JP3604958B2 - Absorption chiller absorber - Google Patents

Absorption chiller absorber Download PDF

Info

Publication number
JP3604958B2
JP3604958B2 JP17607499A JP17607499A JP3604958B2 JP 3604958 B2 JP3604958 B2 JP 3604958B2 JP 17607499 A JP17607499 A JP 17607499A JP 17607499 A JP17607499 A JP 17607499A JP 3604958 B2 JP3604958 B2 JP 3604958B2
Authority
JP
Japan
Prior art keywords
heat transfer
cooling water
absorber
plate
transfer plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17607499A
Other languages
Japanese (ja)
Other versions
JP2000130886A (en
Inventor
裕之 橋本
直樹 広
芳男 小澤
賢二 名迫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP17607499A priority Critical patent/JP3604958B2/en
Publication of JP2000130886A publication Critical patent/JP2000130886A/en
Application granted granted Critical
Publication of JP3604958B2 publication Critical patent/JP3604958B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、吸収式冷凍機において、蒸発器から発生した冷媒蒸気を吸収液に吸収させる吸収器に関するものである。
【0002】
【従来の技術】
二重効用型の吸収式冷凍機においては、図8に示す如く密閉ドラム3の内部にエリミネータ30を設置して、その両側に蒸発器室31及び吸収器室32を形成し、蒸発器室31には蒸発器(図示省略)を設置すると共に吸収器室32には吸収器50を設置する。又、密閉ドラム3の底部には、低温熱交換器及び高温熱交換器を経て高温再生器へ伸びる配管62が接続され、該配管62の途中には、吸収液ポンプ6が取り付けられている。
【0003】
吸収器50は、低温熱交換器から伸びる配管61の先端に接続された吸収液散布機構4と、水平方向に伸びる複数本の冷却水配管2を具えた冷却水配管系とから構成される。
【0004】
吸収器50においては、吸収液散布機構4から冷却水配管2へ向けて破線で示す如く吸収液(臭化リチウム水溶液)が散布される。吸収液は、落下する過程で、蒸発器から発生した冷媒蒸気を吸収し、この際に発生する凝縮熱及び混合熱(吸収熱)により温度が上昇した吸収液は、冷却水配管2内を流れる冷却水によって冷却される。
【0005】
【発明が解決しようとする課題】
従来の吸収器50においては、吸収液散布機構4から散布された吸収液は、先ず、最上段の冷却水配管2の外周面上に落下し、滴状のまま外周面を伝って下方に流れた後、その下段の冷却水配管2の外周面上に落下する。この様にして吸収液は、滴状のまま、順に下段の冷却水配管2へ伝わっていくことになる。従って、吸収液は、重力の作用によって比較的高速で落下するばかりでなく、冷却水配管2の外周面に充分に拡がらず、冷媒蒸気を吸収すべき吸収液の吸収面積と、管表面に対する濡れ面積は小さなものとなる。この結果、充分な吸収と熱交換が行なわれず、このために、吸収器の吸収能力が低い問題があった。
【0006】
そこで本発明の目的は、従来よりも高い吸収能力が得られる吸収器を提供することである。
【0007】
【課題を解決する為の手段】
本発明に係る吸収式冷凍機の吸収器は、吸収液及び冷媒蒸気が供給されるべき密閉室内に、吸収液供給機構が設置され、吸収液供給機構の下方位置には、横方向に伸びる複数本の冷却水配管を互いに直列或いは並列に接続してなる冷却水配管系が設置されると共に、複数の板状伝熱手段が互いに間隔をおいて垂直の姿勢で横方向に配列され、前記複数本の冷却水配管がこれらの伝熱板を貫通している吸収式冷凍機の吸収器であって、前記複数本の冷却水配管は上下方向に互いに間隔をおいて複数段に配列され、各板状伝熱手段は、前記冷却水配管の配列の1或いは複数段毎に設けられた複数枚の伝熱板から構成され、各伝熱板は水平方向に伸びて、上下に隣接する2枚の伝熱板の内、上位の伝熱板の下端面と下位の伝熱板の上端面の間には所定の間隙が設けられ、各伝熱板に、前記冷却水配管の配列の1或いは複数段が貫通し、全ての伝熱板、或いは最上位の伝熱板を除く他の伝熱板においては、各伝熱板の上端面と、各伝熱板を貫通する最上段の冷却水配管の外周面の上端とが、同一或いは略同一の高さに揃っていることを特徴とするものである。そして、前記間隙は2mm乃至5mmに設定されているのが好ましい。
【0008】
この構成を用いることにより、吸収液は広い面積で冷媒蒸気と接触して冷媒蒸気を吸収すると共に、これによって発生する熱は充分な熱交換によって効果的に冷却される。
【0009】
また、上下に隣接する2枚の伝熱板の内、上位の伝熱板の下端面と下位の伝熱板の上端面の間には所定の間隙が設けられているので、冷却水配管の外周面を流下した吸収液の一部が、冷却水配管から離脱して伝熱板の表面を流下する際、水平方向に隣接する冷却水配管から離脱して流下する吸収液の一部と合流し、そのまま、その下段に配置されている2本の冷却水配管の間を通過する流れが発生したとしても、吸収液の流れが伝熱板の下端面に達すると、吸収液の一部は、伝熱板の下端面やその下位の伝熱板の上端面を伝って左右に拡散する。そして、吸収液が、下位の伝熱板を貫通する最上段の冷却水配管の外周面の上端に達すると、その後、吸収液は、冷却水配管の外周面を伝って流下することになる。
【0010】
従って、伝熱板の表面及び冷却水配管の外周面を伝って流下する吸収液は、伝熱板の間隙部を通過する度に上述の拡散作用を受けて、伝熱板の表面のみならず、冷却水配管の外周面にも充分に拡がって流下する。この結果、複数枚の伝熱板、即ち板状伝熱手段による上述の効果が発揮されると共に、冷却水配管による直接的な冷却効果が充分に発揮され、一層高い吸収能力が得られることになる。
【0011】
そして、具体的には、前記複数の板状伝熱手段は、3mm乃至15mmのピッチで配列されているのが好ましい。
【0012】
この構成を用いることにより、ピッチが小さすぎて吸収液どうしが合流して流下し、冷媒蒸気の流路が吸収液により塞がれて、吸収液に冷媒蒸気が充分な面積で接触せず、吸収能力が大幅に低下することがない。また、板状伝熱手段のピッチが大きくなるにつれて、冷却水配管の全長に亘って配列される板状伝熱手段の枚数が減少して、冷媒蒸気を吸収すべき吸収液の吸収面積と板状伝熱手段に対する吸収液の濡れ面積(板状伝熱手段表面に付着した吸収液の板状伝熱手段表面との接触面積;m2)が小さくなるが、ピッチを15mm以下にすることにより、従来の板状伝熱手段のない吸収器を上回る吸収量と熱交換量が得られる。
【0013】
更に、上下に隣接する各伝熱板が上下方向に対して千鳥状に配置されている構成にしても良い。そして、具体的には前記複数枚の伝熱板は所定間隔をおいて垂直の姿勢で横方向に配列されており、上下に隣接する各伝熱板が、上下方向に対して前記所定間隔の1/2づつずれて配置されている構成としても良い。
【0014】
この構成を用いることにより、上位の伝熱板表面を伝って流下する吸収液は、下位の伝熱板表面に直接流れるのを阻止し、下位の伝熱板を貫通する冷却水配管の外周面に充分拡がって流下する。この結果、吸収液が伝熱板表面を伝って流下するのを緩和して冷却水配管の外周面の濡れ性を向上させ、より一層の吸収量と熱交換量を得ることができる。
【0015】
【発明の実施の形態】
以下、本発明を二重効用型吸収式冷凍機の吸収器に実施した形態につき、図面に沿って具体的に説明する。
【0016】
本実施例の吸収器5は、図8に示す従来と同様に、密閉ドラム3内に形成された吸収器室32内に設置される。
【0017】
図1及び図2に示す如く、本実施形態例の吸収器5においては、吸収器室32内に、横方向に伸びる複数本の冷却水配管2が上下左右共に、例えば22mmのピッチで配列される。又、複数の板状伝熱手段1が互いに間隔をおいて垂直の姿勢で横方向に配列され、前記複数本の冷却水配管2がこれらの伝熱手段1を垂直に貫通している。伝熱手段1としては、例えば肉厚Tdが0.5mmの板状の銅板が採用される。尚、伝熱手段1としては、周知の他の材料、例えばアルミニウム等からなるものを採用することも可能である。又、伝熱手段1のピッチPdは、3〜15mmに設定される。
【0018】
この吸収器5では、冷却水配管2内に冷却水が供給され、板状伝熱手段1及び冷却水配管2の表面は、冷却水によって充分に温度が低下することになる。
【0019】
吸収液供給手段としての吸収液散布機構4から板状伝熱手段1の表面へ吸収液が供給され、その後、吸収液は、板状伝熱手段1の表面に拡がりつつ、板状伝熱手段1及び冷却水配管2の外周面を伝って流下する。この過程で吸収液は、板状伝熱手段1の間を通過する冷媒蒸気と充分な面積で接触して冷媒蒸気を吸収することになる。また、吸収液は、板状伝熱手段1の表面を伝って流下する過程で、板状伝熱手段1の表面を広い面積で濡らすことになり、然も吸収液は、流動抵抗により減速されて、板状伝熱手段1の表面を充分な時間をかけて流れることになる。従って、板状伝熱手段1表面との間で充分な熱交換が行われて、吸収液は効果的に冷却されることになる。
【0020】
この様に、吸収液は広い面積で冷媒蒸気と接触して冷媒蒸気を吸収すると共に、これによって発生する熱は充分な熱交換によって効果的に冷却され、この結果、高い吸収能力が得られる。
【0021】
そして、具体的には各板状伝熱手段1は、冷却水配管2の配列の上下2段毎に設けられた複数枚の伝熱板11から構成され、各伝熱板11は水平方向に伸びて、上下に隣接する2枚の伝熱板11の内、上位の伝熱板11の下端面と下位の伝熱板11の上端面の間には、互いに上下方向に後述の効果を有する2〜5mmの間隙Gが設けられ、各伝熱板11に、前記冷却水配管2の配列の上下2段が貫通している。そして、最上位の伝熱板11を除く他の伝熱板11においては、各伝熱板11の上端面と、各伝熱板11を貫通する上段の冷却水配管2の外周面の上端とが、同じ高さ位置に揃っている。尚、吸収液供給手段として上述したように従来の散布機構4を装備した吸収器においては、最上位の伝熱板11を含めて全ての伝熱板11の上端面が各伝熱板11を貫通する最上段の冷却水配管2の外周面の上端と同一高さに揃った構成を採ることも可能であり、或いは上記同様に、最上位の伝熱板11を除く2段目以下の伝熱板11の上端面が各伝熱板11を貫通する最上段の冷却水配管2の外周面の上端と同一高さに揃った構成を採用することも可能である。
【0022】
また、各伝熱板11には、各冷却水配管2の外周面から離して複数の蒸気流通孔12が開設されている。この蒸気流通孔12は、内径が2mm乃至3mmであり、水平方向に隣接する冷却水配管2の配列間に位置するように開設されている。これは、各伝熱板11に濡れない表面領域が生じることに着目し、吸収液が拡がって濡れにくい伝熱板11の表面領域に複数の蒸気流通孔12を開設して、伝熱板11を貫通する冷媒蒸気の流れを生起させている。これによって、伝熱板11表面に対する濡れ面積の割合が大きくなり、吸収能力が増加すると共に、伝熱板11によって冷媒蒸気の流れが妨げられることなく、吸収室32内を偏りなく流れて、吸収液に充分吸収されることになる。そして、上述したように伝熱板11の間隙Gが設けられているので、小さな内径を有する蒸気流通孔12を複数設けるだけで、上述した冷媒蒸気の流れを生起させることができ、蒸気流通孔の開設によって吸収液の伝熱板11表面の濡れ面積が小さくなってしまうという虞れもない。
【0023】
次に、上記した間隙Gを有する伝熱板11の効果について説明する。
【0024】
吸収液散布機構4から伝熱板11の表面に移った吸収液が伝熱板11及び冷却水配管2の表面を伝って流下する過程で、図3に点線の矢印で示す如く、隣接する2本の冷却水配管2、2の間を通過する流れや、これらの冷却水配管2、2の表面を流れた後に合流する流れが生じたとしても、この様な吸収液の流れが伝熱板11の下端面に達すると、該吸収液の一部は、該伝熱板11の下端面やその下の伝熱板11の上端面を伝って、左右に拡散することになる。そして、この吸収液が冷却水配管2の外周面の上端に達すると、その後、該吸収液は冷却水配管2の外周面を伝って流下するのである。
【0025】
この様に、吸収液は、伝熱板11の表面を流下する過程で、伝熱板11の間を通過する冷媒蒸気と充分な面積で接触して冷媒蒸気を吸収すると共に、伝熱板11の表面の流動抵抗により減速されて伝熱板11の表面を上端部から下端部まで充分な時間をかけて流れることになり、大きな熱交換量が得られる。また、伝熱板11及び冷却水配管2の表面を伝って流下する吸収液は、伝熱板11、11の間隙部を通過する度に上述の拡散作用を受けて、伝熱板11のみならず、冷却水配管2の表面にも充分に拡がって流下する。この結果、伝熱板11による上述の効果に加えて冷却水配管2による充分な冷却効果が発揮され、高い吸収能力が得られることになる。
【0026】
次に、上記構成の本発明の吸収器A及び伝熱板を具えない従来の吸収器Bの夫々について、同一体積を有する小型の実験機を作製し、これを用いて吸収液流量と冷凍能力の関係を調べたところ、図4に示す如く、本発明の吸収器Aについては一点鎖線、従来の吸収器Bについては実線の関係が得られた。尚、図4の結果は、実験機で得られた冷凍能力及び吸収液流量に基づいて、上述の諸元を有する吸収器A、Bの冷凍能力及び吸収液流量を計算したものである。
【0027】
図4から明らかな様に、複数枚の伝熱板11を具えた本発明の吸収器Aによれば、吸収液流量に拘わらず、従来の吸収器Bよりも大きな冷凍能力を得ることが出来る。
【0028】
また、上記したように本発明では、伝熱手段1のピッチPdを3〜15mmに設定している。これは、伝熱手段1のピッチPdが大きくなるにつれて、冷却水配管2の全長に亘って配列される伝熱手段1の枚数が減少して、吸収液の吸収面積と伝熱板11に対する吸収液の濡れ面積が小さくなるため、そのピッチPdが15mmを越えると、伝熱板11の無い従来の吸収器と殆ど濡れ面積が同じになって、従来の熱交換量を大きく上回る熱交換量は得られないためである。また、伝熱手段1のピッチPdが3mmより小さい場合には、伝熱手段1どうしの接近によって、互いに対向する2つの表面を夫々流れる吸収液どうしが接触し、これらの吸収液が合流して流下するため、冷媒蒸気の流路が吸収液により塞がれて、吸収液に冷媒蒸気が充分な面積で接触せず、吸収能力が大幅に低下するためである。従って、伝熱手段1のピッチPdは、3〜15mmの範囲に設定することが望ましく、これによって従来の吸収器に比べて高い吸収能力が得られ、所期の吸収能力を発揮するために必要な体積は小さくて済むので、吸収器の小型化が可能である。
(実施の形態2)
図5は、この実施の形態2の吸収器における冷却水配管と伝熱板との配列状態を表す側面図である。尚、上記した実施の形態1と同一の構成要素には同一の符号を付記してその説明を省略し、相違点を中心に説明していく。
【0029】
上記した実施の形態1の板状伝熱手段1では、所定の間隙をおいて上下に隣接する各伝熱板11が、上下方向に略同列に配置させているのに対し、この吸収器5では、上下に隣接する各伝熱板21が、図5に示すように、上下方向に対して千鳥状に配置されている。具体的には、複数枚の伝熱板21は所定間隔をおいて垂直の姿勢で横方向に配列されており、上下に隣接する各伝熱板21が、上下方向に対して所定間隔の1/2づつずれて配置されている。
【0030】
以上のように各伝熱板21を配列することにより、図6に示すように、上位の伝熱板21表面を伝って流下する吸収液は、下位の伝熱板21表面に直接流れることなく、下位の伝熱板21を貫通する冷却水配管2の表面を流れた後に、下位の伝熱板21表面及び冷却水配管2の外周面に充分拡がって流下することになる。
【0031】
従って、吸収液が伝熱板21表面を伝って流下するのを緩和して冷却水配管2の外周面の濡れ性を向上させ、より一層の吸収量と熱交換量を得ることができる。
【0032】
尚、本発明の各部構成は上記実施の形態に限らず、特許請求の範囲に記載の技術的範囲内で種々の変形が可能である。
【0033】
例えば、上記実施形態例において、複数本の冷却水配管2を千鳥状に配列することも可能である。
【0034】
又、垂直平板状の伝熱板11、21に代えて、鉛直方向に沿って波打つ波板状の伝熱板を採用することも可能である。さらに、鉛直方向に沿って凹凸が現われる表面加工が施された伝熱板を採用することも可能である。これらの伝熱板を採用した場合、吸収液が流下する際の流動抵抗が大きくなって、伝熱板11、21に比べて流下速度が減小すると共に、吸収液の吸収面積と吸収液の濡れ面積が増大するため、より高い吸収能力を得ることが出来る。
【0035】
更に加えて、図7に示すように各伝熱板11、21に複数の蒸気流通孔12を開設した構成としすることも可能である。これは、上述の伝熱板11、21に濡れない表面領域が生じることに着目し、伝熱板11、21に複数の蒸気流通孔12を開設して、伝熱板11、21を貫通する冷媒蒸気の流れを生起させている。これによって、冷媒蒸気は伝熱板11、21に流れを妨げられることなく、吸収器室32内を偏りなく流れて、吸収液に充分に吸収されることになる。
【0036】
【発明の効果】
本発明に係る吸収式冷凍機の吸収器によれば、従来の吸収器に比べて、吸収液は広い面積で冷媒蒸気と接触して冷媒蒸気を吸収すると共に、これによって発生する熱は充分な熱交換によって効果的に冷却されるので、吸収能力が飛躍的に向上する。
【0037】
更に、伝熱板の間隙によって、吸収液は伝熱板の表面のみならず、冷却水配管の外周面にも充分に拡がって流下するので、冷却水配管による直接的な冷却効果が充分に発揮され、一層高い吸収能力が得られることになる。
【図面の簡単な説明】
【図1】本発明の一実施形態例を示す吸収器の要部を表わす一部破断斜視図である。
【図2】図1の吸収器における冷却水配管の配列状態を表わす正面図である。
【図3】図1の吸収器の要部を表わす一部破断正面図である。
【図4】吸収液流量と冷凍能力の関係を表わすグラフである。
【図5】本発明の実施形態2の吸収器5における、冷却水配管と伝熱板との配列状態を表す側面図である。
【図6】図6の吸収器5の要部における吸収液の流れを示す説明図である。
【図7】伝熱板に複数の蒸気流通孔を開設した構成例及びその際の蒸気流通孔及び冷却水配管貫通孔の寸法及びピッチを表わす図である。
【図8】二重効用型の吸収式冷凍機において、密閉ドラム内に設置された吸収器を表わす模式図である。
【符号の説明】
1 板状伝熱手段
2 冷却水配管
3 密閉ドラム
4 吸収液散布機構(吸収液供給手段)
5、50 吸収器
11、21 伝熱板
12 蒸気流通孔
[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to an absorber for absorbing refrigerant vapor generated from an evaporator into an absorption liquid in an absorption refrigerator.
[0002]
[Prior art]
In the double effect absorption refrigerator, as shown in FIG. 8, an eliminator 30 is installed inside a closed drum 3, and an evaporator chamber 31 and an absorber chamber 32 are formed on both sides thereof. , An evaporator (not shown) is installed, and an absorber 50 is installed in the absorber chamber 32. Further, a pipe 62 extending to a high-temperature regenerator through a low-temperature heat exchanger and a high-temperature heat exchanger is connected to the bottom of the closed drum 3, and an absorbent pump 6 is mounted in the middle of the pipe 62.
[0003]
The absorber 50 is composed of an absorption liquid spraying mechanism 4 connected to a tip of a pipe 61 extending from the low-temperature heat exchanger, and a cooling water piping system including a plurality of cooling water pipes 2 extending in a horizontal direction.
[0004]
In the absorber 50, an absorbing liquid (aqueous lithium bromide solution) is sprayed from the absorbing liquid spraying mechanism 4 toward the cooling water pipe 2 as shown by a broken line. The absorbing liquid absorbs the refrigerant vapor generated from the evaporator in the process of falling, and the absorbing liquid whose temperature has risen due to the heat of condensation and the heat of mixing (heat of absorption) generated at this time flows through the cooling water pipe 2. Cooled by cooling water.
[0005]
[Problems to be solved by the invention]
In the conventional absorber 50, the absorbing liquid sprayed from the absorbing liquid spraying mechanism 4 first falls onto the outer peripheral surface of the uppermost cooling water pipe 2, and flows downward along the outer peripheral surface in a droplet form. Then, it falls on the outer peripheral surface of the cooling water pipe 2 at the lower stage. In this way, the absorbing liquid is transmitted to the lower cooling water pipe 2 in the order of droplets. Therefore, the absorbing liquid not only falls at a relatively high speed due to the action of gravity, but also does not spread sufficiently on the outer peripheral surface of the cooling water pipe 2, and the absorption area of the absorbing liquid to absorb the refrigerant vapor and the pipe surface The wet area is small. As a result, sufficient absorption and heat exchange were not performed, and there was a problem that the absorption capacity of the absorber was low.
[0006]
Therefore, an object of the present invention is to provide an absorber capable of obtaining higher absorption capacity than before.
[0007]
[Means for solving the problem]
In the absorber of the absorption refrigerator according to the present invention, an absorption liquid supply mechanism is provided in a closed chamber to which the absorption liquid and the refrigerant vapor are to be supplied. A cooling water piping system formed by connecting the cooling water pipings in series or in parallel to each other is installed, and a plurality of plate-shaped heat transfer means are arranged in a vertical direction at an interval from each other, and The cooling water pipes are absorbers of an absorption refrigerator that penetrates these heat transfer plates, and the plurality of cooling water pipes are arranged in a plurality of stages at intervals from one another in a vertical direction. The plate-like heat transfer means is composed of a plurality of heat transfer plates provided for one or more stages of the cooling water pipe arrangement, and each heat transfer plate extends in the horizontal direction and is vertically adjacent to two heat transfer plates. Of the heat transfer plates between the upper and lower heat transfer plates. Is provided, one or more stages of the arrangement of the cooling water pipes penetrate each heat transfer plate, and all the heat transfer plates, or other heat transfer plates except the top heat transfer plate, The upper end surface of each heat transfer plate and the upper end of the outer peripheral surface of the uppermost cooling water pipe penetrating each heat transfer plate are aligned at the same or substantially the same height. Preferably, the gap is set to 2 mm to 5 mm.
[0008]
By using this configuration, the absorbing liquid comes into contact with the refrigerant vapor over a large area to absorb the refrigerant vapor, and the heat generated thereby is effectively cooled by sufficient heat exchange.
[0009]
In addition, a predetermined gap is provided between the lower end surface of the upper heat transfer plate and the upper end surface of the lower heat transfer plate of the two vertically adjacent heat transfer plates. When a part of the absorbing liquid flowing down the outer peripheral surface separates from the cooling water pipe and flows down the surface of the heat transfer plate, it merges with a part of the absorbing liquid that separates and flows down from the horizontally adjacent cooling water pipe. Then, even if a flow passing between the two cooling water pipes arranged at the lower stage occurs as it is, when the flow of the absorbent reaches the lower end surface of the heat transfer plate, a part of the absorbent is And diffuses right and left along the lower end surface of the heat transfer plate and the upper end surface of the lower heat transfer plate. Then, when the absorbing liquid reaches the upper end of the outer peripheral surface of the uppermost cooling water pipe penetrating the lower heat transfer plate, thereafter, the absorbing liquid flows down along the outer peripheral surface of the cooling water pipe.
[0010]
Therefore, the absorbing liquid flowing down along the surface of the heat transfer plate and the outer peripheral surface of the cooling water pipe is subjected to the above-described diffusion action every time when passing through the gap portion of the heat transfer plate, and not only the surface of the heat transfer plate but also Then, the cooling water flows sufficiently down to the outer peripheral surface of the piping. As a result, a plurality of heat transfer plates, that is, the above-described effect by the plate-shaped heat transfer means is exhibited, and the direct cooling effect by the cooling water pipe is sufficiently exhibited, so that a higher absorption capacity is obtained. Become.
[0011]
Further, specifically, it is preferable that the plurality of plate-shaped heat transfer means are arranged at a pitch of 3 mm to 15 mm.
[0012]
By using this configuration, the pitch is too small, the absorption liquids merge and flow down, the flow path of the refrigerant vapor is blocked by the absorption liquid, and the refrigerant vapor does not contact the absorption liquid with a sufficient area, Absorption capacity does not decrease significantly. Further, as the pitch of the plate-like heat transfer means increases, the number of plate-like heat transfer means arranged over the entire length of the cooling water pipe decreases, and the absorption area of the absorption liquid to absorb the refrigerant vapor and the plate Area of the absorbing liquid on the plate-like heat transfer means (the contact area of the absorbing liquid adhering to the plate-like heat transfer means surface with the plate-like heat transfer means; m2) is reduced, but by setting the pitch to 15 mm or less, Absorbance and heat exchange can be obtained over conventional absorbers without plate heat transfer means.
[0013]
Further, the heat transfer plates vertically adjacent to each other may be arranged in a staggered manner in the vertical direction. And, specifically, the plurality of heat transfer plates are arranged in a horizontal direction in a vertical posture at a predetermined interval, and each vertically adjacent heat transfer plate is arranged at the predetermined interval with respect to the vertical direction. It is good also as composition which is shifted by 1/2.
[0014]
By using this configuration, the absorbing liquid flowing down the upper heat transfer plate surface is prevented from flowing directly to the lower heat transfer plate surface, and the outer peripheral surface of the cooling water pipe penetrating through the lower heat transfer plate. It spreads enough to flow down. As a result, it is possible to reduce the absorption liquid flowing down the surface of the heat transfer plate, improve the wettability of the outer peripheral surface of the cooling water pipe, and obtain a further absorption amount and heat exchange amount.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment in which the present invention is applied to an absorber of a double-effect absorption refrigerator will be specifically described with reference to the drawings.
[0016]
The absorber 5 of the present embodiment is installed in an absorber chamber 32 formed in the closed drum 3 as in the conventional case shown in FIG.
[0017]
As shown in FIGS. 1 and 2, in the absorber 5 of the present embodiment, a plurality of cooling water pipes 2 extending in the lateral direction are arranged in the absorber chamber 32 at a pitch of, for example, 22 mm both vertically and horizontally. You. Further, a plurality of plate-shaped heat transfer means 1 are arranged in a horizontal direction at an interval from each other in a vertical posture, and the plurality of cooling water pipes 2 penetrate the heat transfer means 1 vertically. As the heat transfer means 1, for example, a plate-shaped copper plate having a thickness Td of 0.5 mm is adopted. The heat transfer means 1 may be made of another known material such as aluminum. Further, the pitch Pd of the heat transfer means 1 is set to 3 to 15 mm.
[0018]
In the absorber 5, the cooling water is supplied into the cooling water pipe 2, and the surfaces of the plate-shaped heat transfer means 1 and the cooling water pipe 2 are sufficiently cooled by the cooling water.
[0019]
The absorbing liquid is supplied to the surface of the plate-shaped heat transfer means 1 from the absorbing liquid spraying mechanism 4 serving as the absorbing liquid supply means. It flows down along the outer peripheral surface of the cooling water pipe 1 and 1. In this process, the absorbing liquid comes into contact with the refrigerant vapor passing between the plate-shaped heat transfer means 1 with a sufficient area to absorb the refrigerant vapor. Moreover, in the process of flowing down along the surface of the plate-shaped heat transfer means 1, the absorption liquid wets the surface of the plate-shaped heat transfer means 1 over a wide area, and the absorption liquid is decelerated by the flow resistance. As a result, it flows over the surface of the plate-shaped heat transfer means 1 over a sufficient time. Therefore, sufficient heat exchange is performed with the surface of the plate-shaped heat transfer means 1, and the absorbing liquid is effectively cooled.
[0020]
As described above, the absorbing liquid comes into contact with the refrigerant vapor over a wide area to absorb the refrigerant vapor, and the heat generated thereby is effectively cooled by sufficient heat exchange, and as a result, a high absorption capacity is obtained.
[0021]
And, specifically, each plate-shaped heat transfer means 1 is composed of a plurality of heat transfer plates 11 provided at every two upper and lower stages of the arrangement of the cooling water pipes 2, and each heat transfer plate 11 Of the two vertically adjacent heat transfer plates 11 extending between the lower end surface of the upper heat transfer plate 11 and the upper end surface of the lower heat transfer plate 11, the following effects are provided in the up and down direction. A gap G of 2 to 5 mm is provided, and two upper and lower stages of the cooling water pipe 2 penetrate through each heat transfer plate 11. In the other heat transfer plates 11 except for the uppermost heat transfer plate 11, the upper end surface of each heat transfer plate 11 and the upper end of the outer peripheral surface of the upper cooling water pipe 2 penetrating each heat transfer plate 11. But are aligned at the same height. In addition, in the absorber equipped with the conventional spraying mechanism 4 as described above as the absorbing liquid supply means, the upper end surfaces of all the heat transfer plates 11 including the uppermost heat transfer plate 11 correspond to each heat transfer plate 11. It is also possible to adopt a configuration in which the upper end of the cooling water pipe 2 at the top is penetrated at the same height as the upper end of the outer peripheral surface of the cooling water pipe 2, or, similarly to the above, the transmission of the second and lower stages excluding the top heat transfer plate 11 is performed. It is also possible to adopt a configuration in which the upper end surface of the heat plate 11 is flush with the upper end of the outer peripheral surface of the uppermost cooling water pipe 2 that penetrates each heat transfer plate 11.
[0022]
Further, in each heat transfer plate 11, a plurality of steam circulation holes 12 are opened apart from the outer peripheral surface of each cooling water pipe 2. The steam flow hole 12 has an inner diameter of 2 mm to 3 mm, and is opened so as to be located between the arrangements of the cooling water pipes 2 which are horizontally adjacent to each other. This focuses on the fact that each heat transfer plate 11 has a non-wetting surface area, and a plurality of vapor flow holes 12 are opened in the surface area of the heat transfer plate 11 where the absorbing liquid spreads and is hard to wet. To generate a flow of the refrigerant vapor passing therethrough. As a result, the ratio of the wetted area to the surface of the heat transfer plate 11 is increased, the absorption capacity is increased, and the flow of the refrigerant vapor is not obstructed by the heat transfer plate 11 and flows evenly in the absorption chamber 32 to absorb the refrigerant. It will be sufficiently absorbed by the liquid. Since the gap G between the heat transfer plates 11 is provided as described above, the flow of the refrigerant vapor described above can be generated only by providing a plurality of the vapor circulation holes 12 having a small inner diameter. There is no fear that the wetting area of the surface of the heat transfer plate 11 of the absorbing liquid will be reduced by the opening.
[0023]
Next, the effect of the heat transfer plate 11 having the gap G will be described.
[0024]
In the process in which the absorbing liquid transferred from the absorbing liquid spraying mechanism 4 to the surface of the heat transfer plate 11 flows down the surface of the heat transfer plate 11 and the cooling water pipe 2, as shown by the dotted arrow in FIG. Even if a flow that passes between the cooling water pipes 2 and 2 or a flow that merges after flowing on the surface of the cooling water pipes 2 and 2 occurs, such a flow of the absorbing liquid is When the liquid reaches the lower end surface of the heat transfer plate 11, a part of the absorbing liquid diffuses right and left along the lower end surface of the heat transfer plate 11 and the upper end surface of the heat transfer plate 11 thereunder. When the absorbent reaches the upper end of the outer peripheral surface of the cooling water pipe 2, the absorbent then flows down the outer peripheral surface of the cooling water pipe 2.
[0025]
As described above, in the process of flowing down the surface of the heat transfer plate 11, the absorbing liquid comes into contact with the refrigerant vapor passing between the heat transfer plates 11 with a sufficient area to absorb the refrigerant vapor and to absorb the refrigerant vapor. Is decelerated by the flow resistance of the surface, and flows over the surface of the heat transfer plate 11 from the upper end to the lower end in a sufficient time, and a large heat exchange amount can be obtained. Further, the absorbing liquid flowing down along the surface of the heat transfer plate 11 and the cooling water pipe 2 is subjected to the above-described diffusion action every time when passing through the gap between the heat transfer plates 11, 11. Instead, it spreads sufficiently on the surface of the cooling water pipe 2 and flows down. As a result, in addition to the above-described effects of the heat transfer plate 11, a sufficient cooling effect by the cooling water pipe 2 is exhibited, and a high absorption capacity is obtained.
[0026]
Next, for each of the absorber A of the present invention having the above-described structure and the conventional absorber B having no heat transfer plate, a small experimental machine having the same volume was manufactured, and the absorption liquid flow rate and refrigeration capacity were As a result, as shown in FIG. 4, the relationship between the dash-dot line for the absorber A of the present invention and the solid line for the conventional absorber B was obtained. The results in FIG. 4 are obtained by calculating the refrigerating capacity and the flow rate of the absorbing solution of the absorbers A and B having the above-mentioned specifications based on the refrigerating capacity and the flow rate of the absorbing solution obtained by the experimental machine.
[0027]
As is clear from FIG. 4, according to the absorber A of the present invention including a plurality of heat transfer plates 11, it is possible to obtain a larger refrigeration capacity than the conventional absorber B regardless of the flow rate of the absorbent. .
[0028]
Further, as described above, in the present invention, the pitch Pd of the heat transfer means 1 is set to 3 to 15 mm. This is because as the pitch Pd of the heat transfer means 1 increases, the number of heat transfer means 1 arranged over the entire length of the cooling water pipe 2 decreases, and the absorption area of the absorbing liquid and the absorption of the heat transfer plate 11 When the pitch Pd exceeds 15 mm, the wetted area of the liquid is almost the same as that of the conventional absorber without the heat transfer plate 11, and the heat exchange amount greatly exceeds the conventional heat exchange amount. This is because they cannot be obtained. When the pitch Pd of the heat transfer means 1 is smaller than 3 mm, the absorption liquids flowing on the two opposing surfaces come into contact with each other due to the approach of the heat transfer means 1, and these absorption liquids merge. This is because the flow of the refrigerant vapor is blocked by the absorbing liquid, and the refrigerant vapor does not come into contact with the absorbing liquid with a sufficient area, so that the absorption capacity is greatly reduced. Therefore, the pitch Pd of the heat transfer means 1 is desirably set in the range of 3 to 15 mm, whereby a higher absorption capacity can be obtained as compared with a conventional absorber, and it is necessary to exhibit the intended absorption capacity. Since a small volume is required, the absorber can be downsized.
(Embodiment 2)
FIG. 5 is a side view showing the arrangement of cooling water pipes and heat transfer plates in the absorber according to the second embodiment. The same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof will be omitted. The description will be focused on the differences.
[0029]
In the plate-shaped heat transfer means 1 of the first embodiment, the heat transfer plates 11 vertically adjacent to each other with a predetermined gap are arranged substantially in the same row in the vertical direction. In FIG. 5, the vertically adjacent heat transfer plates 21 are arranged in a staggered manner in the up-down direction, as shown in FIG. Specifically, the plurality of heat transfer plates 21 are arranged in a horizontal direction in a vertical position at a predetermined interval, and each of the heat transfer plates 21 vertically adjacent to each other is arranged at a predetermined interval in the vertical direction. / 2 are shifted from each other.
[0030]
By arranging the heat transfer plates 21 as described above, as shown in FIG. 6, the absorbing liquid flowing down the upper heat transfer plate 21 surface does not flow directly to the lower heat transfer plate 21 surface. After flowing on the surface of the cooling water pipe 2 penetrating the lower heat transfer plate 21, the water flows sufficiently down the surface of the lower heat transfer plate 21 and the outer peripheral surface of the cooling water pipe 2 to flow down.
[0031]
Therefore, it is possible to alleviate the absorption liquid flowing down along the surface of the heat transfer plate 21, improve the wettability of the outer peripheral surface of the cooling water pipe 2, and obtain more absorption and heat exchange.
[0032]
The configuration of each part of the present invention is not limited to the above embodiment, and various modifications can be made within the technical scope described in the claims.
[0033]
For example, in the above embodiment, a plurality of cooling water pipes 2 can be arranged in a staggered manner.
[0034]
Instead of the heat transfer plates 11 and 21 having a vertical flat plate shape, it is also possible to employ a heat transfer plate having a corrugated shape waving along the vertical direction. Furthermore, it is also possible to employ a heat transfer plate that has been subjected to a surface processing in which irregularities appear along the vertical direction. When these heat transfer plates are employed, the flow resistance when the absorbing solution flows down increases, the flow speed decreases as compared with the heat transfer plates 11 and 21, and the absorption area of the absorbing solution and the absorption liquid Since the wetted area increases, higher absorption capacity can be obtained.
[0035]
In addition, as shown in FIG. 7, it is also possible to adopt a configuration in which a plurality of steam circulation holes 12 are opened in each of the heat transfer plates 11 and 21. This focuses on the fact that the above-described heat transfer plates 11 and 21 have a surface area that is not wet, and a plurality of steam circulation holes 12 are opened in the heat transfer plates 11 and 21 to penetrate the heat transfer plates 11 and 21. The flow of the refrigerant vapor is generated. As a result, the refrigerant vapor flows evenly in the absorber chamber 32 without being obstructed by the heat transfer plates 11 and 21, and is sufficiently absorbed by the absorbing liquid.
[0036]
【The invention's effect】
According to the absorber of the absorption refrigerator according to the present invention, as compared with the conventional absorber, the absorbing liquid comes into contact with the refrigerant vapor in a wide area to absorb the refrigerant vapor, and the heat generated thereby is sufficient. Since it is cooled effectively by heat exchange, the absorption capacity is dramatically improved.
[0037]
Furthermore, due to the gap between the heat transfer plates, the absorbing liquid spreads not only on the surface of the heat transfer plate but also on the outer peripheral surface of the cooling water piping and flows down, so that the direct cooling effect by the cooling water piping is sufficiently exhibited. Thus, a higher absorption capacity can be obtained.
[Brief description of the drawings]
FIG. 1 is a partially cutaway perspective view showing a main part of an absorber according to an embodiment of the present invention.
FIG. 2 is a front view showing an arrangement state of cooling water pipes in the absorber of FIG.
FIG. 3 is a partially cutaway front view showing a main part of the absorber of FIG. 1;
FIG. 4 is a graph showing a relationship between an absorption liquid flow rate and a refrigeration capacity.
FIG. 5 is a side view showing an arrangement state of cooling water pipes and heat transfer plates in an absorber 5 according to Embodiment 2 of the present invention.
FIG. 6 is an explanatory diagram showing a flow of an absorbing liquid in a main part of the absorber 5 of FIG.
FIG. 7 is a diagram illustrating a configuration example in which a plurality of steam circulation holes are opened in a heat transfer plate, and dimensions and pitches of the steam circulation holes and cooling water pipe through holes at that time.
FIG. 8 is a schematic diagram showing an absorber installed in a closed drum in a double-effect absorption refrigerator.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Plate-shaped heat transfer means 2 Cooling water pipe 3 Sealed drum 4 Absorbing liquid spraying mechanism (absorbing liquid supply means)
5, 50 Absorber 11, 21 Heat transfer plate 12 Steam flow hole

Claims (5)

吸収液及び冷媒蒸気が供給されるべき密閉室内に、吸収液供給機構が設置され、吸収液供給機構の下方位置には、横方向に伸びる複数本の冷却水配管を互いに直列或いは並列に接続してなる冷却水配管系が設置されると共に、複数の板状伝熱手段が互いに間隔をおいて垂直の姿勢で横方向に配列され、前記複数本の冷却水配管がこれらの板状伝熱手段を貫通している吸収式冷凍機の吸収器であって、
前記複数本の冷却水配管は上下方向に互いに間隔をおいて複数段に配列され、
各板状伝熱手段は、前記冷却水配管の配列の1或いは複数段毎に設けられた複数枚の伝熱板から構成され、各伝熱板は水平方向に伸びて、上下に隣接する2枚の伝熱板の内、上位の伝熱板の下端面と下位の伝熱板の上端面の間には所定の間隙が設けられ、各伝熱板に、前記冷却水配管の配列の1或いは複数段が貫通し、全ての伝熱板、或いは最上位の伝熱板を除く他の伝熱板においては、各伝熱板の上端面と、各伝熱板を貫通する最上段の冷却水配管の外周面の上端とが、同一或いは略同一の高さに揃っていることを特徴とする吸収式冷凍機の吸収器。
An absorption liquid supply mechanism is installed in a closed chamber to which the absorption liquid and the refrigerant vapor are to be supplied, and a plurality of laterally extending cooling water pipes are connected in series or in parallel to each other at a position below the absorption liquid supply mechanism. And a plurality of plate-like heat transfer means are arranged in a horizontal direction at a distance from each other in a vertical position, and the plurality of cooling water pipes are An absorber of an absorption refrigerator that penetrates,
The plurality of cooling water pipes are arranged in a plurality of stages at intervals in the vertical direction,
Each plate-like heat transfer means is composed of a plurality of heat transfer plates provided in one or more stages of the cooling water pipe arrangement, and each heat transfer plate extends in the horizontal direction and is vertically adjacent to each other. A predetermined gap is provided between the lower end surface of the upper heat transfer plate and the upper end surface of the lower heat transfer plate among the heat transfer plates, and each heat transfer plate has one of the arrangements of the cooling water pipes. Alternatively, in the case where a plurality of stages penetrate, all the heat transfer plates, or, in the other heat transfer plates except the top heat transfer plate, the upper end surface of each heat transfer plate and the top stage cooling that penetrates each heat transfer plate. An absorber for an absorption refrigerator, wherein the upper end of the outer peripheral surface of the water pipe is aligned at the same or substantially the same height.
前記間隙は2mm乃至5mmに設定されている請求項1に記載の吸収式冷凍機の吸収器。The absorber according to claim 1, wherein the gap is set to 2 mm to 5 mm. 前記複数の板状伝熱手段は、3mm乃至15mmのピッチで配列されている請求項1又は2に記載の吸収式冷凍機の吸収器。3. The absorber of the absorption refrigerator according to claim 1, wherein the plurality of plate-shaped heat transfer units are arranged at a pitch of 3 mm to 15 mm. 4. 上下に隣接する各伝熱板が上下方向に対して千鳥状に配置されていることを特徴とする請求項1乃至3のいずれかに記載の吸収式冷凍機の吸収器。The absorber of an absorption refrigerator according to any one of claims 1 to 3, wherein the vertically adjacent heat transfer plates are arranged in a staggered manner in the vertical direction. 前記複数枚の伝熱板は所定間隔をおいて垂直の姿勢で横方向に配列されており、上下に隣接する各伝熱板が、上下方向に対して前記所定間隔の1/2づつずれて配置されていることを特徴とする請求項4に記載の吸収式冷凍機の吸収器。The plurality of heat transfer plates are arranged in a horizontal direction in a vertical position at a predetermined interval, and each vertically adjacent heat transfer plate is shifted by 1/2 of the predetermined interval in the vertical direction. The absorber of the absorption refrigerator according to claim 4, wherein the absorber is arranged.
JP17607499A 1998-08-20 1999-06-22 Absorption chiller absorber Expired - Fee Related JP3604958B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17607499A JP3604958B2 (en) 1998-08-20 1999-06-22 Absorption chiller absorber

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP23413298 1998-08-20
JP10-234132 1998-08-20
JP17607499A JP3604958B2 (en) 1998-08-20 1999-06-22 Absorption chiller absorber

Publications (2)

Publication Number Publication Date
JP2000130886A JP2000130886A (en) 2000-05-12
JP3604958B2 true JP3604958B2 (en) 2004-12-22

Family

ID=26497135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17607499A Expired - Fee Related JP3604958B2 (en) 1998-08-20 1999-06-22 Absorption chiller absorber

Country Status (1)

Country Link
JP (1) JP3604958B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110117913A (en) * 2010-04-22 2011-10-28 엘지전자 주식회사 Absorption chiller

Also Published As

Publication number Publication date
JP2000130886A (en) 2000-05-12

Similar Documents

Publication Publication Date Title
JP2007532855A (en) Thermal mass exchange machine
JP2000227262A (en) Absorption refrigerating machine and manufacture of same
WO1998043027A1 (en) Absorber of absorption system refrigerator
JP3305653B2 (en) Plate type evaporator and absorber of absorption refrigerator
JP2000179989A (en) Sprinkler of absorption water cooler/heater
JP2006200852A (en) Absorber in absorption type refrigerator
JP3604958B2 (en) Absorption chiller absorber
JP3604920B2 (en) Absorption chiller absorber
JPH10220914A (en) Plate type evaporator and absorbing device of absorbing type freezer
KR100338794B1 (en) Falling film-type heat and mass exchanger using capillary force
JP3367323B2 (en) High-temperature regenerator and absorption chiller / heater for absorption chiller / heater
JPS6135902Y2 (en)
JP3604959B2 (en) Absorption chiller absorber
KR890004392B1 (en) Air cooled absorption refrigeration system
JP3378785B2 (en) Absorption chiller absorber
JP2514252Y2 (en) Absorption refrigerator absorber
JPH10267458A (en) Absorbing device of absorption freezer
JP2877420B2 (en) Absorption refrigerator
JP2000304377A (en) Absorber for water-cooled absorption refrigerating device
JP2974005B2 (en) Absorption refrigerator
JP2000241044A (en) Absorption refrigerating machine
KR20120080297A (en) Absorption chiller and heater with solution plate
JP2000028225A (en) Absorptive heat source apparatus
JPH0666458A (en) Refrigerator evaporator
JP3432864B2 (en) Rectification unit for absorption refrigerator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040930

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081008

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091008

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101008

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees