KR940010412B1 - Method of forming thin film - Google Patents

Method of forming thin film Download PDF

Info

Publication number
KR940010412B1
KR940010412B1 KR1019870002952A KR870002952A KR940010412B1 KR 940010412 B1 KR940010412 B1 KR 940010412B1 KR 1019870002952 A KR1019870002952 A KR 1019870002952A KR 870002952 A KR870002952 A KR 870002952A KR 940010412 B1 KR940010412 B1 KR 940010412B1
Authority
KR
South Korea
Prior art keywords
reaction tube
thin film
cvd reaction
film
metal
Prior art date
Application number
KR1019870002952A
Other languages
Korean (ko)
Other versions
KR870009448A (en
Inventor
데츠오 마츠다
이와오 구니시마
Original Assignee
가부시키가이샤 도시바
와타리 스기이치로
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 도시바, 와타리 스기이치로 filed Critical 가부시키가이샤 도시바
Publication of KR870009448A publication Critical patent/KR870009448A/en
Application granted granted Critical
Publication of KR940010412B1 publication Critical patent/KR940010412B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4404Coatings or surface treatment on the inside of the reaction chamber or on parts thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding

Abstract

내용 없음.No content.

Description

박막형성방법Thin Film Formation Method

제 1 도는 본 발명에 따른 실시예에 사용된 CVD장치의 개략적인 구성도.1 is a schematic configuration diagram of a CVD apparatus used in an embodiment according to the present invention.

제 2a 도 및 제 2b 도는 본 발명의 1실시예에 따른 박막형성방법의 개략도.2A and 2B are schematic views of a thin film forming method according to an embodiment of the present invention.

제 3 도와 제 4 도는 본 발명의 종래기술의 효과를 비교한 그래프.3 and 4 are graphs comparing the effects of the prior art of the present invention.

제 5a 도 내지 제 5c 도 및 제 6a 도 내지 제 6c 도는 본 발명에 따른 박막형성방법을 선택 CVD법에 적용한 1실시에를 나타낸 도면이다.5A to 5C and 6A to 6C are diagrams showing an embodiment in which the thin film forming method according to the present invention is applied to the selective CVD method.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1 : 석영반응관 2 : 히터1: quartz reaction tube 2: heater

3∼6 : 가스공급시스템 8 : 진공펌프3 to 6: gas supply system 8: vacuum pump

9 : 기판 10 : 석영보트(quartz boat)9: substrate 10: quartz boat

11∼14 : 밸브 21, 54, 63 : 텅스텐막11-14: valve 21, 54, 63: tungsten film

22, 55, 64 : 질화텅스텐막 51 : 다결정실리콘배선층22, 55, 64: tungsten nitride film 51: polysilicon wiring layer

52, 62 : 접촉구멍 53, 61 : SiO252, 62: contact hole 53, 61: SiO 2 film

60 : 실리콘기판60: silicon substrate

[산업상의 이용분야][Industrial use]

본 발명은 박막형성방법에 관한 것으로, 특히 기상성장법(이하, CVD 법으로 칭함)에 의해 기판표면상에 양질의 고융점금속막을 형성하는 박막형성방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film formation method, and more particularly, to a thin film formation method of forming a high quality high melting point metal film on a surface of a substrate by a vapor phase growth method (hereinafter referred to as a CVD method).

[종래의 기술 및 그 문제점][Traditional Technology and Problems]

최근에, 얇은 고융점금속막이 고밀도집적회로의 미세한 금속배선재료로서 사용되고 있는데, 이와 같은 고융점금속군으로서는 Ti와 W, Mo 및, Ta등이 있다. 한편, 다음의 설명은 텅스텐(W)을 일례로서 설명하였는데, 그밖의 고융점금속에도 동일하게 사용할 수 있다.Recently, a thin high melting point metal film is used as a fine metal wiring material of a high density integrated circuit. Such high melting point metal groups include Ti, W, Mo, and Ta. In the following description, tungsten (W) has been described as an example, and the same can be used for other high melting point metals.

그런데 텅스텐박막형성을 위해 CVD법을 이용한 기상장장은, 예컨대 WF6와 H2가 원료가스로서 사용된다. 이와 같은 기상반응은

Figure kpo00001
와 같다. 상기와 같은 기상반응에서 텅스텐(W) 박막은 적당한 촉매표면을 제공하는 금속이나 반도체와는 전혀 다른, 예컨대 SiO2와 같은 절연막은 상반응을 촉진하는데 적당한 촉매표면을 제공하지 못하기 때문에 절연막상에 성장시키는 어렵다.By the way, for example, WF 6 and H 2 are used as source gases in the gas phase field using the CVD method for tungsten thin film formation. This gas phase reaction
Figure kpo00001
Same as In such a gas phase reaction, a tungsten (W) thin film is completely different from a metal or semiconductor that provides a suitable catalyst surface, for example, an insulating film such as SiO 2 does not provide a suitable catalyst surface to promote a phase reaction. It is difficult to grow.

따라서, 기판표면의 소정영역에만 텅스텐박막을 선택적으로 형성할 수 있기 때문에 패터닝단계를 거치지 않고 미세한 텅스텐배선패턴을 형성할 수 있게 된다. 이와 같은 특유의 형성방법을 선택 CVD법이라 한다.Therefore, since the tungsten thin film can be selectively formed only in a predetermined region of the substrate surface, it is possible to form a fine tungsten wiring pattern without going through the patterning step. Such a specific formation method is called selective CVD method.

그러나, 상기한 CVD법으로 텅스텐박막을 형성시키게되면, 심각한 문제점이 야기되게 되는데, 특히 텅스텐박막형성의 선택도가 완전하지 않게 된다. 특히, 가상성장이 400[℃]이상의 반응온도(기판온도)에서 오랜시간 계속 수행되는 곳에서는 텅스텐이 절연막상에 미량 적층되게 된다. 특히, 절연막이 형성된 곳에서는 고온에서 수행되는 기상반응에 의해 형성된, 예컨대 SiO2와 HF를 형성시키게 되는데, 이것은 SiO2와 반응하게 되어 텅스텐상에 쉽게 SiF4를 적층시켜 텅스텐막형성의 선택도를 저하시키게 된다. 이와 같은 반응은

Figure kpo00002
와 같다.However, when the tungsten thin film is formed by the above CVD method, serious problems are caused, in particular, the selectivity of tungsten thin film formation is not complete. In particular, where virtual growth is continued for a long time at a reaction temperature (substrate temperature) of 400 [deg.] C. or more, a small amount of tungsten is deposited on the insulating film. In particular, where the insulating film is formed, it is formed by vapor phase reaction performed at high temperature, for example, SiO 2 and HF, which react with SiO 2 to easily deposit SiF 4 on tungsten to improve the selectivity of tungsten film formation. Is degraded. This reaction is
Figure kpo00002
Same as

그러나, 텅스텐박막의 배선층이, 예컨대 선택 CVD법에 의해 반도체기판상에 형성되는 곳에서는 각 웨이퍼의 처리시간이 단축되게 되고, 따라서 각 웨이퍼의 선택도감소는 각 웨이퍼가 새로운 웨이퍼로 교체되기 때문에 상대적으로 저하되게 된다.However, where the tungsten thin film wiring layer is formed on the semiconductor substrate by, for example, the selective CVD method, the processing time of each wafer is shortened, and therefore, the selectivity reduction of each wafer is relative because each wafer is replaced with a new wafer. Will be lowered.

반면에, CVD장치가 오랜시간에 걸쳐 반복적으로 사용되는 경우에 있어서, 예컨대 확산로형 CVD장치에서는 석영(SiO2) 반응관의 내벽상에 텅스텐적층이 반응시간이상으로 계속되게 된다. 이를 상세히 설명하면, CVD동작이 오랜시간동안 수행될 경우, 미세한 텅스텐입자는 반응관의 내벽상에 주로 적층되게 되고, 따라서 적층된 미세한 텅스텐입자가 앞에서 언급한 텅스텐성장반응을 위한 촉매표면을 제공함으로써 그때부터 급속한 텅스텐적층이 유도된다. 이때 반도체표면상의 텅스텐박막성장비는 반응관 내벽상의 텅스텐적층의 양에 따라 급격히 저하되게 된다. 이것은 고온상태에서 급속한 텅스텐막의 형성을 불가능하게 할 뿐만 아니라 텅스텐박막의 두께를 제어할 수 없게 된다. 또한, 반응관 내벽상에 적층된 텅스텐입자가 표면에 약하게 부착됨으로써 기상성장단계동안 벽멱에서 벗겨지는 문제가 발생하게 된다. 따라서 문제의 텅스텐입자가 기판에서 떨어짐으로써 입자상 결함이 기판상에서 박막의 성장막에 나타나게 된다. 실제로, 이들 결합은 고밀도집적회로에서 미세한 회로형성을 위해 해결해야 하는 심각한 문제점을 야기시키게 된다.On the other hand, when the CVD apparatus is used repeatedly over a long time, for example, in the diffusion furnace type CVD apparatus, tungsten deposition continues on the inner wall of the quartz (SiO 2 ) reaction tube for longer than the reaction time. In detail, when the CVD operation is performed for a long time, the fine tungsten particles are mainly deposited on the inner wall of the reaction tube, and thus, the stacked fine tungsten particles provide a catalyst surface for the aforementioned tungsten growth reaction. From then on, rapid tungsten lamination is induced. At this time, the tungsten thin film equipment on the semiconductor surface is rapidly lowered depending on the amount of tungsten deposition on the inner wall of the reaction tube. This not only makes it impossible to form a rapid tungsten film at a high temperature, but also makes it impossible to control the thickness of the tungsten thin film. In addition, the tungsten particles deposited on the inner wall of the reaction tube are weakly attached to the surface, thereby causing a problem of peeling off the wall during the vapor phase growth step. Therefore, the tungsten particles in question fall off the substrate, so that a particulate defect appears in the growth film of the thin film on the substrate. Indeed, these combinations cause serious problems that must be solved for fine circuit formation in high density integrated circuits.

상기한 문제점들은 확산형 CVD장치에서 뿐만 아니라 냉벽형(cold wall type)이라 칭하는 스테인레스스틸 CVD장치에서도 발생되게 된다. 한편, 이것은 텅스텐입자가 스테인레스스틸자체의 표면상에 적층되기 쉽기 때문에 냉벽형 CVD장치에서는 반응관의 벽을 냉각시켜 벽상에서 텅스텐의 적층을 방지시켰다. 그러나, 기판위에 장착된 지지대상에는 기상 성장반응을 일으킬 수 있는 온도로 기판을 가열하기 위해 히터가 설치됨으로서 텅스텐입자는 지지대표면상에 적층되게 된다. 다른 형태인 냉벽형 CVD장치에서는 지지대사에 설치된 기판이 반응관의 창을 통한 적외선의 복사에 의해 가열되게 되는데, 이 경우에는 지지대와반응관내벽 또한 적외선에 의해 부분적으로 복사되게 된다. 따라서, 복사된 부분이 가열되어 텅스텐의 적층이 발생됨으로써 확산로형 CVD장치에서 나타나는 텅스텐막 성장비의 현저한 감소와 같은 문제점이 냉벽형 CVD장치에서도 발생되게 된다.The above problems occur not only in the diffusion type CVD apparatus but also in the stainless steel CVD apparatus called the cold wall type. On the other hand, this is because tungsten particles tend to be deposited on the surface of the stainless steel itself, so that the wall of the reaction tube is cooled in the cold wall type CVD apparatus to prevent tungsten deposition on the wall. However, tungsten particles are deposited on the support surface by installing a heater to heat the substrate to a temperature that can cause a gas phase growth reaction in the support object mounted on the substrate. In another type of cold-walled CVD apparatus, the substrate installed in the support metabolism is heated by infrared radiation through the window of the reaction tube. In this case, the support and the inner wall of the reaction tube are also partially radiated by the infrared rays. Therefore, the radiated portion is heated to generate tungsten, so that a problem such as a significant reduction in the tungsten film growth ratio in the diffusion furnace type CVD apparatus also occurs in the cold wall type CVD apparatus.

[발명의 목적][Purpose of invention]

본 발명은 상기한 점을 감안하여 발명된 것으로, CVD동작이 오랜시간 동안 계속적으로 수행되어도 반응관 내벽상에 고융점금속의 적층을 방지함으로써 양질의 박막을 효과적으로 형성할 수 있도록 된 박막형성방법을 제공함에 그 목적이 있다.The present invention has been invented in view of the above, and a thin film forming method which enables to form a high quality thin film effectively by preventing the deposition of high melting point metal on the inner wall of the reaction tube even if the CVD operation is continuously performed for a long time. The purpose is to provide.

[발명의 구성][Configuration of Invention]

상기 목적을 달성하기 위한 본 발명은, CVD반응관내에 배치된 기판의 표면에 CVD법에 의해 고융점금속박막을 형성하는 박막형성방법에 있어서, CVD동작을 수행하는 공정에서 CVD반응관 내벽과 CVD반응관내에 배치된 부재중 적어도 일부가 금속질화막으로 도포되도록 된 것을 특징으로 한다.In order to achieve the above object, the present invention provides a thin film forming method for forming a high melting point metal thin film on the surface of a substrate disposed in a CVD reaction tube by a CVD method. At least a part of the member disposed in the reaction tube is characterized by being applied with a metal nitride film.

[작용][Action]

상기와 같이 구성된 본 발명은, CVD법에 의해 CVD반응관 내에 위치하는 기판의 표면상에 얇은 고융점 금속막을 형성하는 방법으로, CVD동작수행의 공정에서 CVD반응관의 내벽과 적어도 CVD반응관내에 설치된 부재(fittings)의 일부분의 표면은 금속질화막으로 도포되는 바, 상기 부재는, 예컨대 확산로형 CVD장치에서 사용되는 지지대(supporting rod)와, 배플(baffles) 및, 석영보트(quartz boat)를, 그리고 냉벽형 CVD장치에서 사용되는 서셉터(susceptor)를 포함한다. 또한, 본 발명은 반응관내로 암모니아가스와 같은 질소를 함유한 가스를 유입시킴으로써 CVD장치의 반응관내벽에 금속질화막이 형성되게 되는데, 이 경우 반응관은 금속표면의 원하는 부분이 질화되도록 가열되게 된다. 한편, 금속질화막은 금속함유가스와 질소함유가스중 어느 하나를 사용한 CVD법으로 원하는 표면상에 적층될 수도 있다. 이 경우, 원료가스에 함유된 금속은 고융점형이면서 기판상에 박막을 형성하는데 사용되는 것이 바람직하다.The present invention configured as described above is a method of forming a thin high melting point metal film on the surface of a substrate located in a CVD reaction tube by the CVD method, in the inner wall of the CVD reaction tube and at least in the CVD reaction tube in the process of performing the CVD operation. The surface of a portion of the fittings installed is coated with a metal nitride film, which member supports, for example, supporting rods, baffles and quartz boats used in diffusion furnace type CVD apparatuses. And susceptors used in cold wall CVD devices. In addition, in the present invention, a metal nitride film is formed on the inner wall of the CVD apparatus by introducing a nitrogen-containing gas such as ammonia gas into the reaction tube. In this case, the reaction tube is heated so that the desired portion of the metal surface is nitrided. . On the other hand, the metal nitride film may be laminated on a desired surface by a CVD method using any one of a metal containing gas and a nitrogen containing gas. In this case, the metal contained in the source gas is preferably used for forming a thin film on the substrate while having a high melting point type.

한편, 최종 금속질화막은 질소원자가 금속결정격자사이에 삽입된 침입형 합금의 형태가 됨으로써, 금속질화물을 형성하는 금속과 질소원자사이의 화학량적인 질량비가 불명료하게 된다. 예컨대, W2N과 WN등이 포함된 화합물인 텅스텐질화물의 경우에는 화학식 WNx 로 표시되게 되는 바, 아래의 설명에서 질화텅스텐은 전형적인 텅스텐질화물로 사용되게 된다. 그러나, 아래의 설명은 이에 한정되지 않고 다른 화학식의 텅스텐질화물에 대해서도 적용되게 된다. 상기한 바와 같이 박막을 형성하는 고융점금속의 질화물은 침입형 합금의 형태로 되고, 이와 같은 일련의 질화물이 형성된 박막은 전기적으로 전도체가 된다.On the other hand, the final metal nitride film is in the form of an interstitial alloy in which nitrogen atoms are intercalated between the metal crystal lattice, so that the stoichiometric mass ratio between the metal forming the metal nitride and the nitrogen atoms becomes unclear. For example, tungsten nitride, which is a compound containing W 2 N and WN, is represented by the chemical formula WNx. In the following description, tungsten nitride is used as a typical tungsten nitride. However, the following description is not limited to this, but also applies to tungsten nitride of another formula. As described above, the nitride of the high melting point metal forming the thin film is in the form of an invasive alloy, and the thin film on which such a series of nitride is formed becomes an electrical conductor.

본 발명에서 미리 금속질화막이, 예컨대 석영반응관의 내부표면상에 형성됨으로써 반응관의 내벽상에 적층된 고융점금속의 입자는 금속질화막으로 덮여지게 된다. 본 발명은 텅스텐입자가 WF6와 H2로 구성된 혼합가스를 사용한 기판상의 텅스텐막의 선택형성에 있어서, CVD법으로 석영(SiO2)막뿐만 아니라 금속질화막상에 텅스텐입자를 적층하는 것이 어렵다는 것이 실험에 의해 입증됨으로써 그 결과, 반응관등의 내부벽상에 새로운 금속막의 원하지 않는 적층이 본 발명에서는 억제되게 된다. 이것은 원료가스가 반응관의 내벽상에서 소비되게 되는 것과 기체반응물에 의해 반응관의 내벽이 부식되는 것을 방지할 수 있게 된다.In the present invention, the metal nitride film is formed on the inner surface of the quartz reaction tube in advance so that the particles of the high melting point metal laminated on the inner wall of the reaction tube are covered with the metal nitride film. In the present invention, it is difficult to deposit tungsten particles on a metal nitride film as well as a quartz (SiO 2 ) film by the CVD method in the selective formation of a tungsten film on a substrate using a mixed gas composed of WF 6 and H 2 . As a result, undesired lamination of a new metal film on the inner wall of the reaction tube or the like is suppressed in the present invention. This makes it possible to prevent the source gas from being consumed on the inner wall of the reaction tube and the corrosion of the inner wall of the reaction tube by the gaseous reactants.

또한, 본 발명에 따른 방법은 고온상태에서 기판상에 고속이면서 정확하게 원하는 고융점금속박막을 형성할 수 있는 바, 예컨대 반응관의 내벽상에 적층된 금속입자는 금속질화막으로 피복될 때 더이상의 금속막이 성장되는 것을 방지할 수 있게 된다. 따라서 실질적으로 금속막이 반응관의 내부벽으로부터 떨어지는 것을 방지할 수 있게 되어 입자상 결함이 없는 양질의 박막을 형성할 수 있게 된다.In addition, the method according to the present invention can form a desired high melting point metal thin film on a substrate at high temperature and accurately, for example, metal particles deposited on the inner wall of the reaction tube are no longer provided when the metal nitride film is coated with the metal nitride film. It is possible to prevent the film from growing. Therefore, it is possible to substantially prevent the metal film from falling off the inner wall of the reaction tube, thereby forming a high quality thin film free of particulate defects.

[실시예]EXAMPLE

이하, 예시도면을 참조하여 본 발명에 따른 실시예를 상세히 설명한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

제 1 도는 본 발명의 1실시예에 따른 확산로형 CVD장치의 구성도로서, 본 장치는 석영반응관(1)과, 이 석영반응관(1)내의 반응영역을 가열하기 위해 상기 석영반응관(1)의 외부에 설치된 히터(2), 진공펌프(8) 및, 상기 석영반응관(1)에 연결된 가스공급시스템(3∼6)으로 구성되어 있다. 상기 가스공급시스템(3∼6)으로부터 석영반응관(1)까지의 가스공급은 밸브(11∼14)에 의해 제어되고, 박막이 형성된 복수개의 기판(9)은 석영반응관(1)내에 위치한 석영보트(10)상에 지지되어 있다. 또한, 석영관의 안팎으로 석영보트(10)를 이동시키기 위한 석영지지대(도시되지 않음)와 일정한 온도분포를 유지시키기 위한 석영열배플(도시되지 않음) 등의 석영반응관(1)내에 설치되어 있고, 텅스텐박막은 제 1 도의 장치를 이용한 CVD법에 의해 형성된다.1 is a block diagram of a diffusion furnace type CVD apparatus according to an embodiment of the present invention, which comprises a quartz reaction tube 1 and a quartz reaction tube for heating the reaction region in the quartz reaction tube 1. It consists of the heater 2 provided in the exterior of (1), the vacuum pump 8, and the gas supply system 3-6 connected to the said quartz reaction tube 1. As shown in FIG. The gas supply from the gas supply system 3 to 6 to the quartz reaction tube 1 is controlled by the valves 11 to 14, and the plurality of substrates 9 on which the thin film is formed are located in the quartz reaction tube 1. It is supported on the quartz boat 10. It is also installed in a quartz reaction tube 1 such as a quartz support (not shown) for moving the quartz boat 10 into and out of the quartz tube and a quartz heat baffle (not shown) for maintaining a constant temperature distribution. The tungsten thin film is formed by the CVD method using the apparatus of FIG.

[실시예 1]Example 1

석영반응관(1)을 세척한 다음, 제 1 도에 도시된 바와같이 복수의 기판(9)이 지지된 석영보트(10)를 석영반응관(1)내의 반응영역에 위치시킨 다음 반응영역을 350∼600[℃]로 가열시킨다. 그후, 석영반응관(1)내를 진공펌프(8)로 배기시켜 반응영역의 기압이 0.1∼1.0[Torr]로 감소되었을 때, 각각의 가스공급시스템(3,4)으로부터 WF6가스와 H2가스를 내부로 주입시킨다. 이와 같은 상태하에서, 제 2a 도에 나타낸 바와 같이 각각의 기판(9)상에, 예컨대 0.1∼1.0[㎛]두께의 텅스텐막(21)이 기상성장되는데, 이 경우 텅스텐입자는 텅스텐막(15)을 형성하기 위해 비록 적은 양이지만 석영반응관(1)의 내벽과, 석영보트(10), 석영지지대 및, 열배플등에 증착되게 된다.After washing the quartz reaction tube 1, the quartz boat 10 supported by the plurality of substrates 9 is placed in the reaction region in the quartz reaction tube 1 as shown in FIG. Heated to 350 to 600 [° C]. Thereafter, when the inside of the quartz reaction tube 1 was evacuated by the vacuum pump 8 and the atmospheric pressure of the reaction zone was reduced to 0.1 to 1.0 [Torr], WF 6 gas and H from each gas supply system 3 and 4 were discharged. 2 Inject gas inside. Under such a state, as shown in FIG. 2A, a tungsten film 21 having a thickness of, for example, 0.1 to 1.0 [mu m] is vapor-grown on each of the substrates 9, in which case the tungsten particles are tungsten film 15. As shown in FIG. A small amount, however, is deposited on the inner wall of the quartz reaction tube 1, the quartz boat 10, the quartz support, and the thermal baffle.

텅스텐막(15)을 형성한 후, 밸브(11, 12)를 잠그어 가스공급시스템(3, 4)으로부터의 가스유입을 중단시키고, 그후 석영반응관(1)내의 온도가 하강될때 가스공급시스템(5)으로부터 석영반응관(1)내로 Ar가스가 유입되게 된다. 이때, 기판(9)을 석영보트(10)로부터 제거시킨 후, 제 2b 도에 도시된 바와 같이 다시 석영보트(10)를 석영반응관(1)내에 배치시키고, 석영반응관(1)내를 배기시켜 준다. 다시 반응영역을 350∼1000[℃]로 가열시키고, 이러한 조건하에서 가스공급시스템(6)으로부터 석영반응관(1)내로 암모니아(NH3)가스를, 예컨대 30분동안 유입시켜 줌으로써 석영반응관(1)의 내벽 및 석영보트(10) 등의 표면에 부착된 미세한 텅스텐입자(15)가 질화텅스텐(W2N)막(22)을 형성할 수 있도록 질화되게 된다.After the tungsten film 15 is formed, the valves 11 and 12 are closed to stop the gas inflow from the gas supply systems 3 and 4, and then the gas supply system when the temperature in the quartz reaction tube 1 drops. Ar gas flows into the quartz reaction tube 1 from (5). At this time, after removing the substrate 9 from the quartz boat 10, as shown in FIG. 2b, the quartz boat 10 is again placed in the quartz reaction tube 1, and the inside of the quartz reaction tube 1 is removed. Exhaust. Again, the reaction zone was heated to 350-1000 [deg.] C. and ammonia (NH 3 ) gas was introduced from the gas supply system 6 into the quartz reaction tube 1 under such conditions, for example, for 30 minutes. The fine tungsten particles 15 attached to the inner wall of 1) and the surface of the quartz boat 10 or the like are nitrided to form the tungsten nitride (W 2 N) film 22.

그후, 다시 다른 기판상에 텅스텐막을 형성할 경우에는 사전에 석영반응관(1) 및 석영보트(10)를 세척할 필요가 없으며 특히, 상기 언급된 다른 기판을 질화처리된 석영보트(10)에 배치시켜 다시 석영반응관(1)내에 배치시킨 후, 상기한 텅스텐막형성공정과 질화과정을 반복하면 된다.Then, in the case of forming the tungsten film on another substrate again, it is not necessary to clean the quartz reaction tube 1 and the quartz boat 10 in advance, and in particular, the other substrate mentioned above is applied to the nitrided quartz boat 10. After arranging and placing in the quartz reaction tube 1 again, the above-described tungsten film forming process and nitriding process may be repeated.

[실시예 2]Example 2

상기 실시예 1에서는 질화텅스텐막(22)이 암모니아가스를 이용한 질화처리에 의해 형성되지만, 질화텅스텐막은 후술할 CVD법에 의해 직접으로 형성시킬 수 있다. 특히, 실시예 2에서는 실시예 1과 같이 텅스텐막(21)이 기판(9)상에 형성되는데, WF6가스는 암모니아가스와 함께 석영반응관(1)내로 주입되어 텅스텐막(21)을 형성시킨 다음 소정의 CVD반응을 이용하여 질화텅스텐을 부착시켰다. 그 결과 질화텅스텐막(22)이 석영반응관(1)의 내벽의 표면과 석영보트(10)상에 형성되었으며, 실시예 1과 같이 텅스텐막(21)이 질화텅스텐막(22)으로 덮여지게 된다.In the first embodiment, the tungsten nitride film 22 is formed by nitriding with ammonia gas, but the tungsten nitride film can be formed directly by the CVD method described later. In particular, in Example 2, a tungsten film 21 is formed on the substrate 9 as in Example 1, and the WF 6 gas is injected into the quartz reaction tube 1 together with the ammonia gas to form the tungsten film 21. And then tungsten nitride was attached using a predetermined CVD reaction. As a result, a tungsten nitride film 22 was formed on the surface of the inner wall of the quartz reaction tube 1 and on the quartz boat 10. The tungsten film 21 was covered with the tungsten nitride film 22 as in the first embodiment. do.

그후, 다시 다른 기판상에 텅스텐막의 형성을 행할 경우에는 실시예 1과 같이 사전에 석영반응관(1) 및 석영보트(10)를 세척할 필요가 없고, 특히 상기 언급된 다른 기판을 질화처리된 석영보트(10)에 배치시켜 다시 반응관(1)내에 배치시킨 후, 상기 일련의 텅스텐막 형성공정과 질화공정을 반복하면 된다.Then, when forming a tungsten film on another substrate again, it is not necessary to clean the quartz reaction tube 1 and the quartz boat 10 in advance as in Example 1, and in particular, another substrate mentioned above is nitrided. After arranging on the quartz boat 10 and again in the reaction tube 1, the series of tungsten film forming steps and nitriding steps may be repeated.

[실시예 3]Example 3

본 발명은 텅스텐막(21)을 형성한 다음, 석영반응관(1)으로부터 기판(9)을 제거시키지 않고 질화텅스텐막(22)을 형성시킬 수 있게 되는데, 이 경우 텅스텐막(21)은 실시예 1의 방법과 같이 기판(9)상에 먼저 형성되고, 질화텅스텐막(22)은 실시예 1 또는 실시예 2와 같이 석영반응관(1)내에 남겨둔 기판(9)에 계속해서 형성된다. 따라서, 실시예 3에서는 기판(9)상에 텅스텐막(21)과 질화텅스텐막(22)으로 이루어진 적층구조를 형성할 수 있게 된다.According to the present invention, after forming the tungsten film 21, the tungsten nitride film 22 can be formed without removing the substrate 9 from the quartz reaction tube 1, in which case the tungsten film 21 is implemented. The tungsten nitride film 22 is first formed on the substrate 9 as in the method of Example 1, and the tungsten nitride film 22 is continuously formed on the substrate 9 left in the quartz reaction tube 1 as in the first or second embodiment. Therefore, in the third embodiment, it is possible to form a laminated structure composed of a tungsten film 21 and a tungsten nitride film 22 on the substrate 9.

상기 실시예 1∼3에 설명된 바와같이, 본 발명의 방법에서 질화텅스텐막이 석영반응관(1)의 내면에 형성됨으로써 기판상에 높은 텅스텐막의 적층비를 유지시킬 수 있으면서 텅스텐막의 형성을 위한 조작을 반복할 수 있게 된다. 반면에 종래의 기술에서는 텅스텐막을 형성하기 위한 동작(또는 시간)수의 증가로서 기판상의 텅스텐막적층비가 현저하게 저하되게 된다.As described in Examples 1 to 3 above, in the method of the present invention, the tungsten nitride film is formed on the inner surface of the quartz reaction tube 1 so that the operation for forming the tungsten film while maintaining the high lamination ratio of the tungsten film on the substrate can be maintained. Can be repeated. On the other hand, in the related art, the increase in the number of operations (or time) for forming the tungsten film causes the tungsten film stacking ratio on the substrate to be significantly reduced.

제 3 도를 참조해서 이를 더욱 상세히 설명한다.This will be described in more detail with reference to FIG. 3.

제 3 도는 본 발명의 방법에 따라 600[℃]에서 수행된 시간에 대한 텅스텐적층비를 나타내고, 또한 이와 비교해서 텅스텐적층이 질화단계를 거치지 않고 수행된 종래의 경우를 나타낸다.3 shows the tungsten stacking ratio with respect to the time carried out at 600 [deg.] C. in accordance with the method of the present invention, and also shows the conventional case where tungsten stacking was carried out without undergoing a nitriding step.

제 3 도에 도시된 바와 같이 종래의 기술에서는 텅스텐막의 적층에 요구되는 동작(각 동작은 1시간동안 계속됨)수가 4회를 초과하게 되면, 적층비가 현저히 감소되는데, 비록 350[℃]에서 반응이 수행되더라도, 약 5회동작에서 최초적층비의 1/2까지 현저히 감소됨을 알 수 있다. 또한, 종래기술에서는 반응온도가 600[℃]로 셋팅되었을 때에는 최초적층비는 2시간동안 유지될 수 있으며, 약 2.5시간후에는 "0"으로 떨어져 박막을 형성시킬 수 없게 된다. 그러나, 본 발명에서는 20회의 적층을 행하여도 적층비감소를 최초비율의 5% 이내로 억제할 수 있게 된다.As shown in FIG. 3, in the prior art, when the number of operations (each operation is continued for 1 hour) required for stacking the tungsten film exceeds four times, the stacking ratio is significantly reduced, even though the reaction is performed at 350 [deg.] C. Even if performed, it can be seen that in about five operations, it is significantly reduced to 1/2 of the initial stacking ratio. In addition, in the related art, when the reaction temperature is set to 600 [° C.], the initial stacking ratio may be maintained for 2 hours, and after about 2.5 hours, it may fall to “0” to form a thin film. However, in the present invention, even if 20 laminations are performed, the reduction of the lamination ratio can be suppressed to within 5% of the initial ratio.

제 4 도는 본 발명과 종래기술의 각각의 반응온도에 따른 평균적층비의 변화를 나타낸 것으로, 종래기술에서는 반응온도가 400[℃]를 초과하게 되면 적층비가 현저히 저하되는 것을 알 수 있다. 이는 석영반응관의 내벽상에 텅스텐의 적층을 촉진시키기 위해 다음과 같은 반응이 발생되어 적층비를 감소시키게 된다.Figure 4 shows the change in the average lamination ratio according to the reaction temperature of the present invention and the prior art, it can be seen in the prior art that the lamination ratio is significantly lowered when the reaction temperature exceeds 400 [° C]. In order to promote the deposition of tungsten on the inner wall of the quartz reaction tube, the following reaction occurs to reduce the deposition ratio.

Figure kpo00003
Figure kpo00003

그러나, 본 발명에서는 질화텅스텐막이 반응관의 내벽에 부착되도록 CVD동작이 수행되기 때문에 반응온도가 700[℃]까지 상승되더라도 평균 적층비는 대체로 일정하게 증가된다.However, in the present invention, since the CVD operation is performed so that the tungsten nitride film is attached to the inner wall of the reaction tube, even if the reaction temperature is raised to 700 [° C.], the average lamination ratio is substantially increased.

더욱이, 상기 실시예 1∼3에서는 반응관의 내벽상에 적층된 텅스텐입자가 내부벽에서 떨어지는 것을 방지할 수 있으므로 낮은 입자상 결함 밀도를 갖는 양질의 텅스텐막을 얻을 수 있다. 여기서, 예컨대 반응온도를 350[℃]에 셋트시켜 놓고 10시간동안 반복적으로 CVD동작을 수행하게 되면, 종래기술에서는 최종 텅스텐막의 표면입자상 결함밀도는 50개/cm2인데 비해 본 발명에서는 10개/cm2인 것을 알 수 있다. 또한, 종래의 방법에서는 CVD동작회수증가에 따라 문제의 입자상 결함이 증가하였지만, 본 발명에서는 비록 20회의 CVD동작을 수행하여도 결함밀도는 12개/cm2정도였다.Further, in Examples 1 to 3, since tungsten particles laminated on the inner wall of the reaction tube can be prevented from falling off the inner wall, a high quality tungsten film having a low particulate defect density can be obtained. For example, if the reaction temperature is set at 350 [deg.] C. and the CVD operation is repeatedly performed for 10 hours, in the prior art, the final tungsten defect density of the surface of the final tungsten film is 50 pieces / cm 2 in the present invention but 10 pieces / It can be seen that it is cm 2 . In addition, in the conventional method, the problem of particulate defects increased with the increase in the number of CVD operations, but in the present invention, the density of defects was about 12 / cm 2 even after performing 20 CVD operations.

제 5 도와 제 6 도는 본 발명에 따른 방법인 선택 CVD법을 이용한 반도체 소자의 제작에 대한 단면도로서, 배선층의 형성전에 접촉구멍(contact hole)에 텅스텐막을 형성함으로써 배선층의 적용단계를 개선시킬 수 있게 된다.5 and 6 are cross-sectional views of the fabrication of a semiconductor device using the selective CVD method, which is the method according to the present invention, in which a tungsten film is formed in a contact hole before the formation of the wiring layer, thereby improving the application step of the wiring layer. do.

한편, 본 발명의 기술적 요지는 제 5 도의 1실시예인 다층배선에 사용할 수 있는데, 제 5a 도에 도시된 바와 같이 실리콘기판(50)상에 제 1 다결정실리콘배선층(51)을 형성한 후, 이 다결정실리콘배선층(51)의 일부가 노출되도록 접촉구멍(52)을 갖춘 석영막(53)을 형성하고, 이러한 상태하에서 제 5b 도에 도시된 바와 같이, 접촉구멍(52)내에 선택 CVD법에 의한 텅스텐막(54)을 형성하기 위해 텅스텐막이 적층된다. 이때 접촉구멍(52)은 텅스텐막으로 채워지게 되는데, 이러한 형태는 상기 텅스텐막상에 제 2 배선층의 적용단계를 개선시킬 수 있다.On the other hand, the technical gist of the present invention can be used in the multi-layered wiring of the first embodiment of FIG. 5, after forming the first polysilicon wiring layer 51 on the silicon substrate 50, as shown in FIG. A quartz film 53 having contact holes 52 is formed so that a part of the polysilicon wiring layer 51 is exposed, and under such a state, as shown in FIG. 5B, by the selective CVD method in the contact holes 52. The tungsten film is laminated to form the tungsten film 54. At this time, the contact hole 52 is filled with a tungsten film, which can improve the application step of the second wiring layer on the tungsten film.

또한, 제 6 도의 1실시예에서 실리콘기판(60)상에 열산화등으로 석영막(61)을 형성하고, RIE등으로 에칭하여 상기 실리콘기판(60)의 일부가 노출되도록 접촉구멍(62)을 형성한다. 제 6b 도는 이와 같이 형성된 기판(60)에 상기와 같은 방법으로 상기 실리콘기판(60)상에 선택 CVD법으로 텅스텐막(63)을 형성한 단면도이다. 한편, 실시예 3의 방법은 제 5 도와 제 6 도의 공정에 적용시키면 현저한 효과를 얻게 된다. 특히, 접촉구멍(52, 62)를 채운 텅스텐막(54, 63)의 표면은 각각 질화텅스텐막(55, 64)위로 덮혀지게 되는데, 이 질화텅스텐막(55, 64)의 존재는, 예컨대 제 2 배선층을 형성하기 위해 다결정실리콘이 사용된 경우에는 매우 중요하다. 만약 문제의 질화텅스텐막이 형성되지 않을 경우에는 제 2 배선층의 실리콘(Si)이 텅스텐실리사이드 형태로 텅스텐막(54, 63)내로 확산되게 되므로 막의 시이트저항을 약 10배정도 증가시키고, 또한 텅스텐실리사이드의 변형은 부피를 약 30%정도 감소시킴으로써 균열발생을 초래하게 된다. 그러나, 본 발명에서 텅스텐막(54, 63)의 표면이 각각 질화텅스텐막(55, 64)으로 도포되어 있기 때문에 실리콘(Si)확산을 방지할 수 있게 된다. 실제로, 상기한 결점들을 본 발명에서는 발생하지 않는다. 또한, 질화텅스텐이 전도체이므로 질화텅스텐막이 제거되지 않아도 전기적 전도성에 대한 문제는 야기되지 않게 된다.Further, in the first embodiment of FIG. 6, the quartz film 61 is formed on the silicon substrate 60 by thermal oxidation or the like, and is etched by RIE or the like so that a part of the silicon substrate 60 is exposed. To form. 6B is a cross-sectional view in which the tungsten film 63 is formed on the silicon substrate 60 formed as described above on the silicon substrate 60 by the selective CVD method. On the other hand, when the method of Example 3 is applied to the processes of FIGS. 5 and 6, a remarkable effect is obtained. In particular, the surfaces of the tungsten films 54 and 63 filling the contact holes 52 and 62 are covered over the tungsten nitride films 55 and 64, respectively. This is very important when polycrystalline silicon is used to form the wiring layer. If the tungsten nitride film in question is not formed, silicon (Si) in the second wiring layer is diffused into the tungsten films 54 and 63 in the form of tungsten silicide, thereby increasing the sheet resistance of the film by about 10 times, and also deforming the tungsten silicide. By reducing the volume of silver by about 30%, cracking occurs. However, in the present invention, since the surfaces of the tungsten films 54 and 63 are coated with the tungsten nitride films 55 and 64, respectively, diffusion of silicon (Si) can be prevented. Indeed, the above drawbacks do not occur in the present invention. In addition, since tungsten nitride is a conductor, even if the tungsten nitride film is not removed, the problem of electrical conductivity is not caused.

더욱이, 질화텅스텐막은 산화에 의해 높은 저항을 나타내게 되므로, 에컨대 선택 CVD공정후, 텅스텐막 표면이 외부에 노출된 상태에서 산화처리를 수행할 필요가 있으며, 나머지부분은 질화텅스텐막이 보호하게 된다.Furthermore, since the tungsten nitride film exhibits high resistance by oxidation, for example, after the selective CVD process, it is necessary to perform an oxidation treatment in a state where the surface of the tungsten film is exposed to the outside, and the tungsten nitride film is protected by the rest.

상기와 같은 실시예에서 질화텅스텐막은 텅스텐막이 기판상에 형성될 때마다 형성되게 되고, 더욱이 본 발명의 목적은 텅스텐막을 형성하기 위한 동작을 2회이상 연속적으로 수행한 다음 질화텅스텐막을 형성함으로써 성취할 수 있다. 또한, 상기한 실시예에서 텅스텐막을 형성하기 위한 최초동작이 사전에 질화텅스텐막을 형성하지 않고 수행되었으나, 이 경우 기판상에 텅스텐막형성을 위한 최초동작이전에 질화텅스텐막을 형성할 수 있다. 더욱이, 반응관과 보트등의 재료는 석영에 한정될 필요가 없고, 텅스텐과 같은 고융점을 갖는 금속이 반응관을 형성하기 위해 사용될 수 있다. 이 경우 질화텅스텐막은 기판상에 텅스텐막형성을 위한 최초동작준비로서 질화처리 또는 CVD방법에 의해 형성되고, 이것은 냉벽형 CVD장치를 사용하는 경우에도 마찬가지이다.,In the above embodiment, the tungsten nitride film is formed every time the tungsten film is formed on the substrate, and moreover, the object of the present invention can be achieved by performing two or more consecutive operations for forming the tungsten film and then forming the tungsten nitride film. have. Further, in the above embodiment, the initial operation for forming the tungsten film was performed without forming the tungsten nitride film in advance, but in this case, the tungsten nitride film can be formed before the initial operation for forming the tungsten film on the substrate. Moreover, materials such as reaction tubes and boats need not be limited to quartz, and a metal having a high melting point such as tungsten can be used to form the reaction tube. In this case, the tungsten nitride film is formed by the nitriding treatment or the CVD method as the initial operation preparation for the formation of the tungsten film on the substrate, even when a cold wall CVD apparatus is used.

[발명의 효과][Effects of the Invention]

이상 설명한 바와 같이 본 발명에 의하면, 반응관등의 내부벽상에 새로운 금속막의 원하지 않는 적층을 방지할 수 있다. 또한, 고온상태에서 기판상에 고속이면서 정확하게 원하는 고융점금속박막을 형성할 수 있는 바, 예컨대 반응관의 내벽상에 적층된 금속입자는 금속질화막으로 피복될 때 더 이상의 금속막이 성장되는 것을 방지할 수 있게 된다. 따라서 실질적으로 금속막이 반응관의 내부벽으로부터 떨어지는 것을 방지할 수 있게 되어 입자상 결함이 없는 양질의 박막을 형성할 수 있게 된다.As described above, according to the present invention, it is possible to prevent unwanted lamination of a new metal film on the inner wall of the reaction tube or the like. In addition, it is possible to form a desired high melting point metal thin film on the substrate at high temperature and accurately, for example, metal particles deposited on the inner wall of the reaction tube can prevent further metal film from growing when coated with the metal nitride film. It becomes possible. Therefore, it is possible to substantially prevent the metal film from falling off the inner wall of the reaction tube, thereby forming a high quality thin film free of particulate defects.

Claims (16)

CVD반응관(1)내에 배치된 기판(9)의 표면에 CVD법에 의해 고융점금속박막을 형성하는 박막형성방법에 있어서, CVD동작을 수행하는 공정에서 CVD반응관(1) 내벽과 CVD반응관(1)내에 배치된 부재중 적어도 일부가 금속질화막으로 도포되도록 된 것을 특징으로 하는 박막형성방법.In the thin film formation method of forming a high melting point metal thin film by the CVD method on the surface of the substrate 9 disposed in the CVD reaction tube 1, the CVD reaction tube 1 inner wall and the CVD reaction in the process of performing the CVD operation At least a part of the member arrange | positioned in the tube (1) is apply | coated with the metal nitride film, The thin film formation method characterized by the above-mentioned. 제 1 항에 있어서, CVD반응관(1) 내벽과 CVD반응관(1)내에 배치된 부재중 적어도 일부분상에 존재하는 금속표면을 질화시키기 위해 고융점금속박막을 형성하기 전에 질소원자가 함유된 가스를 CVD반응관에 유입시킴과 더불어 상기 반응관을 가열함으로써 금속질화막을 형성하는 것을 특징으로 하는 박막형성방법.The gas containing nitrogen atoms according to claim 1, before forming the high melting point metal thin film to nitride the metal surface existing on at least part of the inner wall of the CVD reaction tube 1 and the members disposed in the CVD reaction tube 1. A thin film formation method, comprising introducing a CVD reaction tube and heating the reaction tube to form a metal nitride film. 제 2 항에 있어서, 고융점금속박막을 형성하기 이전의 공정에서 CVD반응관(1) 내벽과 CVD반응관(1)내에 배치된 부재중 적어도 일부분상에 적층된 고융점금속입자가 박막형성의 공정에서 질화되도록 된 것을 특징으로 하는 박막형성방법.3. The process for forming a thin film according to claim 2, wherein in the step before forming the high melting point metal thin film, the high melting point metal particles laminated on at least part of the inner wall of the CVD reaction tube 1 and the members disposed in the CVD reaction tube 1 are thin film forming processes. Thin film formation method, characterized in that to be nitrided in. 제 2 항에 있어서, 상기 질소원자를 함유한 가스가 암모니아가스인 것을 특징으로 하는 박막형성방법.The thin film formation method according to claim 2, wherein the gas containing nitrogen atoms is ammonia gas. 제 1 항에 있어서, 고융점금속막을 형성하기 전에 CVD반응관(1) 내벽과 CVD반응관(1)내에 배치된 부재중 적어도 일부분상에 질화금속물을 적층하기 위해 적어도 질소원자를 포함한 가스와 다른 금속을 포함한 가스가 CVD수행을 위해 CVD반응관(1)내로 유입되도록 된 것을 특징으로 하는 박막형성방법.2. A gas according to claim 1, which differs from a gas containing at least nitrogen atoms to deposit metal nitride on at least a portion of the inner wall of the CVD reaction tube 1 and the members disposed in the CVD reaction tube 1 before forming the high melting point metal film. A method for forming a thin film, characterized in that a gas containing a metal is introduced into a CVD reaction tube (1) for CVD. 제 5 항에 있어서, 고융점금속박막을 형성하기 이전의 공정에서 CVD반응관(1) 내벽과 CVD반응관(1)내에 배치된 부재중 적어도 일부분상에 적층된 고융점금속입자가 박막형성공정 이전에 금속질화막으로 도포되도록 된 것을 특징으로 하는 박막형성방법.The method of claim 5, wherein the high-melting-point metal particles deposited on at least a portion of the inner wall of the CVD reaction tube 1 and the members disposed in the CVD reaction tube 1 in the process before forming the high-melting-point metal thin film before the thin film forming process. A thin film forming method, characterized in that to be applied to the metal nitride film. 제 5 항 또는 제 6 항에 있어서, 상기 질소원자를 함유한 가스가 암모니아가스이고, 다른 금속원자를 함유한 가스가 금속불화물인 것을 특징으로 하는 박막형성방법.The thin film forming method according to claim 5 or 6, wherein the gas containing nitrogen atoms is ammonia gas, and the gas containing other metal atoms is metal fluoride. 제 1 항에 있어서, 상기 금속질화막이 상기 CVD반응관(1) 내벽과 CVD반응관(1)내에 배치된 부재중 적어도 일부 및, CVD반응관(1)내에 남겨지면서 박막형성공정이전에 고융점금속막이 형성된 기판에 연속적으로 형성되도록 된 것을 특징으로 하는 박막형성방법.The high melting point metal before the thin film forming process according to claim 1, wherein the metal nitride film is left in the CVD reaction tube (1) and at least a part of the members disposed in the inner wall of the CVD reaction tube (1) and the CVD reaction tube (1). A thin film formation method, characterized in that the film is formed continuously on the substrate. 제 1 항에 있어서, 상기 금속질화막이 금속박막형성공정이전에 고융점금속막이 형성된 기판을 CVD반응관(1)으로부터 꺼낸 후에 CVD반응관(1) 내벽과 CVD반응관(1) 내에 배치된 부재중 적어도 일부분에 형성되도록 된 것을 특징으로 하는 박막형성방법.The member disposed in the inner wall of the CVD reaction tube 1 and the CVD reaction tube 1 after the metal nitride film is removed from the CVD reaction tube 1 before the metal thin film forming process is performed. Thin film formation method, characterized in that formed on at least a portion. 제 1 항에 있어서, 상기 고융점금속막이 텅스텐막과 몰리브덴막으로 이루어진 군으로부터 선택되도록 된 것을 특징으로 박막형성방법.The method of claim 1, wherein the high melting point metal film is selected from the group consisting of a tungsten film and a molybdenum film. 제 1 항에 있어서, 상기 금속질화막이 고융점금속의 질화막인 것을 특징으로 하는 박막형성방법.The method of claim 1, wherein the metal nitride film is a nitride film of a high melting point metal. 제 1 항에 있어서, 상기 CVD반응관(1)이 확산로형 CVD반응관인 것을 특징으로 하는 박막형성방법.The method of claim 1, wherein the CVD reaction tube (1) is a diffusion furnace type CVD reaction tube. 제 12 항에 있어서, 상기 반응관(1)이 석영으로 이루어진 것을 특징으로 하는 박막형성방법.The method according to claim 12, wherein the reaction tube (1) is made of quartz. 제 13 항에 있어서, 반응관(1)내에 설치된 부재가 기판을 지지하기 위한 석영보트(10)와, 이 보트(10)를 위한 지지대 및, 열배플로 구성된 것을 특징으로 하는 박막형성방법.The method according to claim 13, wherein the member provided in the reaction tube (1) is composed of a quartz boat (10) for supporting a substrate, a support for the boat (10), and a heat batch. 제 1 항 내지 제 5 항중 어느 한 항에 있어서, 상기 CVD반응관(1)이 냉벽형 CVD반응관인 것을 특징으로 하는 박막형성방법.The method according to any one of claims 1 to 5, wherein the CVD reaction tube (1) is a cold wall CVD reaction tube. 제 1 항 내지 제 5 항중 어느 한 항에 있어서, 상기 기판(9)이 절연패턴이 형성된 전기적으로 도전성을 갖춘 기판이고, 고융점금속막이 절연패턴이 도포되지 않은 기판의 도전표면상에 선택적으로 형성되도록 된 것을 특징으로 하는 박막형성방법.The substrate 9 according to any one of claims 1 to 5, wherein the substrate 9 is an electrically conductive substrate on which an insulating pattern is formed, and a high melting point metal film is selectively formed on the conductive surface of the substrate on which the insulating pattern is not applied. Thin film formation method characterized in that the.
KR1019870002952A 1986-03-31 1987-03-30 Method of forming thin film KR940010412B1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP61-70781 1986-03-31
JP7078186 1986-03-31
JP70781 1986-03-31
JP61217505A JPS6311670A (en) 1986-03-31 1986-09-16 Formation of thin film
JP61-217505 1986-09-16
JP217505 1986-09-16

Publications (2)

Publication Number Publication Date
KR870009448A KR870009448A (en) 1987-10-26
KR940010412B1 true KR940010412B1 (en) 1994-10-22

Family

ID=13441407

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019870002952A KR940010412B1 (en) 1986-03-31 1987-03-30 Method of forming thin film

Country Status (2)

Country Link
JP (1) JPS6311670A (en)
KR (1) KR940010412B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02165628A (en) * 1988-12-20 1990-06-26 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device
JPH05152449A (en) * 1991-11-27 1993-06-18 Sharp Corp Manufacture of semiconductor device

Also Published As

Publication number Publication date
KR870009448A (en) 1987-10-26
JPS6311670A (en) 1988-01-19

Similar Documents

Publication Publication Date Title
US4923715A (en) Method of forming thin film by chemical vapor deposition
US5188979A (en) Method for forming a nitride layer using preheated ammonia
KR100236500B1 (en) Apparatus and method for forming low contact resistivity barrier layer and conductive via
EP0644951B1 (en) Method of nucleating tungsten on titanium nitride by cvd without silane
US5429991A (en) Method of forming thin film for semiconductor device
TWI394858B (en) Method of depositing tungsten film with reduced resistivity and improved surface morphology
US7772114B2 (en) Method for improving uniformity and adhesion of low resistivity tungsten film
JP2939500B2 (en) Selective cvd method and cvd device
US5942282A (en) Method for depositing a titanium film
KR100539274B1 (en) Method for depositing cobalt layer
US7514120B2 (en) Precoat film forming method
JPS634632B2 (en)
JP2002124488A (en) Method of depositing tungsten film from w(co)6
US10580642B2 (en) Two-step process for silicon gapfill
EP2052098A1 (en) Method of cleaning film forming apparatus and film forming apparatus
JPH01119029A (en) High speed heat plasma multiple treatment reactor and its application
JPH07165410A (en) In situ cleaning method for removing natural oxide from silicon surface
US6316361B1 (en) CVD reactor and process for producing an epitally coated semiconductor wafer
JP2000150498A (en) Chemical vapor phase growth device and thin film forming method
KR102560240B1 (en) Methods to Increase Selectivity for Selective Etch Processes
KR940010412B1 (en) Method of forming thin film
KR960013526B1 (en) Chemical vapor phase growth method and chemical vapor phase growth apparatus
WO2014130668A1 (en) Catalytic atomic layer deposition of films comprising sioc
JP3718297B2 (en) Thin film manufacturing method and thin film manufacturing apparatus
US20020197828A1 (en) Method and apparatus for manufacturing a semiconductor device and processing a substrate

Legal Events

Date Code Title Description
A201 Request for examination
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20060929

Year of fee payment: 13

EXPY Expiration of term