Heat exchange and heat transfer device, in particular for a motor vehicle
JP3604958B2 (en) Absorption chiller absorber
JP3367323B2 (en) High-temperature regenerator and absorption chiller / heater for absorption chiller / heater
JP3604920B2 (en) Absorption chiller absorber
JPS6135902Y2 (en)
JP3378785B2 (en) Absorption chiller absorber
JPS6321489A (en) Latent heat storage device
JP2514252Y2 (en) Absorption refrigerator absorber
JPH10267458A (en) Absorbing device of absorption freezer
EP0082018B1 (en) Absorption refrigeration system
JP2877420B2 (en) Absorption refrigerator
JP7328490B2 (en) Gas-liquid contact module
JP6932740B2 (en) Liquid supply device and heat exchanger unit
JP2974005B2 (en) Absorption refrigerator
KR200142837Y1 (en) Eliminator of evaporator and absorber of an absorptive refrigerator
JPH0522838B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040930

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081008

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091008

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101008

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees