JPH1032349A - Growing method for semiconductor - Google Patents

Growing method for semiconductor

Info

Publication number
JPH1032349A
JPH1032349A JP20305596A JP20305596A JPH1032349A JP H1032349 A JPH1032349 A JP H1032349A JP 20305596 A JP20305596 A JP 20305596A JP 20305596 A JP20305596 A JP 20305596A JP H1032349 A JPH1032349 A JP H1032349A
Authority
JP
Japan
Prior art keywords
layer
gan
growth temperature
gainn
grown
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20305596A
Other languages
Japanese (ja)
Other versions
JP3740744B2 (en
Inventor
Fumihiko Nakamura
中村  文彦
Yasunori Asazuma
庸紀 朝妻
Hiroharu Kawai
弘治 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP20305596A priority Critical patent/JP3740744B2/en
Publication of JPH1032349A publication Critical patent/JPH1032349A/en
Application granted granted Critical
Publication of JP3740744B2 publication Critical patent/JP3740744B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)
  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a growing method of a semiconductor, which can prevent the deterioration of the III-V semiconductor layer in a nitride system containing In, when it is required to grow the III-V compound semiconductor layer in another nitride system on the III-V compound semiconductor layer in the nitride system containing In such as GaInN layer and the growing temperature higher than the growing temperature of the original layer. SOLUTION: When a GaInN/GaN quantum well structure if formed, after a GaInN layer 5 is grown at the growing temperature of 700-850 deg.C, a GaN cap layer 6 is grown at the temperature equivalent to the growing temperature of the GaInN layer 5 so as to cover the surface of the GaInN layer. The thickness of the GaN cap layer 6 is made to be 30nm or more. Thereafter the growing temperature is made to rise up to, e.g. 100 deg.C, and GnN layer 7 is grown. In place of the GaN cap layer 6, an Alx Ga1-x N cap layer (where, 0<x<=1) can be used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、半導体の成長方
法に関し、特に、GaInN層などのInを含む窒化物
系III−V族化合物半導体層上にその成長温度よりも
高い成長温度で別の窒化物系III−V族化合物半導体
層を成長させる必要のある半導体装置、例えば半導体発
光素子の製造に適用して好適なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for growing a semiconductor, and more particularly to a method for growing a nitrided III-V compound semiconductor layer containing In such as a GaInN layer at a growth temperature higher than the growth temperature. It is suitable for use in the manufacture of a semiconductor device in which a compound III-V compound semiconductor layer needs to be grown, for example, a semiconductor light emitting element.

【0002】[0002]

【従来の技術】GaN、AlGaN、GaInNなどの
窒化物(ナイトライド)系III−V族化合物半導体
は、その禁制帯幅が1.8eVから6.2eVに亘って
おり、赤色から紫外線の発光が可能な発光素子の実現が
理論上可能であるため、近年、注目を集めている。
2. Description of the Related Art Nitride (nitride) -based III-V compound semiconductors such as GaN, AlGaN, and GaInN have band gaps ranging from 1.8 eV to 6.2 eV, and emit red to ultraviolet light. In recent years, attention has been paid to the realization of a possible light-emitting element because it is theoretically possible.

【0003】この窒化物系III−V族化合物半導体に
より発光ダイオード(LED)や半導体レーザを製造す
る場合には、GaN、AlGaN、GaInNなどを多
層に積層し、発光層(活性層)をn型クラッド層および
p型クラッド層によりはさんだ構造を形成する必要があ
る。このような発光ダイオードまたは半導体レーザとし
て、発光層をGaInN/GaN量子井戸構造またはG
aInN/AlGaN量子井戸構造としたものがある。
[0003] When a light emitting diode (LED) or a semiconductor laser is manufactured from this nitride III-V compound semiconductor, GaN, AlGaN, GaInN, etc. are laminated in multiple layers, and the light emitting layer (active layer) is an n-type. It is necessary to form a structure sandwiched between the cladding layer and the p-type cladding layer. As such a light emitting diode or a semiconductor laser, the light emitting layer has a GaInN / GaN quantum well structure or G light emitting layer.
Some have an aInN / AlGaN quantum well structure.

【0004】このGaInN/GaN量子井戸構造また
はGaInN/AlGaN量子井戸構造を形成する場合
には、良好な結晶性を得るために、障壁層であるGaN
層またはAlGaN層は1000℃程度の高温で成長さ
せ、井戸層であるGaInN層は850℃以下の低温で
成長させる必要がある。
When the GaInN / GaN quantum well structure or the GaInN / AlGaN quantum well structure is formed, GaN as a barrier layer is formed in order to obtain good crystallinity.
The layer or AlGaN layer needs to be grown at a high temperature of about 1000 ° C., and the GaInN layer serving as the well layer needs to be grown at a low temperature of 850 ° C. or less.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、井戸層
であるGaInN層を850℃以下の低温で成長させた
後、成長温度を1000℃程度に上昇させて障壁層であ
るGaN層またはAlGaN層を成長させると、下地の
GaInN層が劣化し、発光強度が低下してしまうとい
う問題があった。これは、GaInN層の成長後に成長
温度を上昇させたときに、そのGaInN層のInNが
分解することによると考えられる。
However, after a GaInN layer as a well layer is grown at a low temperature of 850 ° C. or less, the growth temperature is raised to about 1000 ° C. to grow a GaN layer or an AlGaN layer as a barrier layer. This causes a problem that the underlying GaInN layer is deteriorated and the light emission intensity is reduced. It is considered that this is because when the growth temperature is increased after the growth of the GaInN layer, the InN of the GaInN layer is decomposed.

【0006】以上は、GaInN層の劣化についてであ
るが、同様な劣化は、Inを含む窒化物系III−V族
化合物半導体層全般に起こり得るものである。
The above description relates to the deterioration of the GaInN layer. Similar deterioration can occur in the entire nitride-based III-V compound semiconductor layer containing In.

【0007】したがって、この発明の目的は、GaIn
N層などのInを含む窒化物系III−V族化合物半導
体層上にその成長温度よりも高い成長温度で別の窒化物
系III−V族化合物半導体層を成長させる必要がある
場合に、そのInを含む窒化物系III−V族化合物半
導体層の劣化を防止することができる半導体の成長方法
を提供することにある。
Accordingly, an object of the present invention is to provide a GaIn
When it is necessary to grow another nitride III-V compound semiconductor layer at a growth temperature higher than the growth temperature on a nitride III-V compound semiconductor layer containing In such as an N layer, An object of the present invention is to provide a semiconductor growth method capable of preventing deterioration of a nitride III-V compound semiconductor layer containing In.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、この発明の第1の発明は、Inを含む窒化物系II
I−V族化合物半導体層上にこのInを含む窒化物系I
II−V族化合物半導体層の成長温度とほぼ等しいかま
たはより低い成長温度でAlx Ga1-x N(ただし、0
≦x≦1)からなる保護膜を気相成長させるようにした
ことを特徴とする半導体の成長方法である。
In order to achieve the above object, a first invention of the present invention is to provide a nitride-based II containing In.
The nitride-based I containing In on the IV group compound semiconductor layer
At a growth temperature substantially equal to or lower than the growth temperature of the II-V compound semiconductor layer, Al x Ga 1 -xN (0
≦ x ≦ 1) is a method for growing a semiconductor, characterized in that a protective film consisting of ≦ x ≦ 1) is grown in vapor phase.

【0009】この発明の第1の発明において、Inを含
む窒化物系III−V族化合物半導体層の成長温度より
低い成長温度で保護膜を気相成長させる場合、その成長
温度は、典型的には、400〜700℃未満に選ばれ
る。
In the first aspect of the present invention, when the protective film is vapor-phase grown at a growth temperature lower than the growth temperature of the nitride-based III-V compound semiconductor layer containing In, the growth temperature is typically Is selected to be 400 to less than 700 ° C.

【0010】この発明の第2の発明は、Inを含む窒化
物系III−V族化合物半導体層上に700〜850℃
の成長温度でAlx Ga1-x N(ただし、0≦x≦1)
からなる保護膜を気相成長させるようにしたことを特徴
とする半導体の成長方法である。
[0010] The second invention of the present invention is a method for forming a nitride-based III-V compound semiconductor layer containing In at 700 to 850 ° C.
At the growth temperature of Al x Ga 1-x N (where 0 ≦ x ≦ 1)
A semiconductor growth method characterized in that a protective film made of GaN is grown in a vapor phase.

【0011】この発明の第2の発明においては、Inを
含む窒化物系III−V族化合物半導体層上にその成長
温度よりも高い成長温度で別の窒化物系III−V族化
合物半導体層を成長させる場合に、そのInを含む窒化
物系III−V族化合物半導体層からのInNの分解を
有効に抑えつつ、良好な結晶性を得る観点から、好適に
は、750〜800℃の成長温度でAlx Ga1-x
(ただし、0≦x≦1)からなる保護膜を気相成長させ
る。
In a second aspect of the present invention, another nitride-based III-V compound semiconductor layer is formed on a nitride-based III-V compound semiconductor layer containing In at a growth temperature higher than its growth temperature. When growing, from the viewpoint of obtaining good crystallinity while effectively suppressing the decomposition of InN from the nitride-based III-V compound semiconductor layer containing In, the growth temperature is preferably 750 to 800 ° C. And Al x Ga 1-x N
(Provided that 0 ≦ x ≦ 1) is vapor-phase grown.

【0012】この発明においては、典型的には、Alx
Ga1-x N(ただし、0≦x≦1)からなる保護膜を気
相成長させた後、成長温度を保護膜の成長温度よりも高
い所定温度に上昇させて保護膜上にAly Ga1-y
(ただし、0≦y≦1)層を気相成長させる。
In the present invention, typically, Al x
After vapor-phase growing a protective film made of Ga 1-x N (where 0 ≦ x ≦ 1), the growth temperature is raised to a predetermined temperature higher than the growth temperature of the protective film, and Al y Ga is formed on the protective film. 1-y N
(Where 0 ≦ y ≦ 1) a layer is vapor-phase grown.

【0013】この発明において、保護膜は、具体的に
は、GaN層またはAlx Ga1-x N層(ただし、0<
x≦1)である。ここで、保護膜がGaN層である場
合、InNの分解を有効に抑える観点から、好適には、
その厚さを30nm以上とする。また、保護膜がAlx
Ga1-x N層(ただし、0<x≦1)である場合には、
同様な観点から、好適には、その厚さを、そのAl組成
比xに応じて、後述の図8に示す直線で示される厚さ以
上とする。例えば、保護膜がx=0.13のAlxGa
1-x N層である場合には、その厚さを10nm以上とす
る。
In the present invention, the protective film is, specifically, a GaN layer or an Al x Ga 1 -xN layer (where 0 <
x ≦ 1). Here, when the protective film is a GaN layer, from the viewpoint of suppressing the decomposition of InN effectively,
The thickness is 30 nm or more. Also, the protective film is made of Al x
In the case of a Ga 1-x N layer (where 0 <x ≦ 1),
From a similar viewpoint, preferably, the thickness is set to be equal to or greater than the thickness indicated by a straight line shown in FIG. 8 described later according to the Al composition ratio x. For example, the protective film is made of Al x Ga with x = 0.13.
If it is a 1-xN layer, its thickness is 10 nm or more.

【0014】この発明において、窒化物系III−V族
化合物半導体層は、具体的には、Al、Ga、Inおよ
びBからなる群より選ばれた少なくとも一種のIII族
元素とNとからなる。この窒化物系III−V族化合物
半導体層のうちInを含むものの具体例を挙げるとGa
InN層であり、Inを含まないものの具体例を挙げる
とGaN、AlGaNなどである。
In the present invention, the nitride-based III-V compound semiconductor layer is specifically composed of N and at least one group III element selected from the group consisting of Al, Ga, In and B. Specific examples of the nitride-based III-V compound semiconductor layers containing In include Ga.
Specific examples of the InN layer that does not contain In include GaN and AlGaN.

【0015】この発明において、窒化物系III−V族
化合物半導体層の成長には、典型的には、有機金属化学
気相成長(MOCVD)法または分子線エピタキシー
(MBE)法が用いられる。
In the present invention, a metal-organic chemical vapor deposition (MOCVD) method or a molecular beam epitaxy (MBE) method is typically used for growing a nitride III-V compound semiconductor layer.

【0016】上述のように構成されたこの発明による半
導体の成長方法によれば、Inを含む窒化物系III−
V族化合物半導体層上にこのInを含む窒化物系III
−V族化合物半導体層の成長温度とほぼ等しいかまたは
より低い成長温度、例えば、700〜850℃の温度で
Alx Ga1-x N(ただし、0≦x≦1)からなる保護
膜を気相成長させるようにしているので、Inを含む窒
化物系III−V族化合物半導体層の表面はこの保護膜
により覆われる。このため、その後に成長温度を上昇さ
せてこのInを含む窒化物系III−V族化合物半導体
層上にAly Ga1-y N層を成長させても、そのInを
含む窒化物系III−V族化合物半導体層からのInN
の分解を抑えることができ、劣化を抑えることができ
る。
According to the method for growing a semiconductor according to the present invention having the above-described structure, the nitride-based III-
The nitride III containing In on the group V compound semiconductor layer
A protective film made of Al x Ga 1 -xN (0 ≦ x ≦ 1) at a growth temperature substantially equal to or lower than the growth temperature of the group V compound semiconductor layer, for example, at a temperature of 700 to 850 ° C. Since the phase is grown, the surface of the nitride-based III-V compound semiconductor layer containing In is covered with the protective film. Therefore, even if subsequently grown Al y Ga 1-y N layer is raised to a nitride III-V compound semiconductor layer containing the In the growth temperature, a nitride containing the In III- InN from group V compound semiconductor layer
Can be suppressed and degradation can be suppressed.

【0017】[0017]

【発明の実施の形態】以下、この発明の実施形態につい
て図面を参照しながら説明する。なお、実施形態の全図
において、同一または対応する部分には同一の符号を付
す。
Embodiments of the present invention will be described below with reference to the drawings. In all the drawings of the embodiments, the same or corresponding portions are denoted by the same reference numerals.

【0018】図1は、この発明の第1の実施形態による
GaInN/GaN量子井戸構造の形成方法を説明する
ための断面図である。また、図2は、この第1の実施形
態における成長シーケンスを示す。
FIG. 1 is a sectional view for explaining a method of forming a GaInN / GaN quantum well structure according to the first embodiment of the present invention. FIG. 2 shows a growth sequence according to the first embodiment.

【0019】この第1の実施形態においては、図1およ
び図2に示すように、まず、図示省略したMOCVD装
置の反応炉内にc面サファイア基板1を入れた後、反応
炉内にキャリアガスとして例えばH2 とN2 との混合ガ
スを流し、例えば1050℃で20分間熱処理を行うこ
とによりそのc面サファイア基板1の表面をサーマルク
リーニングする。次に、基板温度を例えば510℃に下
げた後、反応炉内にN原料としてのアンモニア(N
3 )およびGa原料としてのトリメチルガリウム(T
MGa、Ga(CH3 3 )を供給し、c面サファイア
基板1上にGaNバッファ層2を成長させる。次に、反
応炉内へのTMGaの供給を停止し、NH3の供給はそ
のまま続けながら、成長温度を例えば約1000℃まで
上昇させた後、反応炉内に再びTMGaを供給してGa
N層3を成長させる。
In the first embodiment, as shown in FIGS. 1 and 2, first, a c-plane sapphire substrate 1 is placed in a reactor (not shown) of a MOCVD apparatus, and then a carrier gas is placed in the reactor. The surface of the c-plane sapphire substrate 1 is thermally cleaned by, for example, flowing a mixed gas of H 2 and N 2 and performing heat treatment at, for example, 1050 ° C. for 20 minutes. Next, after lowering the substrate temperature to, for example, 510 ° C., ammonia (N
H 3 ) and trimethylgallium (T
MGa, Ga (CH 3 ) 3 ) are supplied, and a GaN buffer layer 2 is grown on the c-plane sapphire substrate 1. Next, the supply of TMGa into the reaction furnace is stopped, and while the supply of NH 3 is kept as it is, the growth temperature is raised to, for example, about 1000 ° C., and then TMGa is supplied again into the reaction furnace to obtain Ga.
The N layer 3 is grown.

【0020】次に、反応炉内へのTMGaの供給を再び
停止し、成長温度を例えば700〜850℃(例えば、
760℃)に下げた後、反応炉内に再びTMGaを供給
してGaN層4を成長させる。このGaN層4は、成長
温度を下げる間に下地のGaN層3の表面が汚染される
ことがあることから、次に成長させるGaInN層5の
成長直前にこのGaN層4を成長させ、GaInN層5
を清浄な表面に成長させるためのものである。次に、成
長温度をそのまま700〜850℃に保持した状態で、
反応炉内にN原料としてのNH3 に加えてGa原料とし
てのトリエチルガリウム(TEGa、Ga(C2 5
3 )およびIn原料としてのトリメチルインジウム(T
MIn、In(CH3 3 )を供給し、GaInN層5
を成長させる。
Next, the supply of TMGa into the reactor is stopped again, and the growth temperature is set to, for example, 700 to 850 ° C. (for example,
After the temperature is lowered to 760 ° C.), the GaN layer 4 is grown by supplying TMGa into the reactor again. Since the surface of the underlying GaN layer 3 may be contaminated while the growth temperature is lowered, the GaN layer 4 is grown immediately before the next growth of the GaInN layer 5. 5
Is grown on a clean surface. Next, while keeping the growth temperature at 700 to 850 ° C.,
In a reaction furnace, in addition to NH 3 as an N source, triethylgallium (TEGa, Ga (C 2 H 5 )) as a Ga source
3 ) and trimethylindium (T
MIn, In (CH 3 ) 3 ) and supply the GaInN layer 5.
Grow.

【0021】次に、成長温度をそのまま700〜850
℃に保持した状態で、反応炉内へのTMInの供給を停
止するとともに、Ga原料をTMGaに切り換え、Ga
Nキャップ層6を成長させる。次に、反応炉内へのNH
3 の供給をそのまま続けながら、成長温度を例えば約1
000℃まで上昇させた後、反応炉内に再びTMGaを
供給してGaN層7を成長させる。以上により、目的と
するGaInN/GaN量子井戸構造が形成される。
Next, the growth temperature is maintained at 700 to 850 as it is.
While maintaining the temperature at 0 ° C., the supply of TMIn into the reaction furnace was stopped, and the Ga source was switched to TMGa.
The N cap layer 6 is grown. Next, NH was introduced into the reactor.
While continuing the supply of 3 , the growth temperature is set to, for example, about 1
After the temperature is raised to 000 ° C., TMGa is supplied again into the reaction furnace to grow the GaN layer 7. Thus, the intended GaInN / GaN quantum well structure is formed.

【0022】なお、GaInN層5の成長時におけるT
EGaの供給量は、例えば、GaN層3の成長時におけ
るTMGaの供給量の1/10程度にする。このとき、
GaInN層5の成長速度はGaN層3の成長速度の1
/10程度である。具体的には、例えば、GaN層3の
成長速度は1.3μm/h、GaInN層5の成長速度
は0.13μm/hである。
It should be noted that when the GaInN layer 5 is grown, the T
The supply amount of EGa is set to, for example, about 1/10 of the supply amount of TMGa during the growth of the GaN layer 3. At this time,
The growth rate of the GaInN layer 5 is one of the growth rate of the GaN layer 3.
It is about / 10. Specifically, for example, the growth rate of the GaN layer 3 is 1.3 μm / h, and the growth rate of the GaInN layer 5 is 0.13 μm / h.

【0023】図3は、GaNキャップ層6の厚さとGa
InN/GaN量子井戸構造の量子井戸からの発光強度
との関係を示す。図3からわかるように、GaNキャッ
プ層6の厚さが30nm以上のときに十分に高い発光強
度が得られており、これは、井戸層であるGaInN層
5の劣化が抑えられていることを意味する。
FIG. 3 shows the thickness of the GaN cap layer 6 and the thickness of Ga.
4 shows the relationship with the emission intensity from the quantum well of the InN / GaN quantum well structure. As can be seen from FIG. 3, when the thickness of the GaN cap layer 6 is 30 nm or more, a sufficiently high emission intensity is obtained, which indicates that the deterioration of the GaInN layer 5 as the well layer is suppressed. means.

【0024】図4は、GaNキャップ層6の成長速度と
GaInN/GaN量子井戸構造の量子井戸からの発光
強度との関係を示す。ただし、GaNキャップ層6の厚
さは40nmである。図4からわかるように、成長速度
が速いほど発光強度が高くなっており、これは、成長速
度が速いほどGaInN層の劣化が有効に抑えられるこ
とを意味する。
FIG. 4 shows the relationship between the growth rate of the GaN cap layer 6 and the light emission intensity from the quantum well of the GaInN / GaN quantum well structure. However, the thickness of the GaN cap layer 6 is 40 nm. As can be seen from FIG. 4, the higher the growth rate, the higher the emission intensity. This means that the faster the growth rate, the more effectively the deterioration of the GaInN layer is suppressed.

【0025】以上のように、この第1の実施形態によれ
ば、GaInN層5上にこのGaInN層5の成長温度
と等しい成長温度、例えば700〜850℃の成長温度
でGaNキャップ層6を成長させてこのGaInN層5
の表面を覆った後に成長温度を約1000℃まで上昇さ
せてGaN層7を成長させていることにより、GaIn
N層5からのInNの分解を防止してその劣化を防止す
ることができ、発光層からの発光強度の劣化を防止する
ことができる。
As described above, according to the first embodiment, the GaN cap layer 6 is grown on the GaInN layer 5 at a growth temperature equal to the growth temperature of the GaInN layer 5, for example, at a growth temperature of 700 to 850 ° C. This GaInN layer 5
The GaN layer 7 is grown by raising the growth temperature to about 1000 ° C. after covering the surface of
Decomposition of InN from the N layer 5 can be prevented and its degradation can be prevented, and deterioration of the emission intensity from the light emitting layer can be prevented.

【0026】図5は、この発明の第2の実施形態による
GaInN/AlGaN量子井戸構造の形成方法を説明
するための断面図である。また、図6は、この第2の実
施形態における成長シーケンスを示す。
FIG. 5 is a sectional view for explaining a method of forming a GaInN / AlGaN quantum well structure according to the second embodiment of the present invention. FIG. 6 shows a growth sequence according to the second embodiment.

【0027】この第2の実施形態においては、図5およ
び図6に示すように、まず、第1の実施形態と同様にし
て、例えば1050℃でc面サファイア基板1のサーマ
ルクリーニングを行った後、例えば510℃の成長温度
でGaNバッファ層2を成長させる。
In the second embodiment, as shown in FIGS. 5 and 6, after the thermal cleaning of the c-plane sapphire substrate 1 is performed at, for example, 1050 ° C. in the same manner as in the first embodiment, For example, the GaN buffer layer 2 is grown at a growth temperature of 510 ° C.

【0028】次に、成長温度を約1000℃まで上昇さ
せた後、反応炉内にN原料としてのNH3 およびGa原
料としてのTMGaに加えてAl原料としてのトリメチ
ルアルミニウム(TMAl、Al(CH3 3 )を供給
し、Aly Ga1-y N層8を成長させる。
Next, after increasing the growth temperature to about 1000 ° C., in addition to NH 3 as an N source and TMGa as a Ga source, trimethylaluminum (TMAl, Al (CH 3 3 ) is supplied to grow the Al y Ga 1-y N layer 8.

【0029】次に、反応炉内へのTMGaおよびTMA
lの供給を停止し、NH3 の供給はそのまま続けなが
ら、成長温度を例えば700〜850℃(例えば、76
0℃)に下げた後、反応炉内に再びTMGaを供給して
GaN層4を成長させる。次に、成長温度をそのまま7
00〜850℃に保持した状態で、反応炉内にN原料と
してのNH3 に加えてGa原料としてのTEGaおよび
In原料としてのTMInを供給し、GaInN層5を
成長させる。
Next, TMGa and TMA were introduced into the reactor.
1 while stopping the supply of NH 3 and keeping the growth temperature at, for example, 700 to 850 ° C. (for example, 76 ° C.).
After the temperature is lowered to 0 ° C., TMGa is supplied again into the reaction furnace to grow the GaN layer 4. Next, keep the growth temperature at 7
With the temperature maintained at 00 to 850 ° C., in addition to NH 3 as an N source, TEGa as a Ga source and TMIn as an In source are supplied into the reactor to grow the GaInN layer 5.

【0030】次に、成長温度をそのまま700〜850
℃に保持した状態で、反応炉内へのTMInの供給を停
止するとともに、Ga原料をTMGaに切り換え、Al
x Ga1-x Nキャップ層9を成長させる。この後、成長
温度を例えば約1000℃まで上昇させ、Aly Ga
1-y N層10を成長させる。以上により、目的とするG
aInN/AlGaN量子井戸構造が形成される。
Next, the growth temperature is maintained at 700-850.
While the temperature was maintained at 0 ° C., the supply of TMIn into the reactor was stopped, and the Ga source was switched to TMGa.
A xGa1 -xN cap layer 9 is grown. Thereafter, the growth temperature is raised to, for example, about 1000 ° C., and Al y Ga
A 1-y N layer 10 is grown. From the above, the target G
An aInN / AlGaN quantum well structure is formed.

【0031】図7は、Al組成比x=0.13のAlx
Ga1-x Nキャップ層9の厚さとGaInN/AlGa
N量子井戸構造の量子井戸からの発光強度との関係を示
す。図7からわかるように、x=0.13の場合、Al
x Ga1-x Nキャップ層9の厚さが10nm以上のとき
に十分に高い発光強度が得られており、これは、井戸層
であるGaInN層5の劣化が抑えられていることを意
味する。
FIG. 7 is a graph showing the relationship between the Al composition ratio x = 0.13 and Al x
Ga 1 -xN Cap Layer 9 Thickness and GaInN / AlGa
The relationship with the emission intensity from a quantum well having an N quantum well structure is shown. As can be seen from FIG. 7, when x = 0.13, Al
When the thickness of the xGa 1 -xN cap layer 9 is 10 nm or more, a sufficiently high emission intensity is obtained, which means that the deterioration of the GaInN layer 5 as the well layer is suppressed. .

【0032】図8は、発光強度の劣化を抑えるのに必要
なAlx Ga1-x Nキャップ層9の厚さをAl組成比x
に対して示した図である。Alx Ga1-x Nキャップ層
9の厚さを図8の直線で示される厚さ以上の厚さとする
ことにより、発光強度の劣化を抑えることができる。図
8より、Al組成比xが小さいほど、Alx Ga1-x
キャップ層8を厚くする必要があることがわかる。例え
ば、発光強度の劣化を抑えるのに必要なAlx Ga1-x
Nキャップ層8の厚さは、x=0.2の場合には6nm
であるが、x=0.13の場合には10nm、x=0.
05の場合には20nmである。一方、本発明者の知見
によれば、Alx Ga1-x Nキャップ層9を40nm程
度以上に厚くすると、その中に存在する非発光中心が多
くなり、好ましくないため、これを防止する観点から、
Alx Ga1-x Nキャップ層9の厚さの上限は40nm
程度と考えられる。
[0032] Figure 8 is required to suppress deterioration of emission intensity Al x Ga 1-x N of the thickness of the cap layer 9 Al composition ratio x
FIG. By setting the thickness of the Al x Ga 1 -xN cap layer 9 to be equal to or greater than the thickness indicated by the straight line in FIG. 8, deterioration of the light emission intensity can be suppressed. FIG. 8 shows that the smaller the Al composition ratio x, the more Al x Ga 1 -xN
It can be seen that the cap layer 8 needs to be thick. For example, Al x Ga 1-x required to suppress the deterioration of the emission intensity
The thickness of the N cap layer 8 is 6 nm when x = 0.2.
However, when x = 0.13, 10 nm and x = 0.
In the case of 05, it is 20 nm. On the other hand, according to the knowledge of the present inventor, when the Al x Ga 1 -xN cap layer 9 is thickened to about 40 nm or more, the number of non-emission centers existing therein increases, which is not preferable. From
The upper limit of the thickness of the Al x Ga 1 -xN cap layer 9 is 40 nm.
It is considered to be a degree.

【0033】以上のように、この第2の実施形態によれ
ば、GaInN層5上にこのGaInN層5の成長温度
と等しい成長温度、例えば700〜850℃の成長温度
でAlx Ga1-x Nキャップ層9を成長させてこのGa
InN層5の表面を覆った後に成長温度を約1000℃
まで上昇させてAly Ga1-y N層10を成長させてい
ることにより、GaInN層5からのInNの分解を防
止してその劣化を防止することができ、発光層からの発
光強度の劣化を防止することができる。また、GaNキ
ャップ層を用いる場合にはその厚さを30nm以上とす
る必要があるのに対して、例えばx=0.13のAlx
Ga1-x Nキャップ層9を用いる場合、その厚さは10
nm以上であれば足りるので、キャップ層の成長に要す
る時間を短くすることができる。
As described above, according to the second embodiment, Al x Ga 1 -x is grown on the GaInN layer 5 at a growth temperature equal to the growth temperature of the GaInN layer 5, for example, 700 to 850 ° C. An N cap layer 9 is grown and this Ga
After covering the surface of the InN layer 5, the growth temperature is set to about 1000 ° C.
By growing the Al y Ga 1-y N layer 10 by raising it, the decomposition of InN from the GaInN layer 5 can be prevented and its degradation can be prevented, and the degradation of the emission intensity from the light emitting layer can be prevented. Can be prevented. Moreover, whereas in the case of using a GaN cap layer should be the thickness of the above 30 nm, for example, x = 0.13 in Al x
When the Ga 1-x N cap layer 9 is used, its thickness is 10
Since it is sufficient if the thickness is at least nm, the time required for growing the cap layer can be shortened.

【0034】図9は、この発明の第3の実施形態による
半導体発光素子の製造方法を説明するための断面図であ
る。図9に示すように、この第3の実施形態による半導
体発光素子の製造方法においては、第1および第2の実
施形態と同様に、c面サファイア基板11のサーマルク
リーニングを行った後、このc面サファイア基板11上
に例えば510℃の成長温度でGaNバッファ層(図示
せず)を成長させる。次に、成長温度を例えば約100
0℃まで上昇させ、このGaNバッファ層上に、n型G
aNコンタクト層12、n型AlGaNクラッド層13
およびn型GaN光導波層14を順次成長させる。次
に、成長温度を例えば700〜850℃に下げ、GaI
nN活性層15およびp型GaNキャップ層16を順次
成長させる。次に、成長温度を例えば約1000℃まで
上昇させ、p型GaN光導波層17、p型AlGaNク
ラッド層18およびp型GaNコンタクト層19を順次
成長させる。ここで、n型GaNコンタクト層12、n
型AlGaNクラッド層13およびn型GaN光導波層
14のn型不純物(ドナー不純物)としては例えばSi
を用い、p型GaNキャップ層16、p型GaN光導波
層17、p型AlGaNクラッド層18およびp型Ga
Nコンタクト層19のp型不純物(アクセプタ不純物)
としては例えばMgやZnを用いる。
FIG. 9 is a sectional view for explaining a method of manufacturing a semiconductor light emitting device according to the third embodiment of the present invention. As shown in FIG. 9, in the method for manufacturing a semiconductor light emitting device according to the third embodiment, as in the first and second embodiments, after performing thermal cleaning of the c-plane sapphire substrate 11, A GaN buffer layer (not shown) is grown on the surface sapphire substrate 11 at a growth temperature of, for example, 510 ° C. Next, the growth temperature is set to about 100, for example.
0 ° C., and the n-type G
aN contact layer 12, n-type AlGaN cladding layer 13
Then, the n-type GaN optical waveguide layer 14 is sequentially grown. Next, the growth temperature is reduced to, for example, 700 to 850 ° C., and the GaI
An nN active layer 15 and a p-type GaN cap layer 16 are sequentially grown. Next, the growth temperature is raised to, for example, about 1000 ° C., and the p-type GaN optical waveguide layer 17, the p-type AlGaN cladding layer 18, and the p-type GaN contact layer 19 are sequentially grown. Here, the n-type GaN contact layer 12, n
The n-type impurity (donor impurity) of the n-type AlGaN cladding layer 13 and the n-type GaN optical waveguide layer 14 is, for example, Si.
To form a p-type GaN cap layer 16, a p-type GaN optical waveguide layer 17, a p-type AlGaN cladding layer 18, and a p-type Ga
P-type impurity (acceptor impurity) in N contact layer 19
For example, Mg or Zn is used.

【0035】なお、図示は省略するが、p型GaNコン
タクト層19上にp側電極が形成されるとともに、n型
GaNコンタクト層12にn側電極がコンタクトして形
成される。
Although not shown, a p-side electrode is formed on the p-type GaN contact layer 19 and an n-side electrode is formed in contact with the n-type GaN contact layer 12.

【0036】この第3の実施形態によれば、GaInN
活性層15上にこのGaInN活性層15の成長温度と
等しい成長温度、例えば700〜850℃の成長温度で
p型GaNキャップ層16を成長させた後に成長温度を
約1000℃まで上昇させてp型GaN光導波層17、
p型AlGaNクラッド層18およびp型GaNコンタ
クト層19を成長させていることにより、GaInN活
性層15からのInNの分解を防止してその劣化を防止
することができ、発光層からの発光強度の劣化を防止す
ることができる。これによって、高出力のGaN系半導
体発光素子を実現することができる。
According to the third embodiment, GaInN
After growing the p-type GaN cap layer 16 on the active layer 15 at a growth temperature equal to the growth temperature of the GaInN active layer 15, for example, a growth temperature of 700 to 850 ° C., the growth temperature is raised to about 1000 ° C. GaN optical waveguide layer 17,
Since the p-type AlGaN cladding layer 18 and the p-type GaN contact layer 19 are grown, decomposition of InN from the GaInN active layer 15 can be prevented and its degradation can be prevented. Deterioration can be prevented. As a result, a high-power GaN-based semiconductor light emitting device can be realized.

【0037】以上、この発明の実施形態について具体的
に説明したが、この発明は、上述の実施形態に限定され
るものではなく、この発明の技術的思想に基づく各種の
変形が可能である。
Although the embodiments of the present invention have been specifically described above, the present invention is not limited to the above embodiments, and various modifications based on the technical concept of the present invention are possible.

【0038】例えば、上述の第1、第2および第3の実
施形態において挙げた数値、基板および原料ガスはあく
までも例に過ぎず、必要に応じて異なる数値、基板およ
び原料ガスを用いてもよい。具体的には、c面サファイ
ア基板1の代わりに、GaN基板やSiC基板などを用
いてもよい。また、GaInN層5の成長用のGa原料
としては、TEGaの代わりにTMGaを用いてもよ
い。
For example, the numerical values, substrates and source gases mentioned in the first, second and third embodiments are merely examples, and different numerical values, substrates and source gases may be used as necessary. . Specifically, instead of the c-plane sapphire substrate 1, a GaN substrate, a SiC substrate, or the like may be used. Further, as a Ga raw material for growing the GaInN layer 5, TMGa may be used instead of TEGa.

【0039】また、上述の第1の実施形態において、G
aNキャップ層6の代わりに、Alx Ga1-x Nキャッ
プ層を用いてもよい。同様に、第2の実施形態におい
て、Alx Ga1-x Nキャップ層の代わりに、GaNキ
ャップ層を用いてもよい。さらに、第3の実施形態にお
いて、p型GaNキャップ層16の代わりに、p型Al
x Ga1-x Nキャップ層を用いてもよい。
In the first embodiment described above, G
Instead of the aN cap layer 6, an Al x Ga 1-x N cap layer may be used. Similarly, in the second embodiment, a GaN cap layer may be used instead of the Al x Ga 1 -xN cap layer. Further, in the third embodiment, instead of the p-type GaN cap layer 16, p-type Al
An xGa1 -xN cap layer may be used.

【0040】また、上述の第3の実施形態においては、
この発明をGaN系半導体発光素子の製造に適用した場
合について説明したが、この発明は、GaN系電界効果
トランジスタ(FET)などのGaN系電子走行素子の
製造に適用してもよい。
Further, in the third embodiment described above,
Although the present invention has been described for the case where the present invention is applied to the manufacture of a GaN-based semiconductor light emitting device, the present invention may be applied to the manufacture of a GaN-based electron transit device such as a GaN-based field effect transistor (FET).

【0041】[0041]

【発明の効果】以上説明したように、この発明による半
導体の成長方法によれば、Inを含む窒化物系III−
V族化合物半導体層上にこのInを含む窒化物系III
−V族化合物半導体層の成長温度とほぼ等しいかまたは
より低い成長温度、例えば、700〜850℃の成長温
度でAlx Ga1-x N(ただし、0≦x≦1)からなる
保護膜を気相成長させるようにしていることにより、そ
のInを含む窒化物系III−V族化合物半導体層上に
その成長温度よりも高い成長温度で別の窒化物系III
−V族化合物半導体層を成長させる場合に、そのInを
含む窒化物系III−V族化合物半導体層の劣化を防止
することができる。
As described above, according to the method for growing a semiconductor according to the present invention, the nitride III-
The nitride III containing In on the group V compound semiconductor layer
A protective film made of Al x Ga 1 -xN (0 ≦ x ≦ 1) at a growth temperature substantially equal to or lower than the growth temperature of the group V compound semiconductor layer, for example, at a growth temperature of 700 to 850 ° C. By performing vapor phase growth, another nitride-based III-V compound semiconductor is grown on the In-containing nitride-based III-V compound semiconductor layer at a growth temperature higher than the growth temperature.
When growing a -V compound semiconductor layer, it is possible to prevent the nitride-based III-V compound semiconductor layer containing In from deteriorating.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の第1の実施形態によるGaInN/
GaN量子井戸構造の形成方法を説明するための断面図
である。
FIG. 1 illustrates a GaInN /
FIG. 4 is a cross-sectional view for describing a method for forming a GaN quantum well structure.

【図2】この発明の第1の実施形態における成長シーケ
ンスを示す略線図である。
FIG. 2 is a schematic diagram illustrating a growth sequence according to the first embodiment of the present invention.

【図3】この発明の第1の実施形態におけるGaNキャ
ップ層の厚さとGaInN/GaN量子井戸構造の量子
井戸からの発光強度との関係を示す略線図である。
FIG. 3 is a schematic diagram illustrating the relationship between the thickness of a GaN cap layer and the emission intensity from a quantum well of a GaInN / GaN quantum well structure according to the first embodiment of the present invention.

【図4】この発明の第1の実施形態におけるGaNキャ
ップ層の成長速度とGaInN/GaN量子井戸構造の
量子井戸からの発光強度との関係を示す略線図である。
FIG. 4 is a schematic diagram illustrating the relationship between the growth rate of a GaN cap layer and the light emission intensity from a quantum well of a GaInN / GaN quantum well structure according to the first embodiment of the present invention.

【図5】この発明の第2の実施形態によるGaInN/
AlGaN量子井戸構造の形成方法を説明するための断
面図である。
FIG. 5 shows a graph of GaInN / according to a second embodiment of the present invention;
FIG. 4 is a cross-sectional view for describing a method of forming an AlGaN quantum well structure.

【図6】この発明の第2の実施形態における成長シーケ
ンスを示す略線図である。
FIG. 6 is a schematic diagram illustrating a growth sequence according to a second embodiment of the present invention.

【図7】この発明の第2の実施形態におけるAlx Ga
1-x Nキャップ層(x=0.13)の厚さとGaInN
/AlGaN量子井戸構造の量子井戸からの発光強度と
の関係を示す略線図である。
FIG. 7 shows Al x Ga according to a second embodiment of the present invention.
1-x N cap layer (x = 0.13) thickness and GaInN
FIG. 9 is a schematic diagram illustrating a relationship between the intensity of light emitted from a quantum well of the / AlGaN quantum well structure.

【図8】この発明の第2の実施形態におけるAlx Ga
1-x Nキャップ層のAl組成比と発光強度の劣化を抑え
るのに必要な厚さとの関係を示す略線図である。
FIG. 8 shows Al x Ga according to a second embodiment of the present invention.
FIG. 4 is a schematic diagram illustrating a relationship between an Al composition ratio of a 1-xN cap layer and a thickness required to suppress deterioration of emission intensity.

【図9】この発明の第3の実施形態による半導体発光素
子の製造方法を説明するための断面図である。
FIG. 9 is a cross-sectional view for explaining the method for manufacturing the semiconductor light emitting device according to the third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1、11・・・c面サファイア基板、2・・・GaNバ
ッファ層、3、4、7・・・GaN層、5・・・GaI
nN層、6・・・GaNキャップ層、8、10・・・A
y Ga1-y N層、9・・・Alx Ga1-x Nキャップ
1, 11 ... c-plane sapphire substrate, 2 ... GaN buffer layer, 3, 4, 7 ... GaN layer, 5 ... GaI
nN layer, 6 ... GaN cap layer, 8, 10 ... A
l y Ga 1-y N layer, 9 ··· Al x Ga 1- x N cap layer

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 Inを含む窒化物系III−V族化合物
半導体層上にこのInを含む窒化物系III−V族化合
物半導体層の成長温度とほぼ等しいかまたはより低い成
長温度でAlx Ga1-x N(ただし、0≦x≦1)から
なる保護膜を気相成長させるようにしたことを特徴とす
る半導体の成長方法。
An Al x Ga film is formed on a nitride-based III-V compound semiconductor layer containing In at a growth temperature substantially equal to or lower than the growth temperature of the nitride-based III-V compound semiconductor layer containing In. A method for growing a semiconductor, wherein a protective film made of 1-xN (0 ≦ x ≦ 1) is grown by vapor phase.
【請求項2】 上記保護膜を気相成長させた後、成長温
度を上記保護膜の成長温度よりも高い所定温度に上昇さ
せて上記保護膜上にAly Ga1-y N(ただし、0≦y
≦1)層を気相成長させるようにしたことを特徴とする
請求項1記載の半導体の成長方法。
2. After growing the protective film in vapor phase, the growth temperature is raised to a predetermined temperature higher than the growth temperature of the protective film, and Al y Ga 1 -y N (0 to 0) is formed on the protective film. ≤y
<1> The method of growing a semiconductor according to claim 1, wherein the layer is grown by vapor phase.
【請求項3】 上記保護膜を400〜700℃未満の成
長温度で気相成長させるようにしたことを特徴とする請
求項1記載の半導体の成長方法。
3. The method for growing a semiconductor according to claim 1, wherein said protective film is grown in a vapor phase at a growth temperature of 400 to less than 700 ° C.
【請求項4】 上記Inを含む窒化物系III−V族化
合物半導体層はGaInN層であることを特徴とする請
求項1記載の半導体の成長方法。
4. The semiconductor growth method according to claim 1, wherein said nitride-based III-V compound semiconductor layer containing In is a GaInN layer.
【請求項5】 上記保護膜はGaN層であることを特徴
とする請求項1記載の半導体の成長方法。
5. The method according to claim 1, wherein said protective film is a GaN layer.
【請求項6】 上記GaN層の厚さは30nm以上であ
ることを特徴とする請求項5記載の半導体の成長方法。
6. The method according to claim 5, wherein the thickness of the GaN layer is 30 nm or more.
【請求項7】 上記保護膜はAlx Ga1-x N層(ただ
し、0<x≦1)であることを特徴とする請求項1記載
の半導体の成長方法。
7. The method according to claim 1, wherein the protective film is an Al x Ga 1 -xN layer (where 0 <x ≦ 1).
【請求項8】 Inを含む窒化物系III−V族化合物
半導体層上に700〜850℃の成長温度でAlx Ga
1-x N(ただし、0≦x≦1)からなる保護膜を気相成
長させるようにしたことを特徴とする半導体の成長方
法。
8. At a growth temperature of 700 to 850 ° C., Al x Ga is grown on a nitride-based III-V compound semiconductor layer containing In.
A method for growing a semiconductor, wherein a protective film made of 1-xN (0 ≦ x ≦ 1) is grown by vapor phase.
【請求項9】 750〜800℃の成長温度で上記保護
膜を気相成長させるようにしたことを特徴とする請求項
8記載の半導体の成長方法。
9. The method for growing a semiconductor according to claim 8, wherein said protective film is grown in a vapor phase at a growth temperature of 750 to 800 ° C.
【請求項10】 上記保護膜を気相成長させた後、成長
温度を上記保護膜の成長温度よりも高い所定温度に上昇
させて上記保護膜上にAly Ga1-y N(ただし、0≦
y≦1)層を気相成長させるようにしたことを特徴とす
る請求項8記載の半導体の成長方法。
10. After growing the protective film in vapor phase, the growth temperature is raised to a predetermined temperature higher than the growth temperature of the protective film, and Al y Ga 1 -yN (0 to 0) is formed on the protective film. ≤
9. The method for growing a semiconductor according to claim 8, wherein y.ltoreq.1) is grown by vapor phase.
【請求項11】 上記Inを含む窒化物系III−V族
化合物半導体層はGaInN層であることを特徴とする
請求項8記載の半導体の成長方法。
11. The method according to claim 8, wherein the nitride-based III-V compound semiconductor layer containing In is a GaInN layer.
【請求項12】 上記保護膜はGaN層であることを特
徴とする請求項8記載の半導体の成長方法。
12. The method according to claim 8, wherein the protective film is a GaN layer.
【請求項13】 上記GaN層の厚さは30nm以上で
あることを特徴とする請求項12記載の半導体の成長方
法。
13. The method according to claim 12, wherein the thickness of the GaN layer is 30 nm or more.
【請求項14】 上記保護膜はAlx Ga1-x N層(た
だし、0<x≦1)であることを特徴とする請求項8記
載の半導体の成長方法。
14. The method according to claim 8, wherein the protective film is an Al x Ga 1 -xN layer (where 0 <x ≦ 1).
JP20305596A 1996-07-12 1996-07-12 Semiconductor growth method Expired - Fee Related JP3740744B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20305596A JP3740744B2 (en) 1996-07-12 1996-07-12 Semiconductor growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20305596A JP3740744B2 (en) 1996-07-12 1996-07-12 Semiconductor growth method

Publications (2)

Publication Number Publication Date
JPH1032349A true JPH1032349A (en) 1998-02-03
JP3740744B2 JP3740744B2 (en) 2006-02-01

Family

ID=16467600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20305596A Expired - Fee Related JP3740744B2 (en) 1996-07-12 1996-07-12 Semiconductor growth method

Country Status (1)

Country Link
JP (1) JP3740744B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001148510A (en) * 1999-09-09 2001-05-29 Sharp Corp Method of manufacturing nitride semiconductor light- emitting device
WO2003063215A1 (en) * 2002-01-21 2003-07-31 Matsushita Electric Industrial Co., Ltd. Nitride semiconductor device manufacturing method
JP2005129923A (en) * 2003-10-02 2005-05-19 Showa Denko Kk Nitride semiconductor, light emitting element using it, light emitting diode, laser element, lamp, and manufacturing method for those
KR100593920B1 (en) 2004-07-05 2006-06-30 삼성전기주식회사 METHOD OF GROWING SEMI-INSULATING GaN LAYER
JP2006344930A (en) * 2005-04-07 2006-12-21 Showa Denko Kk Manufacturing method of group iii nitride semiconductor device
JP2009130097A (en) * 2007-11-22 2009-06-11 Sharp Corp Group iii nitride semiconductor light emitting device and method of manufacturing the same
JP2011238971A (en) * 2003-10-02 2011-11-24 Showa Denko Kk Method of manufacturing nitride semiconductor light-emitting element
JP2012129573A (en) * 2012-04-04 2012-07-05 Toshiba Corp Method of manufacturing semiconductor light-emitting element
JP2013074045A (en) * 2011-09-27 2013-04-22 Sumitomo Electric Ind Ltd Semiconductor device
JP2014209664A (en) * 2007-11-21 2014-11-06 三菱化学株式会社 Crystal growth method of nitride semiconductor and nitride semiconductor light-emitting element
US8895956B2 (en) 2010-12-15 2014-11-25 Kabushiki Kaisha Toshiba Semiconductor light emitting device
JP2015037105A (en) * 2013-08-12 2015-02-23 富士通株式会社 Semiconductor device and semiconductor device manufacturing method
US9276072B2 (en) 2013-11-13 2016-03-01 Fujitsu Limited Semiconductor device and method for manufacturing semiconductor device
US9812607B2 (en) 2014-09-17 2017-11-07 Sumitomo Chemical Company, Limited Method for manufacturing nitride semiconductor template
US10062807B2 (en) 2014-09-17 2018-08-28 Sumitomo Chemical Company, Limited Method for manufacturing nitride semiconductor template

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001148510A (en) * 1999-09-09 2001-05-29 Sharp Corp Method of manufacturing nitride semiconductor light- emitting device
WO2003063215A1 (en) * 2002-01-21 2003-07-31 Matsushita Electric Industrial Co., Ltd. Nitride semiconductor device manufacturing method
US6764871B2 (en) 2002-01-21 2004-07-20 Matsushita Electric Industrial Co., Ltd. Method for fabricating a nitride semiconductor device
JP2005129923A (en) * 2003-10-02 2005-05-19 Showa Denko Kk Nitride semiconductor, light emitting element using it, light emitting diode, laser element, lamp, and manufacturing method for those
JP2011238971A (en) * 2003-10-02 2011-11-24 Showa Denko Kk Method of manufacturing nitride semiconductor light-emitting element
KR100593920B1 (en) 2004-07-05 2006-06-30 삼성전기주식회사 METHOD OF GROWING SEMI-INSULATING GaN LAYER
JP2006344930A (en) * 2005-04-07 2006-12-21 Showa Denko Kk Manufacturing method of group iii nitride semiconductor device
JP2014209664A (en) * 2007-11-21 2014-11-06 三菱化学株式会社 Crystal growth method of nitride semiconductor and nitride semiconductor light-emitting element
JP2009130097A (en) * 2007-11-22 2009-06-11 Sharp Corp Group iii nitride semiconductor light emitting device and method of manufacturing the same
US8895956B2 (en) 2010-12-15 2014-11-25 Kabushiki Kaisha Toshiba Semiconductor light emitting device
JP2013074045A (en) * 2011-09-27 2013-04-22 Sumitomo Electric Ind Ltd Semiconductor device
JP2012129573A (en) * 2012-04-04 2012-07-05 Toshiba Corp Method of manufacturing semiconductor light-emitting element
JP2015037105A (en) * 2013-08-12 2015-02-23 富士通株式会社 Semiconductor device and semiconductor device manufacturing method
US9276072B2 (en) 2013-11-13 2016-03-01 Fujitsu Limited Semiconductor device and method for manufacturing semiconductor device
US9812607B2 (en) 2014-09-17 2017-11-07 Sumitomo Chemical Company, Limited Method for manufacturing nitride semiconductor template
US10062807B2 (en) 2014-09-17 2018-08-28 Sumitomo Chemical Company, Limited Method for manufacturing nitride semiconductor template

Also Published As

Publication number Publication date
JP3740744B2 (en) 2006-02-01

Similar Documents

Publication Publication Date Title
JP3728332B2 (en) Compound semiconductor light emitting device
JP4092927B2 (en) Group III nitride compound semiconductor, group III nitride compound semiconductor element, and method for manufacturing group III nitride compound semiconductor substrate
EP0803916B1 (en) Manufacturing method of a light emitting device
Mukai Recent progress in group-III nitride light-emitting diodes
US5923950A (en) Method of manufacturing a semiconductor light-emitting device
US20090121214A1 (en) Iii-nitride semiconductor light-emitting device and manufacturing method thereof
JP5647289B2 (en) Method for manufacturing light emitting device
JP3740744B2 (en) Semiconductor growth method
US7488971B2 (en) Nitride semiconductor; light-emitting device, light-emitting diode, laser device and lamp using the semiconductor; and production methods thereof
JPH09293897A (en) Semiconductor element and manufacture thereof
JP3269344B2 (en) Crystal growth method and semiconductor light emitting device
JP2009239243A (en) Light-emitting device and method for manufacturing the same
JP2004134750A (en) Manufacturing method of p-type group iii nitride compound semiconductor
US20100035410A1 (en) Method for Manufacturing InGaN
JPH11112030A (en) Production of iii-v compound semiconductor
JP3773713B2 (en) Method for forming quantum box
JPH0832113A (en) Manufacture of p-type gan semiconductor
KR101125408B1 (en) Compound semiconductor and method for producing same
JP2012204540A (en) Semiconductor device and method of manufacturing the same
JP2001148510A (en) Method of manufacturing nitride semiconductor light- emitting device
JP3458625B2 (en) Semiconductor growth method
JP4284944B2 (en) Method for manufacturing gallium nitride based semiconductor laser device
JP4389888B2 (en) Semiconductor growth method, semiconductor light emitting device manufacturing method, and semiconductor device manufacturing method
JP3809825B2 (en) Semiconductor growth method and semiconductor light emitting device manufacturing method
JPH08213651A (en) Semiconductor device having contact resistance reducing layer

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040326

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20041222

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051031

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091118

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091118

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101118

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111118

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121118

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131118

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees