JPH10314558A - Preparation of hollow fiber blood purification membrane - Google Patents

Preparation of hollow fiber blood purification membrane

Info

Publication number
JPH10314558A
JPH10314558A JP14110097A JP14110097A JPH10314558A JP H10314558 A JPH10314558 A JP H10314558A JP 14110097 A JP14110097 A JP 14110097A JP 14110097 A JP14110097 A JP 14110097A JP H10314558 A JPH10314558 A JP H10314558A
Authority
JP
Japan
Prior art keywords
spinning
polymer
polysulfone
hollow fiber
hydrophilic polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14110097A
Other languages
Japanese (ja)
Other versions
JP3317876B2 (en
Inventor
Masaya Fukuya
正哉 福家
Tomoji Hanai
智司 花井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Medical Co Ltd
Original Assignee
Asahi Medical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=15284197&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH10314558(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Asahi Medical Co Ltd filed Critical Asahi Medical Co Ltd
Priority to JP14110097A priority Critical patent/JP3317876B2/en
Publication of JPH10314558A publication Critical patent/JPH10314558A/en
Application granted granted Critical
Publication of JP3317876B2 publication Critical patent/JP3317876B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • External Artificial Organs (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Artificial Filaments (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a blood purification membrane having a sharp fractionating characteristic by spinning under specified conditions of draft ratio and discharge linear velocity a stock solution prepared by dissolving polysulfone polymer and hydrophilic polymer in a solvent having a particular viscosity, which is common to both the polysulfone polymer and the hydrophilic polymer. SOLUTION: A polysulfone hollow fiber membrane provided with hydrophilic property, which is a blood purification membrane having such a sharp molecular weight fractionating characteristic as to avoid leak of useful protein such as albumin, is prepared. In this case, a spinning stock solution of a viscosity of 700-3500 mPa.s prepared by dissolving polysulfone polymer and hydrophilic polymer in a solvent common to both the polysuflone polymer and the hydrophilic polymer is processed to be spun at a draft ratio of 1.1-1.9 and at a discharge linear velocity of 90 m/min. or less. The hydrophilic high molecule is not particularly restricted, and from the viewpoint of affinity to polysulfone resin polyvinyl pyrrolidone and the like are preferable and as the common solvent dimethylacetamid and the like are listed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ポリスルホン系中
空糸型血液浄化膜及びその製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polysulfone hollow fiber type blood purification membrane and a method for producing the same.

【0002】[0002]

【従来の技術】ポリスルホン系ポリマーは疎水性の素材
であるために、これを素材とした選択透過性分離膜はセ
ルロース系、ポリアクリロニトリル系、ポリアミド系な
どの親水性素材を用いた選択透過性分離膜に比べて、水
濡れ性が悪く、また乾燥すると透過性能が低下する。そ
こで、ポリスルホン系ポリマーからなる選択透過性分離
膜に親水性ポリマーを含有させた選択透過性分離膜とそ
の製法が提案されている。
2. Description of the Related Art Since a polysulfone-based polymer is a hydrophobic material, a permselective separation membrane using the same as a material is selectively permeated using a hydrophilic material such as a cellulose-based, polyacrylonitrile-based or polyamide-based material. Compared with the membrane, the wettability is poor, and when dried, the permeability deteriorates. Therefore, a permselective separation membrane in which a hydrophilic polymer is contained in a permselective separation membrane made of a polysulfone-based polymer and a method for producing the same have been proposed.

【0003】例えば、特公平2−18695号公報に
は、ポリスルホン、分子量10万以上のポリビニルピロ
リドン及びそれらの共通溶媒からなる原液を紡糸して製
造された、分離膜内に分子量10万以上のポリビニルピ
ロリドンを5〜70重量%含有し、かつ11%以上の吸
水能力を有するポリスルホン系分離膜とその製法が開示
されているが、紡糸ドラフト率に関してはなんら記載が
ない。また、特公平5−54373号公報には、疎水性
ポリマー、親水性ポリマー及びそれらの共通溶媒からな
る低粘度の原液を紡糸して製造された、親水性ポリマー
を1〜10重量%含有し、かつ3〜10%の吸水能力を
有する血液処理用の中空繊維膜とその製法が開示されて
いる。
For example, Japanese Patent Publication No. 2-18695 discloses that a separation membrane produced by spinning a stock solution comprising polysulfone, polyvinylpyrrolidone having a molecular weight of 100,000 or more, and a common solvent thereof, has a polyvinyl alcohol having a molecular weight of 100,000 or more in a separation membrane. A polysulfone-based separation membrane containing 5-70% by weight of pyrrolidone and having a water absorption capacity of 11% or more and a method for producing the same are disclosed, but there is no description about the spinning draft rate. Japanese Patent Publication No. 5-54337 discloses that a hydrophilic polymer produced by spinning a low-viscosity stock solution comprising a hydrophobic polymer, a hydrophilic polymer and a common solvent thereof contains 1 to 10% by weight of a hydrophilic polymer, A hollow fiber membrane for blood treatment having a water absorption capacity of 3 to 10% and a method for producing the same are disclosed.

【0004】該公報には、紡糸ドラフト率に関しては、
紡糸組成物の紡糸口金から出る速度及び生成された繊維
の引き取り速度が一般に同じであること、即ち紡糸ドラ
フト率が1であることが好ましいとある。しかし、実際
にドラフト率が1の場合、紡速を上げることが難しい。
しかし、紡速を上げるために原液の吐出量を上げると、
紡糸口金前の圧損が大きくなること、紡糸原液の吐出線
速度が増大し、紡糸原液の吐出むらが生じ易くなり紡糸
が不安定になること、および膜構造が乱れることなどの
問題が起こる。
According to the publication, regarding the spinning draft rate,
It is preferred that the speed at which the spinning composition exits the spinneret and the speed at which the produced fibers are drawn off are generally the same, ie a spin draft of 1 is preferred. However, when the draft rate is actually 1, it is difficult to increase the spinning speed.
However, if the discharge rate of the stock solution is increased to increase the spinning speed,
Problems such as an increase in pressure loss before the spinneret, an increase in the discharge linear velocity of the spinning dope, and an uneven discharge of the spinning dope are likely to occur, making spinning unstable and disturbing the membrane structure.

【0005】また、特開平6−165926号公報に
は、極端にノズルドラフトを大きくしたり、また小さく
すると製造が不安定になるので、ノズルドラフトは通常
2〜5の範囲に設定されるとあるが、ドラフト率が2を
越えると、中空糸内表面が引き裂かれた構造となり、有
用蛋白であるアルブミンがリークし易くなるなどの問題
点が指摘される。
Japanese Patent Application Laid-Open No. 6-165926 discloses that if the nozzle draft is made extremely large or small, the production becomes unstable. Therefore, the nozzle draft is usually set in the range of 2 to 5. However, when the draft rate exceeds 2, a problem is pointed out that the hollow fiber has a structure in which the inner surface is torn, and albumin, which is a useful protein, tends to leak.

【0006】[0006]

【発明が解決しようとする課題】上記ポリスルホン系分
離膜は、血液浄化膜用途で見た場合、製造上幾つか問題
となる点がある。即ち、紡糸ドラフトと膜性能、膜構造
との関係に対して十分な検討がなされておらず、紡速や
膜の寸法、紡口サイズを変更する場合、膜の性能や構造
が大きく変化し、速やかな対応をとることができない。
本発明は、親水性が付与されたポリスルホン系中空糸膜
であって、高い透過性を維持した上で、アルブミンの様
な有用蛋白のリークが起こらず、分子量分画性がシャー
プである血液浄化膜を優れた生産性で製造する方法を提
供することを目的とする。
The above-mentioned polysulfone-based separation membrane has some problems in production when used for a blood purification membrane. That is, the relationship between the spinning draft and the membrane performance, the membrane structure has not been sufficiently studied, and when changing the spinning speed, the dimensions of the membrane, and the spinneret size, the performance and structure of the membrane greatly change, A prompt response cannot be taken.
The present invention is a polysulfone-based hollow fiber membrane to which hydrophilicity has been imparted, which maintains high permeability, does not leak useful proteins such as albumin, and has a sharp molecular weight fractionation blood purification. An object of the present invention is to provide a method for producing a film with excellent productivity.

【0007】[0007]

【課題を解決するための手段】本発明者らは上記課題を
解決すべく鋭意研究した結果、適切な粘度を有する紡糸
原液から適切な紡糸ドラフト率で製造することにより、
中空糸内表面に引き裂き構造が無く、分画性がシャープ
な血液浄化膜を優れた生産性で製造することが可能であ
ることを見出し、本発明を完成するに至った。すなわ
ち、本発明では、ポリスルホン系ポリマー及び親水性重
合体を該ポリスルホン系ポリマーと該親水性重合体の共
通溶媒に溶解した、粘度が700〜3500mPa・s
の紡糸原液を、ドラフト率が1.1〜1.9、吐出線速
度が90m/min以下で紡糸する、ポリスルホン系中
空糸型血液浄化膜の製造方法を提供する。
Means for Solving the Problems The present inventors have conducted intensive studies to solve the above problems, and as a result, by producing a spinning dope having an appropriate viscosity at an appropriate spinning draft rate,
The present inventors have found that it is possible to produce a blood purification membrane having no tear structure on the inner surface of the hollow fiber and having a sharp fractionation with excellent productivity, and have completed the present invention. That is, in the present invention, a polysulfone-based polymer and a hydrophilic polymer are dissolved in a common solvent of the polysulfone-based polymer and the hydrophilic polymer, and have a viscosity of 700 to 3500 mPa · s.
A spinning stock solution having a draft rate of 1.1 to 1.9 and a discharge linear velocity of 90 m / min or less.

【0008】以下、本発明を詳細に説明する。本発明で
いうポリスルホン系ポリマーとは下記式(1)又は(2):
Hereinafter, the present invention will be described in detail. The polysulfone-based polymer referred to in the present invention is represented by the following formula (1) or (2):

【化1】 Embedded image

【化2】 の繰返単位からなるポリマーであるが、官能基を含んで
いたり、アルキル系の基を含むものでもよく、特に限定
されるものではない。
Embedded image Is a polymer comprising a repeating unit of the formula (1), but may be a polymer containing a functional group or an alkyl group, and is not particularly limited.

【0009】また、本発明でいう親水性高分子は、例え
ばポリビニルピロリドン(以下PVPという)、ポリエ
チレングリコール、ポリグリコールモノエステル、デン
プン及びその誘導体、カルボキシメチルセルロース、酢
酸セルロースなどの水溶性セルロース誘導体を使用で
き、これらを組み合わせて使用することも可能である。
ポリスルホン系樹脂に対する親和性の観点から、ポリビ
ニルピロリドン、ポリエチレングリコールが好ましく用
いられ、ポリビニルピロリドンの使用が最も好ましい。
As the hydrophilic polymer used in the present invention, for example, water-soluble cellulose derivatives such as polyvinylpyrrolidone (hereinafter referred to as PVP), polyethylene glycol, polyglycol monoester, starch and derivatives thereof, carboxymethyl cellulose and cellulose acetate are used. They can be used in combination.
From the viewpoint of affinity for the polysulfone resin, polyvinyl pyrrolidone and polyethylene glycol are preferably used, and polyvinyl pyrrolidone is most preferably used.

【0010】これら水溶性高分子とポリスルホン系ポリ
マーを両方の共通溶媒に溶解し、均一な紡糸原液を調整
する。このようなポリスルホン系ポリマー及び親水性高
分子を共に溶解する共通溶媒としては、例えば、ジメチ
ルアセトアミド(以下DMACと呼ぶ)、ジメチルスル
ホキシド(以下DMSOと呼ぶ)、N−メチル−2−ピ
ロリドン、ジメチルホルムアミド、スルホラン、ジオキ
サン等の多種の溶媒あるいは上記2種以上の混合液から
なる溶媒が挙げられる。この中、ジメチルアセトアミ
ド、ジメチルスルホキシドの使用が好ましい。
[0010] These water-soluble polymers and polysulfone polymers are dissolved in both common solvents to prepare a uniform spinning solution. Examples of the common solvent that dissolves both the polysulfone-based polymer and the hydrophilic polymer include dimethylacetamide (hereinafter referred to as DMAC), dimethylsulfoxide (hereinafter referred to as DMSO), N-methyl-2-pyrrolidone, and dimethylformamide. , Sulfolane, dioxane and the like or a solvent composed of a mixture of two or more of the above. Among them, dimethylacetamide and dimethylsulfoxide are preferably used.

【0011】また、孔径制御のため、紡糸原液には水な
どの添加物を加えても良い。紡糸原液粘度が低すぎる場
合、膜内部に大きなマクロボイドが顕著に現れるように
なるが、血液浄化用の中空糸膜の場合、こうしたマクロ
ボイドが多数存在すると、血液透析中に血液凝固が起こ
り易くなり、血液透析に用いる中空糸膜においてはマク
ロボイドがないことが好ましい。ここで言うマクロボイ
ドとは、膜内でポリマーが存在しない空間のうち、その
最大径が5μm以上のものを言う。
Further, an additive such as water may be added to the spinning dope for controlling the pore diameter. When the viscosity of the spinning solution is too low, large macrovoids appear remarkably inside the membrane.However, in the case of a hollow fiber membrane for blood purification, when a large number of such macrovoids are present, blood coagulation easily occurs during hemodialysis. Thus, it is preferable that the hollow fiber membrane used for hemodialysis has no macrovoids. The term “macrovoid” as used herein refers to a space having a maximum diameter of 5 μm or more in a space where no polymer exists in the film.

【0012】一方、原液粘度が高くなりすぎると紡糸口
金前の圧力が上がりすぎ、安定な紡糸ができなくなって
くる。従って、本発明では、紡糸原液粘度は700〜3
500mPa・sの範囲であることが必要であり、10
00〜2500mPa・sの範囲が好ましい。本発明で
言う粘度とは、製膜条件下の紡糸口金温度と同温度で紡
糸原液を回転式の粘度計で測定したものである。紡糸原
液の粘度は、親水性高分子の分子量、紡糸原液中のポリ
スルホン系ポリマー及び親水性高分子の濃度、紡糸原液
の温度等に依存し、どの要因も膜構造の形成に重大な影
響を及ぼす。本発明では、用いる原料を適切に選択し、
濃度および温度の条件を設定することにより、上記の範
囲に原液粘度を調整する。
On the other hand, if the viscosity of the stock solution is too high, the pressure before the spinneret is too high, and stable spinning cannot be performed. Therefore, in the present invention, the viscosity of the spinning stock solution is 700 to 3
It is necessary to be in the range of 500 mPa · s, and 10
The range of 00 to 2500 mPa · s is preferable. The viscosity referred to in the present invention is a value obtained by measuring a spinning dope with a rotary viscometer at the same temperature as the spinneret temperature under film-forming conditions. The viscosity of the spinning dope depends on the molecular weight of the hydrophilic polymer, the concentration of the polysulfone polymer and the hydrophilic polymer in the spinning dope, the temperature of the spinning dope, and all factors have a significant effect on the formation of the membrane structure. . In the present invention, the raw materials to be used are appropriately selected,
By setting the conditions of concentration and temperature, the viscosity of the stock solution is adjusted to the above range.

【0013】ポリスルホン系樹脂の添加量は少なすぎる
と膜の形成が困難となり膜強度が弱くなりすぎてしまっ
たり、多すぎると紡糸性が悪く孔径が小さくなりすぎる
等の現象が生じてくるために、15〜20重量%である
ことが好ましく、中でも16〜18重量%であることが
更に好ましい。しかしこの範囲であることが絶対ではな
く目的とする中空糸膜の性状によってはこの範囲より小
さくすることも大きくすることもでき、他の紡糸条件を
変化させることによっても膜性状は変化するので、最適
な組み合わせを適宜選択すればよい。
If the amount of the polysulfone-based resin is too small, it is difficult to form a film and the film strength becomes too weak. If the amount is too large, phenomena such as poor spinnability and too small a pore diameter occur. , Preferably 15 to 20% by weight, more preferably 16 to 18% by weight. However, this range is not absolute, and depending on the properties of the target hollow fiber membrane, it can be made smaller or larger than this range, and the film properties change by changing other spinning conditions. An optimal combination may be appropriately selected.

【0014】親水性重合体を紡糸原液へ添加する目的は
中空糸膜内に親水性重合体を残存させて膜に親水性を付
与することであるので、その分子量の選択は極めて重要
なことである。というのも親水性高分子の分子量が小さ
すぎると、紡糸原液の凝固時、及び得られた中空糸膜の
洗浄時に該親水性重合体は容易に膜から溶出してしまう
ため、中空糸膜に親水性を付与するのに必要な親水性重
合体を中空糸膜中に残存させるためには多量の親水性重
合体を紡糸原液へ添加しなくてはならないからである。
Since the purpose of adding the hydrophilic polymer to the spinning solution is to leave the hydrophilic polymer in the hollow fiber membrane to impart hydrophilicity to the membrane, the selection of the molecular weight is extremely important. is there. This is because if the molecular weight of the hydrophilic polymer is too small, the hydrophilic polymer easily elutes from the membrane during coagulation of the spinning dope and at the time of washing the obtained hollow fiber membrane. This is because a large amount of the hydrophilic polymer must be added to the spinning solution in order for the hydrophilic polymer necessary for imparting hydrophilicity to remain in the hollow fiber membrane.

【0015】従って、親水性重合体の中空糸膜への残存
率を高めるためには分子量が大きい方が良く、そのこと
によって紡糸原液に添加した親水性重合体は有効に活用
でき、添加量を少なくできるので好ましい。親水性重合
体がポリビニルピロリドンである時にも分子量が大きい
方が好ましく、例えば500,000以上の粘度平均分
子量を有するポリビニルピロリドンを使用する時には2
〜6重量%の添加量であることが好ましい。
Therefore, in order to increase the residual ratio of the hydrophilic polymer in the hollow fiber membrane, it is better that the molecular weight is large, whereby the hydrophilic polymer added to the spinning stock solution can be effectively utilized, and the amount added can be reduced. It is preferable because it can be reduced. When the hydrophilic polymer is polyvinylpyrrolidone, it is preferable that the molecular weight is large. For example, when polyvinylpyrrolidone having a viscosity average molecular weight of 500,000 or more is used, 2 is preferred.
Preferably, the amount of addition is about 6% by weight.

【0016】中空内液は水、または水を主体とした凝固
液が使用でき、目的とする中空糸膜の膜性能に応じてそ
の組成等は決めていけば良く一概には決められないが、
一般的には紡糸原液に使った溶剤と水との混合溶液が好
適に使用される。例えば5〜60重量%のDMAC水溶
液などが用いられるが、特に10〜50重量%であるこ
とが好ましい。
As the hollow inner liquid, water or a coagulating liquid mainly composed of water can be used, and its composition and the like need only be determined depending on the intended membrane performance of the hollow fiber membrane.
In general, a mixed solution of the solvent and water used for the spinning solution is preferably used. For example, a 5 to 60% by weight aqueous solution of DMAC is used, and particularly preferably 10 to 50% by weight.

【0017】中空糸膜を製膜するに際してはチューブイ
ンオリフィス型の二重紡口を用い、該紡口から前記紡糸
原液と該紡糸原液を凝固させるための中空内液とを同時
に空中に押し出し、20〜80cmの空走部を走行させ
た後、紡口下部に設置した水を主体とする凝固浴中へ浸
漬、凝固させた後巻取る。
When forming a hollow fiber membrane, a tube-in-orifice type double spinning port is used, and the spinning solution and the hollow inner solution for coagulating the spinning solution are simultaneously extruded from the spinning port into the air. After running in a free running section of 20 to 80 cm, it is immersed and coagulated in a coagulation bath mainly composed of water installed under the spinneret, and then wound.

【0018】本発明でいう紡糸ドラフト率とは、チュー
ブインオリフィス型の二重紡口の環状スリット口金か
ら、紡糸原液が吐出される時の吐出線速度と、中空糸の
巻き取り速度の比であり、巻き取り速度を紡糸原液の吐
出線速度で割った値である。低い紡糸ドラフト率の場
合、紡糸口金のスリット幅をその分狭くする必要があ
る。血液浄化用の中空糸膜の場合、通常用いられる膜厚
の範囲は20〜60μmである。このため、紡糸ドラフ
ト率が低い場合、紡速を上げると原液の吐出線速度が増
大し、紡糸口金での圧損が大きくなるため紡糸が不安定
になり易い。また、原液の吐出ムラが生じるため、膜構
造が乱れ、透水性能、溶質透過性能のバラツキも大きく
なる。さらに、スリット幅が狭いため、紡糸口金の芯合
わせが困難になること、紡糸口金の作成自体が困難にな
り高コストになることなどの問題が指摘される。
The spinning draft rate referred to in the present invention is a ratio of a discharge linear speed at which a stock spinning solution is discharged from a tube-in-orifice type double spinning annular slit die to a winding speed of a hollow fiber. This is a value obtained by dividing the winding speed by the linear spinning speed of the stock spinning solution. In the case of a low spin draft, the slit width of the spinneret needs to be reduced accordingly. In the case of a hollow fiber membrane for blood purification, the range of the film thickness usually used is 20 to 60 μm. For this reason, when the spinning draft rate is low, increasing the spinning speed increases the discharge linear velocity of the stock solution and increases the pressure loss at the spinneret, which tends to make spinning unstable. In addition, since the discharge unevenness of the undiluted solution occurs, the film structure is disturbed, and the dispersion of the water permeability and the solute permeability is increased. Furthermore, problems are pointed out that the narrow slit width makes it difficult to align the spinneret, and that the spinneret itself becomes difficult to manufacture and costs high.

【0019】逆に、紡糸ドラフト率が高すぎると、中空
糸内表面がドラフトによる応力を強く受け、膜内表面の
緻密層が引き裂かれたような形状となり、特別大きな孔
径を有する孔が生成しやすくなるため、有用蛋白である
アルブミンのリーク問題が生じる。この問題は紡糸原液
の組成を変える、紡糸原液の温度を高くするなどの方法
で原液粘度を低く抑えることで、ある程度は改善可能で
あるが十分でない。従って、本発明では、紡糸ドラフト
率は1.1〜1.9の狭い範囲であることが必要で有
り、1.1〜1.5の範囲であることが好ましい。
Conversely, if the spinning draft rate is too high, the inner surface of the hollow fiber is strongly subjected to the stress caused by the draft, and the dense layer on the inner surface of the membrane becomes torn, and pores having a particularly large pore diameter are formed. This causes a problem of leakage of albumin, which is a useful protein. This problem can be improved to some extent but is not sufficient by controlling the viscosity of the stock solution by changing the composition of the stock solution or increasing the temperature of the stock solution. Therefore, in the present invention, the spinning draft ratio needs to be in a narrow range of 1.1 to 1.9, and preferably in a range of 1.1 to 1.5.

【0020】ここで言う原液の吐出線速度とは紡糸時に
紡糸口金から紡糸原液が吐出される時の線速度で、単位
時間当たりの紡糸原液の吐出流量を紡糸口金の原液吐出
断面積で割った値である。原液の吐出線速度が大きくな
ると、原液の吐出ムラが大きくなり、膜の構造ムラによ
り大きな孔径を有する孔が形成して、アルブミンのリー
クが生じてしまう。本発明では、原液の吐出線速度は9
0m/min以下であることが必要であり、70m/m
in以下であることが好ましく、更には60m/min
以下であることがより好ましい。
The linear velocity at which the stock solution is discharged is the linear speed at which the stock solution is discharged from the spinneret during spinning. The discharge flow rate of the stock solution per unit time is divided by the cross-sectional area of the stock solution discharged from the spinneret. Value. When the discharge linear velocity of the undiluted solution is increased, the ununiform discharge of the undiluted solution becomes large, and a hole having a large pore diameter is formed due to the unevenness of the structure of the film, thereby causing albumin leakage. In the present invention, the discharge linear velocity of the stock solution is 9
0 m / min or less, and 70 m / m
in or less, and more preferably 60 m / min.
It is more preferred that:

【0021】上記のようにして、紡糸され、巻取られた
中空糸は公知の方法で後処理される。即ち、熱水等によ
る洗浄で溶剤及び過剰な親水性高分子が除去され、必要
に応じてグリセリンを付与した後、乾熱乾燥される。ま
た、中空糸を巻取った後に後処理するのでなく、熱水等
による洗浄や乾熱乾燥した後に巻き取る方法も本発明の
範囲内であり、本発明で重要なことは、紡糸原液粘度を
700〜3500mPa・sに調整し、紡糸口金からの
吐出線速度が90m/min以下の条件で、紡糸ドラフ
ト率を1.1〜1.9以下にすることである。
The hollow fiber spun and wound as described above is post-treated by a known method. That is, the solvent and excess hydrophilic polymer are removed by washing with hot water or the like, and glycerin is applied as necessary, followed by dry heat drying. Further, a method of winding the hollow fiber after winding it after washing and drying with hot water or the like without drying after the winding is also included in the scope of the present invention. It is to adjust the spinning draft rate to 1.1 to 1.9 or less under the condition that the linear velocity of discharge from the spinneret is adjusted to 90 m / min or less by adjusting to 700 to 3500 mPa · s.

【0022】[0022]

【実施例】以下、実施例により、本発明を更に詳細に説
明するが、これらは本発明の範囲を制限しない。 (実施例1)ポリスルホン(P−1700:AMOCO
社製)18重量部とPVP(K−90:ISP社製)3
重量部をDMAC40重量部、DMSO38重量部、水
1重量部に溶解し、10時間攪拌し、紡糸原液とした。
この紡糸原液の粘度は、40℃で2600mPa・sで
あった。この原液を40%DMAC水溶液を中空内液と
し、スリット幅59.5μmの環状口金より吐出して紡
速50m/分で巻取った。乾燥時の中空糸膜厚を45μ
mに合わせるよう原液吐出流量を調整したので、原液吐
出線速は35.7m/分となり、ドラフト率は1.4で
あった。この膜の内表面の様子を図1に示す。図1によ
ると、引き裂かれたような形状はなく、平滑な表面にな
っている。
The present invention will be described in more detail with reference to the following examples, which do not limit the scope of the present invention. (Example 1) Polysulfone (P-1700: AMOCO
18 parts by weight and PVP (K-90: ISP) 3
Parts by weight were dissolved in 40 parts by weight of DMAC, 38 parts by weight of DMSO, and 1 part by weight of water, and stirred for 10 hours to obtain a spinning dope.
The viscosity of this spinning dope was 2,600 mPa · s at 40 ° C. This stock solution was made into a hollow inner solution using a 40% DMAC aqueous solution, discharged from an annular die having a slit width of 59.5 μm, and wound at a spinning speed of 50 m / min. 45μm hollow fiber thickness when dried
Since the stock solution discharge flow rate was adjusted to match m, the stock solution discharge linear speed was 35.7 m / min, and the draft rate was 1.4. FIG. 1 shows the state of the inner surface of this film. According to FIG. 1, there is no torn shape and the surface is smooth.

【0023】(比較例1)実施例1と同じ紡糸原液を4
0%DMAC水溶液を中空内液とし、スリット幅125
μmの環状口金より吐出して紡速50m/分で巻取っ
た。乾燥時の中空糸膜厚を45μmに合わせるよう原液
吐出流量を調整したので、原液吐出線速は15.6m/
分となり、ドラフト率は3.2であった。この膜の内表
面の様子を図2に示す。図2によると、内表面はドラフ
トの影響を受け引き裂かれたような形状となっている。
実施例1ではドラフト率が低いためこの様なドラフトの
影響を受けず、平滑な表面になったと考えられる。
Comparative Example 1 The same spinning stock solution as in Example 1 was used
A 0% aqueous solution of DMAC is used as the hollow internal solution, and the slit width is 125
It was discharged from an annular die having a diameter of μm and wound up at a spinning speed of 50 m / min. Since the undiluted solution discharge flow rate was adjusted so that the thickness of the hollow fiber at the time of drying was adjusted to 45 μm, the undiluted solution discharge linear velocity was 15.6 m /
Minutes, and the draft rate was 3.2. FIG. 2 shows the state of the inner surface of this film. According to FIG. 2, the inner surface has a shape that is torn under the influence of the draft.
It is considered that in Example 1, the draft rate was low and the surface was not affected by such a draft, and the surface became smooth.

【0024】(比較例2)実施例1と同じ紡糸原液を4
0%DMAC水溶液を中空内液とし、スリット幅50μ
mの環状口金より吐出して紡速50m/分で巻取った。
乾燥時の中空糸膜厚を45μmに合わせるよう原液吐出
流量を調整したので、原液吐出線速は49.9m/分と
なり、ドラフト率は1.0であった。この膜の内表面の
様子を図3に示す。図3によると、内表面はドラフトの
影響は緩和され、引き裂かれたような形状はなくなって
いるが、原液の吐出線速が速すぎるためか、原液吐出ム
ラの影響で筋状の凹凸が見られる。また、中空糸が偏芯
し易かった。
Comparative Example 2 The same spinning dope as in Example 1 was used
A 0% DMAC aqueous solution is used as the hollow inner solution, and the slit width is 50 μm.
m and wound up at a spinning speed of 50 m / min.
The discharge rate of the undiluted solution was adjusted so that the thickness of the hollow fiber at the time of drying was adjusted to 45 μm, so that the linear velocity of undiluted solution was 49.9 m / min and the draft rate was 1.0. FIG. 3 shows the state of the inner surface of this film. According to FIG. 3, the effect of the draft is reduced on the inner surface, and there is no torn shape. However, streaky irregularities are observed due to the excessive linear discharge speed of the stock solution or the influence of uneven stock solution discharge. Can be Further, the hollow fiber was easily eccentric.

【0025】(実施例2)ポリスルホン(P−170
0:AMOCO社製)17重量部とPVP(K−90:
ISP社製)2重量部、PVP(K−30:ISP社
製)7重量部、をDMAC73重量部、水1重量部に溶
解し、10時間攪拌し、紡糸原液とした。この紡糸原液
の粘度は45℃で1400mPa・sであった。この原
液を40%DMAC水溶液を中空内液とし、スリット幅
59.5μmの環状口金より吐出して紡速50m/分で
巻取った。乾燥時の中空糸膜厚を45μmに合わせるよ
う原液吐出流量を調整したので、原液吐出線速は36.
3m/分となり、ドラフト率は1.4であった。この膜
の内表面の様子を図4に示す。図4によると、引裂き構
造は見られず、平滑な表面になっている。
Example 2 Polysulfone (P-170)
0: manufactured by AMOCO) and 17 parts by weight of PVP (K-90:
2 parts by weight (made by ISP) and 7 parts by weight of PVP (K-30: made by ISP) were dissolved in 73 parts by weight of DMAC and 1 part by weight of water and stirred for 10 hours to prepare a spinning dope. The viscosity of this spinning dope was 1,400 mPa · s at 45 ° C. This stock solution was made into a hollow inner solution using a 40% DMAC aqueous solution, discharged from an annular die having a slit width of 59.5 μm, and wound at a spinning speed of 50 m / min. The discharge rate of the undiluted solution was adjusted so that the thickness of the hollow fiber during drying was adjusted to 45 μm.
It was 3 m / min, and the draft rate was 1.4. FIG. 4 shows the state of the inner surface of this film. According to FIG. 4, no tearing structure is seen and the surface is smooth.

【0026】(比較例3)実施例2と同じ紡糸原液を4
0%DMAC水溶液を中空内液とし、スリット幅125
μmの環状口金より吐出して紡速50m/分で巻取っ
た。乾燥時の中空糸膜厚を45μmに合わせるよう原液
吐出流量を調整したので、原液吐出線速は15.9m/
分となり、ドラフト率は3.1であった。この膜の内表
面の様子を図5に示す。図5によると、原液粘度が低い
ため、ドラフトの影響は緩和されてはいるのだが、まだ
引き裂き構造が見られる。
(Comparative Example 3) The same spinning dope as in Example 2
A 0% aqueous solution of DMAC is used as the hollow internal solution, and the slit width is 125
It was discharged from an annular die having a diameter of μm and wound up at a spinning speed of 50 m / min. Since the undiluted solution discharge flow rate was adjusted so that the thickness of the hollow fiber during drying was adjusted to 45 μm, the undiluted solution discharge linear velocity was 15.9 m /
Minutes, and the draft rate was 3.1. FIG. 5 shows the state of the inner surface of this film. According to FIG. 5, although the influence of the draft is mitigated due to the low viscosity of the stock solution, a tear structure is still observed.

【0027】(比較例4)実施例2と同じ紡糸原液を4
0%DMAC水溶液を中空内液とし、スリット幅50μ
mの環状口金より吐出して紡速50m/分で巻取った。
乾燥時の中空糸膜厚を45μmに合わせるよう原液吐出
流量を調整したので、原液吐出線速は50.3m/分と
なり、ドラフト率は1.0であった。この膜の内表面の
様子を図6に示す。図6によると、ドラフトの影響が緩
和され、引き裂き構造は見られないが、原液の吐出線速
が速すぎるためか原液吐出ムラの影響で内表面の構造に
疎密が見られる。また中空糸が偏芯し易かった。
Comparative Example 4 The same spinning dope as in Example 2 was used.
A 0% DMAC aqueous solution is used as the hollow inner solution, and the slit width is 50 μm.
m and wound up at a spinning speed of 50 m / min.
Since the stock solution discharge flow rate was adjusted so that the thickness of the hollow fiber at the time of drying was adjusted to 45 μm, the stock solution discharge linear velocity was 50.3 m / min, and the draft rate was 1.0. FIG. 6 shows the state of the inner surface of this film. According to FIG. 6, the effect of the draft is alleviated, and no tearing structure is observed. Also, the hollow fiber was easily eccentric.

【0028】(実験例)実施例1〜2及び比較例1〜4
で得られた中空糸膜を用い、100本からなるミニモジ
ュール(有効長25cm)を作成し、人血清を用いて分
子量の異なる血漿タンパクの篩係数を測定した。その結
果を表1に示す。
(Experimental Examples) Examples 1-2 and Comparative Examples 1-4
Using the hollow fiber membrane obtained in the above, a mini-module (effective length 25 cm) consisting of 100 pieces was prepared, and the sieving coefficients of plasma proteins having different molecular weights were measured using human serum. Table 1 shows the results.

【表1】 実施例は比較例に比べアルブミンのリークが少ない事が
判る。
[Table 1] It can be seen that the example has less albumin leakage than the comparative example.

【0029】[0029]

【発明の効果】以上の通り、本発明の方法によれば、紡
糸ドラフトが1.1〜1.9の範囲で安定で優れた膜性
能、膜形状を持つポリスルホン系血液浄化膜を提供する
ことができる。一方、紡糸ドラフトが2を越える場合、
内表面が引き裂かれた様な構造となり、これは原液粘度
を下げることである程度は改良可能だが、十分ではな
い。また、紡糸ドラフトが1付近になると原液吐出ムラ
の影響で中空糸内表面に筋状の凹凸ができてしまい、溶
質の透過性能も必要以上に大きくなり、血液浄化に用い
た場合、有用タンパクのリークが懸念される。また偏芯
も多くなる。
As described above, according to the method of the present invention, it is possible to provide a polysulfone-based blood purification membrane having a stable and excellent membrane performance and a membrane shape when the spinning draft is in the range of 1.1 to 1.9. Can be. On the other hand, if the spinning draft exceeds 2,
The inner surface is torn, which can be improved to some extent by lowering the viscosity of the stock solution, but not enough. Also, when the spinning draft is near 1, streaky irregularities are formed on the inner surface of the hollow fiber due to the unevenness of undiluted solution discharge, solute permeation performance becomes unnecessarily large. Leaks are a concern. Eccentricity also increases.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1で得られた中空糸の内表面の走査型電
子顕微鏡写真(倍率1万倍)である。
FIG. 1 is a scanning electron micrograph (magnification: 10,000 times) of the inner surface of a hollow fiber obtained in Example 1.

【図2】比較例1で得られた中空糸の内表面の走査型電
子顕微鏡写真(倍率1万倍)である。
FIG. 2 is a scanning electron micrograph (magnification: 10,000 times) of the inner surface of the hollow fiber obtained in Comparative Example 1.

【図3】比較例2で得られた中空糸の内表面の走査型電
子顕微鏡写真(倍率1万倍)である。
FIG. 3 is a scanning electron micrograph (magnification: 10,000) of the inner surface of the hollow fiber obtained in Comparative Example 2.

【図4】実施例2で得られた中空糸の内表面の走査型電
子顕微鏡写真(倍率1万倍)である。
FIG. 4 is a scanning electron micrograph (magnification: 10,000 times) of the inner surface of the hollow fiber obtained in Example 2.

【図5】比較例3で得られた中空糸の内表面の走査型電
子顕微鏡写真(倍率1万倍)である。
FIG. 5 is a scanning electron micrograph (magnification: 10,000) of the inner surface of the hollow fiber obtained in Comparative Example 3.

【図6】比較例4で得られた中空糸の内表面の走査型電
子顕微鏡写真(倍率1万倍)である。
FIG. 6 is a scanning electron micrograph (magnification: 10,000 times) of the inner surface of the hollow fiber obtained in Comparative Example 4.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ポリスルホン系ポリマー及び親水性重合
体を該ポリスルホン系ポリマーと該親水性重合体の共通
溶媒に溶解した、粘度が700〜3500mPa・sの
紡糸原液を、ドラフト率が1.1〜1.9、吐出線速度
が90m/min以下で紡糸することを特徴とするポリ
スルホン系中空糸型血液浄化膜の製造方法。
1. A spinning dope having a viscosity of 700 to 3500 mPa · s, in which a polysulfone-based polymer and a hydrophilic polymer are dissolved in a common solvent of the polysulfone-based polymer and the hydrophilic polymer, having a draft rate of 1.1 to 1.9. A method for producing a polysulfone-based hollow fiber type blood purification membrane, comprising spinning at a discharge linear velocity of 90 m / min or less.
JP14110097A 1997-05-16 1997-05-16 Method for producing hollow fiber type blood purification membrane Expired - Lifetime JP3317876B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14110097A JP3317876B2 (en) 1997-05-16 1997-05-16 Method for producing hollow fiber type blood purification membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14110097A JP3317876B2 (en) 1997-05-16 1997-05-16 Method for producing hollow fiber type blood purification membrane

Publications (2)

Publication Number Publication Date
JPH10314558A true JPH10314558A (en) 1998-12-02
JP3317876B2 JP3317876B2 (en) 2002-08-26

Family

ID=15284197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14110097A Expired - Lifetime JP3317876B2 (en) 1997-05-16 1997-05-16 Method for producing hollow fiber type blood purification membrane

Country Status (1)

Country Link
JP (1) JP3317876B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006187768A (en) * 2004-12-09 2006-07-20 Toray Ind Inc Production method of polysulfone type hollow fiber membrane and production method of module for medical care using it
CN114534523A (en) * 2022-03-10 2022-05-27 迈得医疗工业设备股份有限公司 Hemodialysis membrane and preparation method and application thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006187768A (en) * 2004-12-09 2006-07-20 Toray Ind Inc Production method of polysulfone type hollow fiber membrane and production method of module for medical care using it
CN114534523A (en) * 2022-03-10 2022-05-27 迈得医疗工业设备股份有限公司 Hemodialysis membrane and preparation method and application thereof

Also Published As

Publication number Publication date
JP3317876B2 (en) 2002-08-26

Similar Documents

Publication Publication Date Title
JP5065379B2 (en) Ultrafiltration membrane
CN103501878B (en) Performance enhancing additives for fiber formation and polysulfone fibers
US5290448A (en) Polyacrylonitrile membrane
WO2017164019A1 (en) Hollow fiber membrane
JP3317876B2 (en) Method for producing hollow fiber type blood purification membrane
JP2011050881A (en) Method of spinning hollow fiber membrane
JPS6333871B2 (en)
JPH11309355A (en) Polysulfone hollow fiber type blood purifying membrane and its production
JP4036740B2 (en) Method for producing hollow fiber blood purification membrane
JPS59166208A (en) Manufacture of gas separating membrane
JP6155908B2 (en) Method for producing hollow fiber membrane
JP2528893B2 (en) Method for producing polysulfone hollow fiber membrane
JP2004305953A (en) Method of manufacturing hollow fiber membrane
JP2011020071A (en) Method for manufacturing polysulfone-based hollow fiber membrane
JPH119977A (en) Polyethylene composite microporous hollow fiber membrane
JP2675197B2 (en) Manufacturing method of high strength and porous polysulfone hollow fiber membrane
JPS63100902A (en) Aromatic polysulfone hollow yarn membrane and its manufacture
JP2512909B2 (en) Method for producing hollow fiber porous membrane
JPS59169510A (en) Anisotropic hollow yarn membrane
JPS61185305A (en) Preparation of cellulose acetate hollow yarn
JP2818352B2 (en) Manufacturing method of hollow fiber membrane
KR101982909B1 (en) Hollow fiber membrane and method for preparing the same
JP3250808B2 (en) Polysulfone porous membrane and method for producing the same
JP3524637B2 (en) Method for producing polymer porous membrane
JP2818359B2 (en) Method for producing cellulose triacetate hollow fiber membrane

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020604

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080614

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080614

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090614

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090614

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090614

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100614

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110614

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110614

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120614

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120614

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130614

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130614

Year of fee payment: 11

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130614

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130614

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140614

Year of fee payment: 12

EXPY Cancellation because of completion of term