JPH10321361A - High frequency induction heating coil, semiconductor manufacture device, and manufacture of high frequency induction heating coil - Google Patents

High frequency induction heating coil, semiconductor manufacture device, and manufacture of high frequency induction heating coil

Info

Publication number
JPH10321361A
JPH10321361A JP12820097A JP12820097A JPH10321361A JP H10321361 A JPH10321361 A JP H10321361A JP 12820097 A JP12820097 A JP 12820097A JP 12820097 A JP12820097 A JP 12820097A JP H10321361 A JPH10321361 A JP H10321361A
Authority
JP
Japan
Prior art keywords
induction heating
heating coil
frequency induction
susceptor
nickel plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12820097A
Other languages
Japanese (ja)
Inventor
Fumihide Ikeda
文秀 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kokusai Electric Corp
Original Assignee
Kokusai Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Electric Corp filed Critical Kokusai Electric Corp
Priority to JP12820097A priority Critical patent/JPH10321361A/en
Publication of JPH10321361A publication Critical patent/JPH10321361A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent the evaporation of phosphorus (P) which is an impurity from nickel plating applied for corrosion resistance on the surface of a induction heating coil so that phosphorus does not enter an epitaxial layer during growing in an epitaxial growth device for heating a susceptor by using an induction heating coil. SOLUTION: Electroless nickel plating is applied to the surface of a high frequency induction heating coil 11, and baked at 350-420 deg.C in vacuum or under normal pressure for one hour or more. Prior to assembling the induction heating coil 11 in an epitaxial growth device, phosphorus in the electroless nickel plating is crystallized, and non-crystallized excess phosphorus is separated. The high frequency induction coil 11 obtained is used as a heater for heating a susceptor 3 of the epitaxial growth device.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、サセプタを加熱す
る高周波誘導加熱コイル、それを用いた半導体製造装
置、及び高周波誘導加熱コイルの製造方法に関する。
The present invention relates to a high frequency induction heating coil for heating a susceptor, a semiconductor manufacturing apparatus using the same, and a method for manufacturing a high frequency induction heating coil.

【0002】[0002]

【従来の技術】半導体製造装置の一例として誘導加熱に
よるエピタキシャル成長装置がある。これは高周波誘導
加熱方式を用いて反応室内のサセプタを加熱して、サセ
プタ上の基板にCVD法によりエピタキシャル層を形成
するものである。通常、このエピタキシャル装置は、複
数の基板を同時に処理するバッチ方式が採用されてい
る。
2. Description of the Related Art An example of a semiconductor manufacturing apparatus is an epitaxial growth apparatus using induction heating. In this method, a susceptor in a reaction chamber is heated using a high-frequency induction heating method, and an epitaxial layer is formed on a substrate on the susceptor by a CVD method. Usually, this epitaxial apparatus employs a batch method for simultaneously processing a plurality of substrates.

【0003】高周波誘導加熱方式は、高周波変換した電
流を高周波誘導加熱コイルに導き、このコイルで作られ
る高周波の磁束により誘導される渦電流によってサセプ
タを加熱し、加熱されたサセプタを介してその上に保持
されている基板を加熱する方式である。
In the high-frequency induction heating method, a high-frequency converted current is guided to a high-frequency induction heating coil, and the susceptor is heated by an eddy current induced by a high-frequency magnetic flux generated by the coil. This is a method of heating the substrate held in the device.

【0004】[0004]

【発明が解決しようとする課題】製品レベルでのエピタ
キシャル層の抵抗率使用範囲は、0.1〜100Ωcm
程度であるため、ノンドープエピタキシャル成長層の抵
抗率は100Ωcm以上ないと上記範囲の抵抗率制御が
できない。そこで、ノンドープエピタキシャル成長で
は、100Ωcm以上の高抵抗率を得る必要がある。
The use range of the resistivity of the epitaxial layer at the product level is 0.1 to 100 Ωcm.
Therefore, unless the resistivity of the non-doped epitaxial growth layer is 100 Ωcm or more, the resistivity in the above range cannot be controlled. Therefore, in non-doped epitaxial growth, it is necessary to obtain a high resistivity of 100 Ωcm or more.

【0005】ところが、高周波誘導加熱コイルを用いて
サセプタを加熱するエピタキシャル成長装置では、装置
立上げ時や加熱コイル交換時においてエピタキシャル成
長層の抵抗値が上がらないという問題があった。
However, an epitaxial growth apparatus that heats a susceptor using a high-frequency induction heating coil has a problem that the resistance of the epitaxial growth layer does not increase when the apparatus is started or when the heating coil is replaced.

【0006】そこで、従来は、装置立上げ時や、新しい
誘導加熱コイルに交換した場合、数十バッチ程度エピタ
キシャル成長を繰り返したり、長時間空焼きを行ったり
して、これにより初めて所望の高抵抗を得るというのが
実情であった。
Therefore, conventionally, when the apparatus is started up or replaced with a new induction heating coil, several tens of batches of epitaxial growth are repeatedly performed, or long-time baking is performed, whereby a desired high resistance is obtained for the first time. It was the fact that I got it.

【0007】しかしこのような作業は効率が悪く、スル
ープットの大幅な低下をもたらす原因となっていた。
However, such an operation is inefficient and causes a significant decrease in throughput.

【0008】本発明の目的は、上述した従来技術の問題
点を解消して、所望の特性をもつ基板処理が可能な高周
波誘導加熱コイル、スループットの大きな半導体製造装
置、及び簡易な高周波誘導加熱コイルの製造方法を提供
することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems of the prior art and to provide a high-frequency induction heating coil capable of processing a substrate having desired characteristics, a semiconductor manufacturing apparatus having a large throughput, and a simple high-frequency induction heating coil. It is to provide a manufacturing method of.

【0009】[0009]

【課題を解決するための手段】上述したように、高周波
誘導加熱コイルを用いてサセプタを加熱するエピタキシ
ャル成長装置では、初期バッチ時に所望の抵抗値が得ら
れないという問題があった。
As described above, in an epitaxial growth apparatus for heating a susceptor by using a high-frequency induction heating coil, there is a problem that a desired resistance value cannot be obtained in an initial batch.

【0010】本発明者は、その理由が、高周波誘導加熱
コイルのめっき中に含まれるりん(P)が原因であり、
初期バッチ時に、加熱コイルからPが蒸発して、エピタ
キシャル層がそれを取り込むために、所望のドーピング
レベルのエピタキシャル層が得られないということを突
き止めた。
The inventor of the present invention has found that the reason is that phosphorus (P) contained in the plating of the high-frequency induction heating coil,
During the initial batch, it was determined that P evaporated from the heating coil and the epitaxial layer incorporated it, resulting in an epitaxial layer of the desired doping level that was not obtained.

【0011】高周波誘導加熱コイルには、通常、銅パイ
プを加工して形成されるが、エピタキシャル成長時、C
l系のガス等を使用するため腐食する。そこで腐食防止
のため、ニッケルめっきを表面に施している。このめっ
きには、めっき浴中に素材を浸漬するだけで密着力に優
れた均一厚さの均質な皮膜が得られることから無電解め
っきが採用されている。そして、反応触媒、耐食性のた
めに10%程度のPを含有している。実際、加熱コイル
に施される無電解ニッケルめっきの成分は約90%N
i、約10%Pである。
A high-frequency induction heating coil is usually formed by processing a copper pipe.
Corrosion occurs due to use of l-based gas and the like. Therefore, nickel plating is applied to the surface to prevent corrosion. For this plating, electroless plating is employed because a uniform film having a uniform thickness and excellent adhesion can be obtained only by immersing the material in a plating bath. And, about 10% of P is contained for a reaction catalyst and corrosion resistance. In fact, the component of the electroless nickel plating applied to the heating coil is about 90% N
i, about 10% P.

【0012】上述した無電解ニッケルめっきを施した高
周波誘導加熱コイルを使用したエピタキシャル成長装置
は、図3に示すように、ベルジャ1で上方を覆われて気
密状態に保たれた反応室2内に、複数枚の基板としての
半導体ウェーハWを載置したサセプタ3を配設し、この
サセプタ3を渦巻き状加熱コイル4によって加熱すると
ともに、反応室2内のガス噴射ノズル6から反応ガスL
(例えばH2 +SiCl4 +PH3 )を導入して、半導
体ウェーハWの上面に気相成長膜を形成するようになっ
ている。エピタキシャル成長時、反応室2内は高温にな
るので、上記誘導加熱コイル4のめっき中に含まれてい
るPが蒸発して気密に設けられている反応室2内に拡散
し、これがウェーハW上のエピタキシャル層に取り込ま
れるのである。
As shown in FIG. 3, the epitaxial growth apparatus using the high-frequency induction heating coil coated with the electroless nickel plating includes a reaction chamber 2 covered with a bell jar 1 and kept in an airtight state. A susceptor 3 on which a plurality of semiconductor wafers W as substrates are placed is heated by a spiral heating coil 4, and a reaction gas L is supplied from a gas injection nozzle 6 in the reaction chamber 2.
(For example, H 2 + SiCl 4 + PH 3 ) is introduced to form a vapor growth film on the upper surface of the semiconductor wafer W. During the epitaxial growth, the temperature inside the reaction chamber 2 becomes high, so that P contained in the plating of the induction heating coil 4 evaporates and diffuses into the reaction chamber 2 provided in an airtight manner. It is taken into the epitaxial layer.

【0013】このように無電解ニッケルめっき中のPが
拡散してウェーハW上のエピタキシャル層に取り込まれ
るため、ノンドープエピタキシャル層の成長時は、反応
ガス中にドーパントを混合しなくても、誘導加熱コイル
から蒸発したPがドーパントとして作用することにな
り、ノンドープエピタキシャル成長時でも高抵抗が得ら
れない。また、n型エピタキシャル層の成長時は、不純
物(ドーピング)としてホスフィン(PH3 )を使用
し、流量などの調整により所定のエピタキシャル成長を
しているが、加熱コイルからPが出てくると、不純物濃
度が再現性良く制御できない。また、p型エピタキシャ
ル層の成長時は、不純物としてジボラン(B2 6 )を
使用するが、このp型の場合も、誘導加熱コイルから蒸
発したPの影響を受けて、n型同様制御できなくなる。
As described above, P in the electroless nickel plating diffuses and is taken into the epitaxial layer on the wafer W. Therefore, during growth of the non-doped epitaxial layer, induction heating can be performed without mixing a dopant into the reaction gas. Since P evaporated from the coil acts as a dopant, high resistance cannot be obtained even during non-doped epitaxial growth. In growing the n-type epitaxial layer, phosphine (PH 3 ) is used as an impurity (doping), and a predetermined epitaxial growth is performed by adjusting a flow rate. The density cannot be controlled with good reproducibility. In growing the p-type epitaxial layer, diborane (B 2 H 6 ) is used as an impurity. In the case of this p-type, it can be controlled similarly to the n-type under the influence of P evaporated from the induction heating coil. Disappears.

【0014】装置立上げ時に数十バッチ程度エピタキシ
ャル成長を繰り返したり、長時間空焼きを行なうと、エ
ピタキシャル成長層の抵抗値が上がるようになるのは、
これらの作業により誘導加熱コイルのめっき中のPが蒸
発してなくなるためである。
If the epitaxial growth is repeated about several tens of batches at the start-up of the apparatus, or if the baking is performed for a long time, the resistance value of the epitaxially grown layer increases.
This is because P in the plating of the induction heating coil is not evaporated by these operations.

【0015】本発明はこのような事実に鑑みてなされた
もので、上記目的を達成するために次のように構成し
た。
The present invention has been made in view of such a fact, and has the following configuration to achieve the above object.

【0016】請求項1に記載の発明は、表面に施された
無電解ニッケルめっき中に含まれる不純物を結晶化ない
し脱離した高周波誘導加熱コイルである。製品コイルと
して、めっき中に含まれるニッケル以外の不純物が結晶
化ないし脱離されているので、高周波誘導加熱コイルの
初期使用時でも、めっきから不純物が脱離して雰囲気を
汚染するようなことがない。なお、代表的な不純物とし
てはPがあげられる。
The first aspect of the present invention is a high-frequency induction heating coil in which impurities contained in electroless nickel plating applied to the surface are crystallized or desorbed. As the product coil, impurities other than nickel contained in the plating are crystallized or desorbed, so even during the initial use of the high-frequency induction heating coil, no impurities are desorbed from the plating and pollute the atmosphere. . Note that P is a typical impurity.

【0017】請求項2に記載の発明は、請求項1に記載
の高周波誘導加熱コイルを渦巻き状にしてユニット化し
た高周波誘導加熱コイルである。ユニット化されている
ので取り扱いが容易になる。
According to a second aspect of the present invention, there is provided a high-frequency induction heating coil in which the high-frequency induction heating coil according to the first aspect is spirally unitized. The unit is easy to handle.

【0018】請求項3に記載の発明は、請求項1または
2に記載の高周波誘導加熱コイルをサセプタを加熱する
ために備えた半導体製造装置である。高周波誘導加熱コ
イルの初期使用時でも、めっきから不純物が蒸発して雰
囲気を汚染するようなことがない。
According to a third aspect of the present invention, there is provided a semiconductor manufacturing apparatus including the high-frequency induction heating coil according to the first or second aspect for heating a susceptor. Even during the initial use of the high-frequency induction heating coil, impurities do not evaporate from the plating and contaminate the atmosphere.

【0019】請求項4に記載の発明は、請求項1または
2に記載の高周波誘導加熱コイルをサセプタを加熱する
ために反応室内に備えた半導体製造装置である。無電解
ニッケルめっき中に含まれる不純物を結晶化ないし脱離
しておいた高周波誘導加熱コイルを反応室内に備えて使
用すると、予行処理を多数回繰り返したり、長時間空焼
きをしなくても、加熱コイルに起因する反応室内の不純
物の汚染を抑制できるので、初期稼働時においても所望
の処理が行なえ、所望の特性を有する基板が得られる。
According to a fourth aspect of the present invention, there is provided a semiconductor manufacturing apparatus including the high-frequency induction heating coil according to the first or second aspect in a reaction chamber for heating a susceptor. If a high-frequency induction heating coil in which impurities contained in electroless nickel plating are crystallized or desorbed is provided in the reaction chamber and used, the heating can be performed without repeating the pre-treatment many times or performing long-time idle firing. Since contamination of impurities in the reaction chamber due to the coil can be suppressed, desired processing can be performed even during the initial operation, and a substrate having desired characteristics can be obtained.

【0020】請求項5に記載の発明は、請求項4に記載
の半導体製造装置をエピタキシャル成長装置としたもの
である。コイルめっき中の不純物を結晶化ないし脱離し
た高周波誘導加熱コイルを使用すると、コイルめっきに
よる不純物汚染が抑制されるので、初期のエピタキシャ
ル成長から高抵抗のエピタキシャル層または所望の抵抗
率をもつエピタキシャル層を容易に得ることができる。
According to a fifth aspect of the present invention, the semiconductor manufacturing apparatus according to the fourth aspect is an epitaxial growth apparatus. The use of a high frequency induction heating coil in which impurities in the coil plating are crystallized or desorbed suppresses impurity contamination due to coil plating. Can be easily obtained.

【0021】請求項6に記載の発明は、気密状態に保た
れた反応室と、反応室内に入れられる基板を保持するサ
セプタと、表面に施された無電解ニッケルめっき中に含
まれる不純物を結晶化ないし脱離した、サセプタを高周
波誘導加熱する高周波誘導加熱コイルと、高周波誘導加
熱コイルを覆うコイル用カバーと、上記反応室内に反応
ガスを導入して未反応ガスを排気するガス導入・排気口
とを備えた半導体製造装置である。高周波誘導加熱コイ
ルのめっきによる不純物汚染の影響を受けずに基板に高
抵抗のエピタキシャル層を成長できる。
According to a sixth aspect of the present invention, there is provided a reaction chamber maintained in an airtight state, a susceptor for holding a substrate to be put in the reaction chamber, and a method for crystallizing impurities contained in electroless nickel plating applied to the surface. A high-frequency induction heating coil for high-frequency induction heating of a susceptor that has been desorbed or desorbed, a coil cover for covering the high-frequency induction heating coil, and a gas introduction / exhaust port for introducing a reaction gas into the reaction chamber and exhausting an unreacted gas And a semiconductor manufacturing apparatus comprising: A high-resistance epitaxial layer can be grown on a substrate without being affected by impurity contamination due to plating of a high-frequency induction heating coil.

【0022】請求項7に記載の発明は、高周波誘導加熱
コイルの表面に無電解ニッケルめっきを施した後、ベー
ク処理して無電解ニッケルめっき中に含まれる不純物を
結晶化ないし脱離させる高周波誘導加熱コイルの製造方
法である。ベーク処理するだけの簡単な処理で、めっき
中に含まれる不純物を結晶化し、結晶化していない余っ
た不純物を脱離させることができる。
According to a seventh aspect of the present invention, there is provided a high-frequency induction heating method in which an electroless nickel plating is applied to the surface of a high-frequency induction heating coil, and then baking treatment is performed to crystallize or desorb impurities contained in the electroless nickel plating. This is a method for manufacturing a heating coil. The impurities contained in the plating can be crystallized by a simple treatment only by baking, and the remaining uncrystallized impurities can be eliminated.

【0023】請求項8に記載の発明は、請求項7に記載
の高周波誘導加熱コイルの製造方法において、上記ベー
ク処理を真空中または常圧下で350℃〜420℃に加
熱して行うようにした高周波誘導加熱コイルの製造方法
である。ベーク処理温度が350℃よりも低いと、無電
解ニッケルめっき中の不純物の結晶化ないし脱離が不完
全となるので好ましくない。また、ベーク処理温度が4
20℃よりも高いと加熱コイルが変形しやすくなるため
好ましくない。従って、350℃〜420℃の範囲で真
空または常圧下でベーク処理すると、高周波誘導加熱コ
イルを変形させることなく、めっき中のPの結晶化ない
し脱離を完全に行うことができる。
According to an eighth aspect of the present invention, in the method of manufacturing a high-frequency induction heating coil according to the seventh aspect, the baking treatment is performed by heating at 350 ° C. to 420 ° C. in a vacuum or under normal pressure. This is a method for manufacturing a high-frequency induction heating coil. If the baking temperature is lower than 350 ° C., crystallization or desorption of impurities during electroless nickel plating is incomplete, which is not preferable. When the baking temperature is 4
If the temperature is higher than 20 ° C., the heating coil is easily deformed, which is not preferable. Therefore, when baking is performed in a range of 350 ° C. to 420 ° C. under vacuum or normal pressure, crystallization or desorption of P during plating can be completely performed without deforming the high-frequency induction heating coil.

【0024】[0024]

【発明の実施の形態】以下に本発明の実施の形態につい
て説明する。図1はエピタキシャル成長装置の概略的な
縦断面図を示す。
Embodiments of the present invention will be described below. FIG. 1 shows a schematic longitudinal sectional view of an epitaxial growth apparatus.

【0025】基台7上に反応室2を気密に形成するステ
ンレスベルジャ1が設けられ、ベルジャ1と基台7との
間に介設されたOリング8により気密状態に保たれる。
基台7の中心部においてガス導入口としての反応ガス噴
射ノズル6が反応室2内に突出している。この噴射ノズ
ル6は下方部分は二重軸構造となっており、外側の回転
軸9にサセプタ3が取り付けられている。サセプタ3は
SiCコートされたグラファイトカーボン製である。サ
セプタ3にはシリコンウェーハWが載置される。回転軸
9は、基台7の下面に取り付けられた回転駆動機構10
によって垂直軸線のまわりで回動し、これによりサセプ
タ3が回転するように構成されている。サセプタ3を高
周波誘導加熱するための高周波誘導加熱コイル11は、
サセプタ3の裏面側に渦巻き状に配設される。高周波誘
導加熱コイル11はヒータユニットとしてベルジャ1内
に組み込まれ、誘導加熱コイル用石英カバー5で覆われ
る。なお、12は基台7に設けられた未反応ガスのガス
排気口である。
A stainless steel bell jar 1 for forming the reaction chamber 2 in an airtight manner is provided on the base 7, and is kept airtight by an O-ring 8 interposed between the bell jar 1 and the base 7.
A reaction gas injection nozzle 6 as a gas introduction port projects into the reaction chamber 2 at the center of the base 7. The lower part of the injection nozzle 6 has a double-shaft structure, and the susceptor 3 is attached to the outer rotating shaft 9. The susceptor 3 is made of graphite carbon coated with SiC. The silicon wafer W is mounted on the susceptor 3. The rotation shaft 9 includes a rotation drive mechanism 10 attached to the lower surface of the base 7.
To rotate around the vertical axis, whereby the susceptor 3 is configured to rotate. The high-frequency induction heating coil 11 for high-frequency induction heating of the susceptor 3 includes:
The susceptor 3 is spirally disposed on the back side. The high-frequency induction heating coil 11 is incorporated in the bell jar 1 as a heater unit, and is covered with a quartz cover 5 for the induction heating coil. Reference numeral 12 denotes a gas exhaust port provided on the base 7 for unreacted gas.

【0026】図2にヒータユニットの構成図を示す。ヒ
ータユニット13は、渦巻き状に巻回した加熱コイル1
1を支持円板14上に浮かして支持したもので、支持円
板14の中央に噴射ノズル及び回転軸挿通用の孔15を
開けてある。加熱コイル11の組込み及び交換は、ヒー
タユニット13の単位で行う。
FIG. 2 shows a configuration diagram of the heater unit. The heater unit 13 includes a heating coil 1 wound in a spiral shape.
1 is supported on a supporting disk 14 by being floated on the supporting disk 14. A hole 15 for inserting an injection nozzle and a rotating shaft is formed in the center of the supporting disk 14. The installation and replacement of the heating coil 11 are performed in units of the heater unit 13.

【0027】上記高周波誘導加熱コイル11は次のよう
に形成する。まず、銅パイプからなる誘導加熱コイルの
表面に、防食のための無電解ニッケルめっきを施す。無
電解ニッケルめっきの成分は、従来と同じ約90%N
i、約10%Pである。無電解ニッケルめっき後、真空
中または常圧下で350℃〜420℃に誘導加熱コイル
を加熱して1時間以上ベーキングする。ベーキングはP
が脱離しやすい真空中で行う方が好ましい。また、ベー
キング温度は高い方が良いが、例えば600℃でベーク
した場合、コイル(銅)が変質してしまうため、500
℃以下、好ましくは420℃以下がよい。また、ベーキ
ング時間は、Pの脱離を十分に行う理由から3h〜24
hの範囲が好ましい。
The high-frequency induction heating coil 11 is formed as follows. First, electroless nickel plating for corrosion protection is applied to the surface of an induction heating coil made of a copper pipe. The component of electroless nickel plating is about 90% N
i, about 10% P. After the electroless nickel plating, the induction heating coil is heated at 350 ° C. to 420 ° C. under vacuum or normal pressure and baked for 1 hour or more. Baking is P
It is more preferable to perform the reaction in a vacuum in which is easily desorbed. Also, the higher the baking temperature, the better. However, if baking is performed at, for example, 600 ° C., the coil (copper) is deteriorated.
C. or lower, preferably 420 ° C. or lower. The baking time is 3 hours to 24 hours because P is sufficiently desorbed.
The range of h is preferred.

【0028】このベークにより誘導加熱コイル表面に施
されている無電解ニッケルめっき中のPが結晶化(Ni
P)すると共に、結晶化していない余ったPが脱離ない
し蒸発する。
By this baking, P in the electroless nickel plating applied to the surface of the induction heating coil is crystallized (Ni
At the same time as P), surplus P that has not been crystallized is eliminated or evaporated.

【0029】このようにして、めっき後めっき中のPの
結晶化ないし離脱した誘導加熱コイルをエピタキシャル
成長装置のコイル用石英カバー5内に組み込む。なお、
Pの結晶化ないし脱離は、装置に組み込む前に行なって
もよい。
In this way, the induction heating coil in which P is crystallized or separated during plating after plating is incorporated in the coil quartz cover 5 of the epitaxial growth apparatus. In addition,
The crystallization or elimination of P may be performed before being incorporated into the apparatus.

【0030】上記構成において、サセプタ3を回転駆動
機構10により回転させながら、高周波誘導加熱コイル
11によりサセプタ3を加熱して、ノズル6より反応ガ
スを反応室2内に導入して、ウェーハW上にエピタキシ
ャル層を気相成長させる。
In the above configuration, the susceptor 3 is heated by the high-frequency induction heating coil 11 while the susceptor 3 is rotated by the rotation drive mechanism 10, and the reaction gas is introduced into the reaction chamber 2 from the nozzle 6 and Next, an epitaxial layer is vapor-phase grown.

【0031】すると誘導加熱コイル11からの不純物
(P)離脱を抑制できるので、従来のように数十バッチ
もエピタキシャル成長したり、あるいは長時間にわたっ
て空焼きしなくても、数バッチ程度で、反応室2内にお
けるエピタキシャル成長中のP汚染を有効に抑制でき
る。その結果、装置立上げ時や加熱コイル交換時におい
て、ノンドープ時に100Ωcm以上の高抵抗率をもつ
エピタキシャル層を容易に得ることができる。従って、
製品レベルでのエピタキシャル層の抵抗率使用範囲
(0.1〜100Ωcm程度)の抵抗値制御が容易にで
きる。特に不純物濃度の低いエピタキシャル層(1013
〜1017atms/cm3 )成長に有効である。
Then, since the release of impurities (P) from the induction heating coil 11 can be suppressed, dozens of batches can be epitaxially grown as in the prior art, or the reaction chamber can be formed in a few batches without baking for a long time. 2 can effectively suppress P contamination during epitaxial growth. As a result, an epitaxial layer having a high resistivity of 100 Ωcm or more at the time of non-doping can be easily obtained when the apparatus is started or when the heating coil is replaced. Therefore,
It is possible to easily control the resistance value of the resistivity range of the epitaxial layer at the product level (about 0.1 to 100 Ωcm). In particular, an epitaxial layer having a low impurity concentration (10 13
〜1010 17 atms / cm 3 ) Effective for growth.

【0032】また、不純物(ドーピング)としてホスフ
ィン(PH3 )を使用するn型エピタキシャル層の成長
時、および不純物としてジボラン(B2 6 )を使用す
るp型エピタキシャル層の成長時でも、誘導加熱コイル
からPが出てこないので、n型またはp型の不純物濃度
を再現性良く制御でき、所望の抵抗率をもつエピタキシ
ャル層を得ることができる。
Further, even when growing an n-type epitaxial layer using phosphine (PH 3 ) as an impurity (doping) and a p-type epitaxial layer using diborane (B 2 H 6 ) as an impurity, induction heating is performed. Since P does not come out of the coil, the n-type or p-type impurity concentration can be controlled with good reproducibility, and an epitaxial layer having a desired resistivity can be obtained.

【0033】また、多数回の予行バッチや長時間の空焼
きを必要としないので、スループットが向上する。
Further, since there is no need for a large number of pre-run batches or long-time empty baking, the throughput is improved.

【0034】実施の形態のエピタキシャル成長装置のよ
うに、反応室内に誘導加熱コイルが設けられている場合
は、反応室が気密に設けられているので、加熱コイルか
らの影響が大きく、本発明は特に有効となる。これに対
して、加熱コイルが反応室外に設けられている場合は、
反応室内は影響を受けにくいが、反応室外の雰囲気に対
する影響を低減できるというメリットがある。
When the induction heating coil is provided in the reaction chamber as in the epitaxial growth apparatus of the embodiment, the effect of the heating coil is large because the reaction chamber is provided in an airtight manner. Becomes effective. On the other hand, when the heating coil is provided outside the reaction chamber,
Although the reaction chamber is hardly affected, there is an advantage that the influence on the atmosphere outside the reaction chamber can be reduced.

【0035】また、本発明はエピタキシャル成長装置に
限定されず、高周波誘導加熱コイルを使用するプラズマ
CVDなど他の半導体製造装置にも適用できる。また、
バッチ処理に限定されず、枚葉処理にも適用できる。さ
らに基板としては、半導体ウェーハの他に液晶表示用の
ガラス基板にも適用できる。
The present invention is not limited to an epitaxial growth apparatus, but can be applied to other semiconductor manufacturing apparatuses such as a plasma CVD using a high-frequency induction heating coil. Also,
The present invention is not limited to batch processing, and can be applied to single-wafer processing. Further, as the substrate, other than a semiconductor wafer, a glass substrate for a liquid crystal display can be applied.

【0036】[0036]

【発明の効果】本発明によれば、高周波誘導加熱コイル
のめっき中の不純物が結晶化ないし脱離されているの
で、使用初期でも、加熱コイルからの不純物の脱離を抑
制することができる。その結果、誘導加熱コイルを使用
しても雰囲気が汚染されないので、所望の特性をもつ基
板処理が可能となる。
According to the present invention, the impurities in the plating of the high-frequency induction heating coil are crystallized or desorbed, so that the desorption of impurities from the heating coil can be suppressed even in the early stage of use. As a result, even if the induction heating coil is used, the atmosphere is not polluted, so that a substrate having desired characteristics can be processed.

【0037】また、半導体製造装置において、装置の立
上げ時や、加熱コイルの交換時に、多数回の予行処理や
長時間の空焼きをしなくても、不純物の脱離を抑制でき
るので、所望の処理ができ、所望の特性をもつ処理基板
が得られる。
In the semiconductor manufacturing apparatus, the desorption of impurities can be suppressed without starting the apparatus or exchanging the heating coil without performing a large number of pre-processes or long-time empty baking. And a processed substrate having desired characteristics can be obtained.

【0038】また、めっき後にベークするという簡単な
操作で、めっき中の不純物の脱離を抑制できる加熱コイ
ルが容易に得られる。
Further, by a simple operation of baking after plating, a heating coil capable of suppressing desorption of impurities during plating can be easily obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施の形態によるエピタキシャル成長装置の概
略的な縦断面図である。
FIG. 1 is a schematic longitudinal sectional view of an epitaxial growth apparatus according to an embodiment.

【図2】実施の形態によるヒータユニットの構成図であ
る。
FIG. 2 is a configuration diagram of a heater unit according to the embodiment.

【図3】無電解ニッケルめっき中のりん(P)が拡散し
てウェーハ上のエピタキシャル層に取り込まれる状況を
説明したエピタキシャル成長装置の概略的な縦断面図で
ある。
FIG. 3 is a schematic longitudinal sectional view of an epitaxial growth apparatus illustrating a situation where phosphorus (P) in electroless nickel plating is diffused and taken into an epitaxial layer on a wafer.

【符号の説明】[Explanation of symbols]

2 反応室 3 サセプタ 5 誘導加熱コイル用石英カバー 6 ガス噴射ノズル(ガス導入口) 11 高周波誘導加熱コイル 12 ガス排気口 13 ヒータユニット 2 Reaction chamber 3 Susceptor 5 Quartz cover for induction heating coil 6 Gas injection nozzle (gas introduction port) 11 High frequency induction heating coil 12 Gas exhaust port 13 Heater unit

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01L 21/205 H01L 21/205 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI H01L 21/205 H01L 21/205

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】表面に施された無電解ニッケルめっき中に
含まれる不純物を結晶化ないし脱離した高周波誘導加熱
コイル。
1. A high-frequency induction heating coil in which impurities contained in electroless nickel plating applied to a surface are crystallized or desorbed.
【請求項2】請求項1に記載の高周波誘導加熱コイルを
渦巻き状にしてユニット化した高周波誘導加熱コイル。
2. A high-frequency induction heating coil in which the high-frequency induction heating coil according to claim 1 is formed into a spiral shape to form a unit.
【請求項3】請求項1または2に記載の高周波誘導加熱
コイルをサセプタを加熱するために備えた半導体製造装
置。
3. A semiconductor manufacturing apparatus comprising the high-frequency induction heating coil according to claim 1 for heating a susceptor.
【請求項4】請求項1または2に記載の高周波誘導加熱
コイルをサセプタを加熱するために反応室内に備えた半
導体製造装置。
4. A semiconductor manufacturing apparatus provided with the high-frequency induction heating coil according to claim 1 in a reaction chamber for heating a susceptor.
【請求項5】上記半導体製造装置がエピタキシャル成長
装置である請求項4に記載の半導体製造装置。
5. The semiconductor manufacturing apparatus according to claim 4, wherein said semiconductor manufacturing apparatus is an epitaxial growth apparatus.
【請求項6】気密状態に保たれた反応室と、 反応室内に入れられる基板を保持するサセプタと、 表面に施された無電解ニッケルめっき中に含まれる不純
物を結晶化ないし脱離した、サセプタを高周波誘導加熱
する高周波誘導加熱コイルと、 高周波誘導加熱コイルを覆うコイル用カバーと、 上記反応室内に反応ガスを導入して未反応ガスを排気す
るガス導入・排気口とを備えた半導体製造装置。
6. A susceptor for maintaining a hermetically sealed reaction chamber, a susceptor for holding a substrate placed in the reaction chamber, and a susceptor for crystallizing or desorbing impurities contained in electroless nickel plating applied to the surface. A semiconductor manufacturing apparatus comprising: a high-frequency induction heating coil for high-frequency induction heating, a coil cover for covering the high-frequency induction heating coil, and a gas introduction / exhaust port for introducing a reaction gas into the reaction chamber and exhausting an unreacted gas. .
【請求項7】高周波誘導加熱コイルの表面に無電解ニッ
ケルめっきを施した後、ベーク処理して無電解ニッケル
めっき中に含まれる不純物を結晶化ないし脱離した高周
波誘導加熱コイルの製造方法。
7. A method for manufacturing a high-frequency induction heating coil in which electroless nickel plating is applied to the surface of a high-frequency induction heating coil, and baking treatment is performed to crystallize or desorb impurities contained in the electroless nickel plating.
【請求項8】請求項7に記載の高周波誘導加熱コイルの
製造方法において、上記ベーク処理を真空中または常圧
下で350℃〜420℃に加熱して行うようにした高周
波誘導加熱コイルの製造方法。
8. The method for manufacturing a high-frequency induction heating coil according to claim 7, wherein the baking treatment is performed by heating at 350 ° C. to 420 ° C. in a vacuum or under normal pressure. .
JP12820097A 1997-05-19 1997-05-19 High frequency induction heating coil, semiconductor manufacture device, and manufacture of high frequency induction heating coil Pending JPH10321361A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12820097A JPH10321361A (en) 1997-05-19 1997-05-19 High frequency induction heating coil, semiconductor manufacture device, and manufacture of high frequency induction heating coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12820097A JPH10321361A (en) 1997-05-19 1997-05-19 High frequency induction heating coil, semiconductor manufacture device, and manufacture of high frequency induction heating coil

Publications (1)

Publication Number Publication Date
JPH10321361A true JPH10321361A (en) 1998-12-04

Family

ID=14978949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12820097A Pending JPH10321361A (en) 1997-05-19 1997-05-19 High frequency induction heating coil, semiconductor manufacture device, and manufacture of high frequency induction heating coil

Country Status (1)

Country Link
JP (1) JPH10321361A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007318003A (en) * 2006-05-29 2007-12-06 Nec Electronics Corp Semiconductor device
WO2010076346A1 (en) * 2008-12-30 2010-07-08 Gh Electrotermia, S.A. Method for manufacturing inductors for induction heating using microfusion techniques
JP2013040635A (en) * 2011-08-11 2013-02-28 Nitto Seiko Co Ltd Tapping screw made of high hardness stainless steel and method for manufacturing the same
JP2016520482A (en) * 2013-04-10 2016-07-14 テトラ・ラヴァル・ホールディングス・アンド・ファイナンス・ソシエテ・アノニムTetra Laval Holdings & Finance S.A. Induction sealing device and method for producing an induction sealing device
US10899082B2 (en) 2017-07-17 2021-01-26 Tetra Laval Holdings & Finance S.A. Inductor coil for induction welding of a packaging material
US10994495B2 (en) 2015-11-27 2021-05-04 Tetra Laval Holdings & Finance S.A. Sealing device with increased robustness
US11370571B2 (en) 2017-07-18 2022-06-28 Tetra Laval Holdings & Finance S.A. Induction sealing device
CN115241330A (en) * 2022-09-19 2022-10-25 英利能源发展(天津)有限公司 Semiconductor silicon wafer device for solar cell etched by hydrofluoric acid
US11534985B2 (en) 2016-05-02 2022-12-27 Tetra Laval Holdings & Finance S.A. Induction sealing system
US11548238B2 (en) 2018-09-10 2023-01-10 Tetra Laval Holdings & Finance S.A. Method for forming a tube and a method and a packaging machine for forming a package
US11554555B2 (en) 2017-05-30 2023-01-17 Tetra Laval Holdings & Finance S.A. Apparatus for sealing the top of a package for a food product and system for forming and filling a food package
US11820540B2 (en) 2018-09-11 2023-11-21 Tetra Laval Holdings & Finance S.A. Packaging apparatus for forming sealed packages

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007318003A (en) * 2006-05-29 2007-12-06 Nec Electronics Corp Semiconductor device
WO2010076346A1 (en) * 2008-12-30 2010-07-08 Gh Electrotermia, S.A. Method for manufacturing inductors for induction heating using microfusion techniques
JP2013040635A (en) * 2011-08-11 2013-02-28 Nitto Seiko Co Ltd Tapping screw made of high hardness stainless steel and method for manufacturing the same
JP2016520482A (en) * 2013-04-10 2016-07-14 テトラ・ラヴァル・ホールディングス・アンド・ファイナンス・ソシエテ・アノニムTetra Laval Holdings & Finance S.A. Induction sealing device and method for producing an induction sealing device
US10160162B2 (en) 2013-04-10 2018-12-25 Tetra Laval Holdings & Finance S.A. Induction sealing device and method for manufacturing an induction sealing device
US10994495B2 (en) 2015-11-27 2021-05-04 Tetra Laval Holdings & Finance S.A. Sealing device with increased robustness
US11534985B2 (en) 2016-05-02 2022-12-27 Tetra Laval Holdings & Finance S.A. Induction sealing system
US11554555B2 (en) 2017-05-30 2023-01-17 Tetra Laval Holdings & Finance S.A. Apparatus for sealing the top of a package for a food product and system for forming and filling a food package
US10899082B2 (en) 2017-07-17 2021-01-26 Tetra Laval Holdings & Finance S.A. Inductor coil for induction welding of a packaging material
US11370571B2 (en) 2017-07-18 2022-06-28 Tetra Laval Holdings & Finance S.A. Induction sealing device
US11548238B2 (en) 2018-09-10 2023-01-10 Tetra Laval Holdings & Finance S.A. Method for forming a tube and a method and a packaging machine for forming a package
US11820540B2 (en) 2018-09-11 2023-11-21 Tetra Laval Holdings & Finance S.A. Packaging apparatus for forming sealed packages
CN115241330A (en) * 2022-09-19 2022-10-25 英利能源发展(天津)有限公司 Semiconductor silicon wafer device for solar cell etched by hydrofluoric acid

Similar Documents

Publication Publication Date Title
US4579609A (en) Growth of epitaxial films by chemical vapor deposition utilizing a surface cleaning step immediately before deposition
JP3845563B2 (en) Silicon carbide film CVD method, CVD apparatus, and susceptor for CVD apparatus
WO2002097864A2 (en) Low temperature load and bake
JPH10321361A (en) High frequency induction heating coil, semiconductor manufacture device, and manufacture of high frequency induction heating coil
JPH1012563A (en) Member for heat treatment of high-purity cvd-sic semiconductor and its manufacture
KR20130014488A (en) Semiconductor thin-film manufacturing method, semiconductor thin-film manufacturing apparatus, susceptor, and susceptor holding tool
WO1996030564A1 (en) Method and apparatus for configuring an epitaxial reactor for reduced set-up time and improved layer quality
WO2013025968A1 (en) Low temperature migration enhanced si-ge epitaxy with plasma assisted surface activation
US4661199A (en) Method to inhibit autodoping in epitaxial layers from heavily doped substrates in CVD processing
JP3432601B2 (en) Film formation method
KR20030074392A (en) Process and apparatus for epitaxially coating a semiconductor wafer, and epitaxially coated semiconductor wafer
JPH10189695A (en) Vapor growth susceptor and manufacture thereof
JP3424069B2 (en) Manufacturing method of epitaxial silicon substrate
US8216921B2 (en) Method for production of silicon wafer for epitaxial substrate and method for production of epitaxial substrate
JPH10316490A (en) High frequency induction heating coil, and device for producing semiconductor
JPH10223546A (en) Susceptor for chemical vapor deposition
JP2020043260A (en) Polycrystalline film forming method, substrate mounting mechanism, and film forming apparatus
JPH05190468A (en) Low-pressure cvd apparatus
JP2000091237A (en) Manufacture of semiconductor wafer
CN110117814A (en) The preparation method of silicon carbide epitaxy with low-density C vacancy defect
CN113243039B (en) Method for growing doped group IV materials
KR940010412B1 (en) Method of forming thin film
JP3753986B2 (en) Semiconductor device manufacturing method and substrate processing apparatus
JP3112796B2 (en) Chemical vapor deposition method
JP2022068478A (en) Film deposition device