JPH10310824A - Production of galvannealed steel sheet having strength increasing heat treatability after forming - Google Patents

Production of galvannealed steel sheet having strength increasing heat treatability after forming

Info

Publication number
JPH10310824A
JPH10310824A JP13163597A JP13163597A JPH10310824A JP H10310824 A JPH10310824 A JP H10310824A JP 13163597 A JP13163597 A JP 13163597A JP 13163597 A JP13163597 A JP 13163597A JP H10310824 A JPH10310824 A JP H10310824A
Authority
JP
Japan
Prior art keywords
steel sheet
steel
strength
forming
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13163597A
Other languages
Japanese (ja)
Other versions
JP4299377B2 (en
Inventor
Takeshi Nishiwaki
武志 西脇
Kazumasa Yamazaki
一正 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP13163597A priority Critical patent/JP4299377B2/en
Publication of JPH10310824A publication Critical patent/JPH10310824A/en
Application granted granted Critical
Publication of JP4299377B2 publication Critical patent/JP4299377B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a steel sheet capable of increasing tensile-strength or hard ness by executing short time heat treatment at a relatively low temp. after forming such as press-forming by specifying the compsn. and microstructure of a steel compositely added with suitable amounts of C, W, Cr and Mo and subjecting it to hot dip galvanizing and heating alloying treatment. SOLUTION: A steel contg., by weight, 0.01 to 0.08% C, 0.005 to 1.0% Si, 0.01 to 3.0% Mn, 0.001 to 0.15% P, 0.001 to 0.02% S, 0.001 to 0.1% Al, 0.002 to 0.01% N, one or more kinds among W, Cr and Mo by 0.05 to 3.0%, and the balance iron is prepd. This steel is subjected to hot rolling, is galvanized without executing cold rolling and is thereafter subject to heating alloying treatment. The steel may further be added with one or more kinds among Ti, Nb and V by prescribed amounts. It is preferable that the microstructure of the steel is consisting of ferrite or essentially of ferrite, and the structure of the balance which is not composed of ferrite in the structure consisting essentially of ferrite is composed of pearlite and/or bainite.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、建設部材、機械構
造用部品、自動車の構造用部品など、構造上の強度、特
に変形時の強度及び又は剛性が必要とされる箇所に適用
されるに好適な、プレス等による加工成形後に所定温度
域で強度上昇熱処理がなされる成形体の素鋼板として用
いられる合金化溶融亜鉛めっき鋼板の製造方法に関する
ものである。
[0001] The present invention is applicable to parts requiring structural strength, particularly strength and / or rigidity at the time of deformation, such as construction members, mechanical structural parts, and structural parts of automobiles. The present invention relates to a method for manufacturing a galvannealed steel sheet which is preferably used as a base steel sheet of a formed body subjected to a heat treatment for increasing the strength in a predetermined temperature range after working and forming by a press or the like.

【0002】[0002]

【従来の技術】薄鋼板からなるプレス成形体を製造する
に際し、プレス成形前は軟質でプレス成形しやすく、プ
レス成形後に硬化させ部品強度を高める方法としては、
200℃未満で塗装焼付する方法などがある。この塗装
焼付用鋼板としてBH鋼板が開発された。
2. Description of the Related Art In manufacturing a press-formed body made of a thin steel sheet, there is a method of increasing the strength of parts by softening before press-forming and easy to press-forming, and hardening after press-forming.
There is a method of baking at a temperature lower than 200 ° C. A BH steel plate has been developed as a steel plate for coating and baking.

【0003】例えば、特開昭55−141526号公
報、特開昭55−141555号公報の如くNb添加鋼
において、鋼中のC、N、AI含有量に応じてNbを添
加してat%でNb/(固溶C+固溶N)を特定範囲内
に制限し、さらに、焼鈍後の冷却速度を制御することに
より、鋼板中の固溶C、固溶Nを調整する方法や特公昭
61−45689号公報の如くTiとNbの複合添加に
よって焼付硬化性を向上することが開示されている。
For example, in an Nb-added steel as disclosed in JP-A-55-141526 and JP-A-55-141555, Nb is added in accordance with the content of C, N and AI in the steel, and the steel is added in at%. Nb / (Solute C + Solute N) is limited to a specific range, and the cooling rate after annealing is controlled to adjust the solute C and solute N in the steel sheet. No. 45689 discloses that bake hardenability is improved by adding Ti and Nb in combination.

【0004】しかしながら、前述のような鋼板は、深絞
り性に優れる材質とする為、鋼板の強度は低く、構造用
材料としてとしては必ずしも十分ではない。
[0004] However, since the above-mentioned steel sheet is made of a material having excellent deep drawability, the strength of the steel sheet is low, and is not always sufficient as a structural material.

【0005】また、さらに、特開平5−25549号公
報の如く鋼にW、Cr、Moの単独または複合添加によ
って焼付硬化性を向上することが開示されている。しか
しながら、焼付硬化により強度が上昇するのは、鋼板中
に含まれる固溶C、固溶Nを利用する為、例えば図1の
破線のBH鋼板の応力―歪み曲線に模式的に示すよう
に、材料の降伏強さのみを上昇させる(図1のBH分の
応力上昇)だけであり、引張強さ(引張強度)を上昇さ
せるものではない。このため、部材または部品の変形の
開始応力を高める効果しかなく、部材または部品の変形
開始から変形終了まで変形中全域にわたって変形に要す
る応力(以下、変形強度特性と記す)を高める効果につ
いては、必ずしも十分ではない。
[0005] Further, as disclosed in Japanese Patent Application Laid-Open No. H5-25549, it is disclosed that the bake hardenability is improved by adding W, Cr and Mo alone or in combination to steel. However, the increase in strength due to bake hardening is due to the use of solid solution C and solid solution N contained in the steel sheet. For example, as schematically shown in the stress-strain curve of the dashed BH steel sheet in FIG. It only increases the yield strength of the material (the stress increase for BH in FIG. 1), but does not increase the tensile strength (tensile strength). For this reason, there is only an effect of increasing the stress at which the deformation of the member or component is started, and the effect of increasing the stress required for deformation throughout the entire region from the start of deformation of the member or component to the end of deformation (hereinafter, referred to as deformation strength characteristic) is as follows. Not always enough.

【0006】プレス成形体の塗装焼付以外の硬化方法と
しては、プレス成形後に軟窒化処理による方法がある。
例えば、特開平2−80539号公報の如く窒化処理に
より強度が高まるようにCr、Al、V等の窒化物形成
元素を鋼中に含有させる方法や、特開平3−12225
5号公報の如く窒化処理の熱を利用して、Cuを析出硬
化させ部材の硬さを高める方法などが開示されている。
しかしながら、これらの方法では、450℃超と加熱温
度が高く、耐食性を高めようとして通常の亜鉛めっきを
用いると、めっき層が蒸散し耐食性の良いものが得られ
難いという欠点を有していた。
As a curing method other than the baking of the press-formed body, there is a method of soft nitriding after press-forming.
For example, as disclosed in Japanese Patent Application Laid-Open No. 2-80539, a method in which a nitride-forming element such as Cr, Al, or V is contained in steel so as to increase the strength by nitriding,
As disclosed in Japanese Patent Application Laid-Open No. 5 (1999) -2005, a method is disclosed in which the heat of nitriding treatment is used to precipitate and harden Cu to increase the hardness of a member.
However, these methods have the drawback that the heating temperature is higher than 450 ° C., and when ordinary zinc plating is used to increase the corrosion resistance, the plating layer evaporates and it is difficult to obtain a material having good corrosion resistance.

【0007】[0007]

【発明が解決しようとする課題】本発明は、上記のよう
な問題点を解決するべく、加工成形前は強度レベルが3
00Mpa級、400Mpa級、500Mpa級、60
0Mpa級、700Mpa級で比較的軟質の高強度鋼で
プレス成形等の加工成形がしやすく、プレス成形等の成
形加工後に強度上昇を目的とした比較的低温での短時間
熱処理を行うことで、引張強さ又は硬さが上昇し部材や
部品の変形強度特性を高めるか、あるいは剛性をたかめ
ることが可能な素鋼板としての合金化溶融亜鉛めっき鋼
板の製造方法を提供することを課題とする。
SUMMARY OF THE INVENTION In order to solve the above problems, the present invention has a strength level of 3 before working.
00Mpa class, 400Mpa class, 500Mpa class, 60
It is easy to process and form by press forming etc. with relatively soft high-strength steel of 0Mpa class and 700Mpa class, and by performing a short-time heat treatment at a relatively low temperature for the purpose of increasing the strength after forming such as press forming, An object of the present invention is to provide a method for producing an alloyed hot-dip galvanized steel sheet as an elemental steel sheet capable of increasing the tensile strength or hardness to enhance the deformation strength characteristics of a member or component, or increasing the rigidity.

【0008】[0008]

【課題を解決するための手段】本発明者らは、合金化溶
融亜鉛めっきを施した薄鋼板からなる各種成形材料や部
品の形状を成形する上での加工性、部材や部品を熱処理
することで硬化させる熱処理方法、および該鋼板からな
る部品としてのプレス成形体の変形強度特性など鋭意研
究を行った。その結果、鋼組成において適量のCとW、
Cr、Moを複合添加することにより、更には鋼のミク
ロ組織を特定し、溶融亜鉛めっき及び加熱合金化処理を
施すことによって、成形加工後に200〜450℃の温
度域に加熱した際に短時間で高い引張強さ上昇(又は変
形強度特性上昇)が得られること新たに発見した。本発
明はこの発見に基づいて成し遂げたものである。
Means for Solving the Problems The present inventors have developed a workability in forming various molding materials and parts made of thin steel sheets subjected to alloyed hot-dip galvanizing, and a heat treatment of members and parts. The inventors conducted intensive research on the heat treatment method for hardening at a temperature and the deformation strength characteristics of a press-formed body as a part made of the steel sheet. As a result, appropriate amounts of C and W in the steel composition,
By adding Cr and Mo in combination, further specifying the microstructure of the steel, and performing hot-dip galvanizing and heat alloying treatment, it is possible to shorten the time when heated to a temperature range of 200 to 450 ° C after forming. It has been newly found that a high tensile strength (or an increase in deformation strength characteristics) can be obtained by the method of the present invention. The present invention has been accomplished based on this finding.

【0009】その発明の要旨は、次のとおりである。The gist of the invention is as follows.

【0010】(1) 重量%にてC :0.01〜0.
08%、Si:0.005〜1.0%、Mn:0.01
〜3.0%、P :0.001〜0.15%、S :
0.001〜0.02%、Al:0.001〜0.1
%、N :0.0002〜0.01%、およびW、C
r、Moの1種または2種以上を、合計量が0.05〜
3.0%含有し、残部が鉄および不可避的不純物からな
る鋼を熱間圧延した後、冷間圧延を施すことなく、溶融
亜鉛めっきを行い、その後加熱合金化処理を施したこと
を特徴とする成形後強度上昇熱処理性能を有する合金化
溶融亜鉛めっき鋼板の製造方法。
(1) C: 0.01 to 0.1% by weight
08%, Si: 0.005 to 1.0%, Mn: 0.01
To 3.0%, P: 0.001 to 0.15%, S:
0.001 to 0.02%, Al: 0.001 to 0.1
%, N: 0.0002 to 0.01%, and W, C
r, one or more of Mo, the total amount is 0.05 to
After hot-rolling a steel containing 3.0% and the balance consisting of iron and unavoidable impurities, hot-dip galvanizing was performed without performing cold rolling, followed by heat-alloying. Of manufacturing an alloyed hot-dip galvanized steel sheet having a post-forming strength increase heat treatment performance.

【0011】(2) 鋼組成として、更に重量%で、T
i:0.005〜0.1%、Nb:0.005〜0.1
%、V :0.005〜0.1%の1種または2種以上
を含有せしめたことを特徴とする(1)に記載の成形後
強度上昇熱処理性能を有する合金化溶融亜鉛めっき鋼板
の製造方法、(3) 重量%にてC :0.01〜0.
08%、Si:0.005〜1.0%、Mn:0.01
〜3.0%、P :0.001〜0.15%、S :
0.001〜0.02%、Al:0.001〜0.1
%、N :0.0002〜0.01%およびW、Cr、
Moの1種または2種以上を、合計量が0.05〜3.
0%含有し、残部が鉄および不可避的不純物からなる成
分を有する鋼を熱間圧延した後に、調質圧延または冷間
圧延を施し、次いで650〜900℃の温度で焼鈍を施
し、その後溶融亜鉛めっきを行い、加熱合金化処理を施
したことを特徴とする成形後強度上昇熱処理性能を有す
る合金化溶融亜鉛めっき鋼板の製造方法。
(2) As a steel composition, T
i: 0.005 to 0.1%, Nb: 0.005 to 0.1
%, V: production of an alloyed hot-dip galvanized steel sheet having a post-forming strength increase heat treatment performance according to (1), wherein one or more of 0.005 to 0.1% of V is contained. Method, (3) C: 0.01 to 0.1% by weight.
08%, Si: 0.005 to 1.0%, Mn: 0.01
To 3.0%, P: 0.001 to 0.15%, S:
0.001 to 0.02%, Al: 0.001 to 0.1
%, N: 0.0002 to 0.01% and W, Cr,
Mo, or two or more, in a total amount of 0.05 to 3.
After hot-rolling a steel containing 0% and a balance of iron and unavoidable impurities, temper rolling or cold rolling is performed, and then annealing is performed at a temperature of 650 to 900 ° C. A method for producing an alloyed hot-dip galvanized steel sheet having a post-forming strength increase heat treatment performance, characterized by performing plating and heat alloying treatment.

【0012】(4) 鋼組成として、更に重量%で、T
i:0.005〜0.1%、Nb:0.005〜0.1
%、V :0.005〜0.1%の1種または2種以上
を含有せしめたことを特徴とする(3)に記載の成形後
強度上昇熱処理性能を有する合金化溶融亜鉛めっき鋼板
の製造方法、である。
(4) As the steel composition, T
i: 0.005 to 0.1%, Nb: 0.005 to 0.1
%, V: production of an alloyed hot-dip galvanized steel sheet having a post-forming strength increase heat treatment performance according to (3), wherein one or more of 0.005 to 0.1% of V is contained. The way.

【0013】[0013]

【発明の実施の形態】本発明者らは、部材や部品のプレ
ス成形性等の加工成形性を確保しつつ部材や部品に変形
強度特性を付与する方法として、鋼板組成、鋼板製法、
熱処理方法、成形性(特にプレス成形性)について鋭意
研究を行ったところ、Cと親和性の弱い炭化物形成元素
であるCr、W、Moを含有する鋼板に溶融亜鉛めっき
と加熱合金化処理を施した後で、2%以上の歪みを与え
るプレス成形法で加工し、さらにその後に200〜45
0℃の熱処理を施すことにより、耐食性を損なうことな
く合金化亜鉛めっき鋼板の変形強度特性が著しく向上す
ることを見出した。また、さらに鋼組成として、Ti、
Nb、Vを複合添加することで前記変形強度特性の上昇
量(ΔTS)が著しいことを見出した。
BEST MODE FOR CARRYING OUT THE INVENTION The inventors of the present invention have proposed a method of imparting deformation strength characteristics to members and parts while ensuring workability such as press formability of members and parts, by using a steel sheet composition, a steel sheet manufacturing method, and the like.
After extensive research on the heat treatment method and formability (especially press formability), steel sheets containing Cr, W, and Mo, which are carbide-forming elements with low affinity for C, were subjected to hot-dip galvanizing and heat alloying. After that, it is processed by a press molding method giving a strain of 2% or more, and thereafter, 200 to 45%
It has been found that by performing a heat treatment at 0 ° C., the deformation strength characteristics of the alloyed galvanized steel sheet are significantly improved without impairing the corrosion resistance. Further, as a steel composition, Ti,
It has been found that the combined addition of Nb and V significantly increases the amount of increase in the deformation strength characteristics (ΔTS).

【0014】以下に本発明を詳細に説明する。Hereinafter, the present invention will be described in detail.

【0015】まず、以下に鋼の成分を限定する理由につ
いて述べる。
First, the reasons for limiting the components of steel will be described below.

【0016】Cは、鋼の加工性に影響を及ぼす元素であ
り、含有量が多くなると、加工性は劣化する。従って
0.08%以下とする。また、0.01%未満では、2
00〜450℃の熱処理時に炭化物として析出する量が
少なく、熱処理の際、強度を上昇させる効果が少ないの
で、0.01%を下限とする。
C is an element that affects the workability of steel, and the higher the content, the worse the workability. Therefore, it is set to 0.08% or less. On the other hand, if less than 0.01%, 2
The lower limit is 0.01% because the amount of carbide precipitated during the heat treatment at 00 to 450 ° C. is small and the effect of increasing the strength during the heat treatment is small.

【0017】Siは、0.005%未満では、製造コス
トが飛躍的に上がり経済的でなくなるので、0.005
%を下限とし、1.0%を越えると加工性は劣化すると
ともに、亜鉛が付着しにくく亜鉛めっきの密着性を損な
うので、1.0%を上限とする。
If the content of Si is less than 0.005%, the production cost is dramatically increased and it is not economical.
% Is defined as the lower limit, and if it exceeds 1.0%, workability is deteriorated, zinc is hardly adhered and the adhesion of zinc plating is impaired, so the upper limit is 1.0%.

【0018】Mnは、0.01%未満では、製造コスト
が飛躍的に上がり経済的でなくなるので、0.01%を
下限とし、3.0%を越えると加工性は劣化するので、
3.0%を上限とする。
If the Mn content is less than 0.01%, the production cost rises dramatically and becomes uneconomical, so the lower limit is 0.01%, and if it exceeds 3.0%, the workability deteriorates.
3.0% is the upper limit.

【0019】Pは、深絞り性を損なわずに強度を上げら
れる元素であり、強度レベルに応じて添加するが、0.
001%未満にするには製造コストが飛躍的に上がり経
済的でなくなるので、0.001%を下限とし、0.1
5%を越えると二次加工脆性の問題が発生してくるの
で、0.15%を上限とする。
P is an element capable of increasing the strength without impairing the deep drawability, and is added according to the strength level.
If the content is less than 001%, the production cost is dramatically increased and it is not economical.
If it exceeds 5%, the problem of secondary working brittleness occurs, so the upper limit is 0.15%.

【0020】Sは、本来、鋼中に存在することが無意味
な元素であるため少ない方が良いが、0.001%未満
では製造コストが飛躍的に上がり経済的でなくなるの
で、0.001%を下限とし、0.02%を超えると熱
間圧延時に赤熱脆性を起こし、表面で割れる、いわゆ
る、熱間脆性を起こすため、0.02%を上限とする。
S is essentially an element that is meaningless to be present in steel, so it is better to reduce it. However, if it is less than 0.001%, the production cost will increase dramatically and it will not be economical. % Is defined as a lower limit, and if it exceeds 0.02%, red hot brittleness occurs during hot rolling, and so-called hot brittleness occurs at the surface, so 0.02% is set as an upper limit.

【0021】Alは、通常、脱酸成分として添加し、ブ
ローホール等の欠陥が発生を防止するため、0.001
%以上添加する必要がある。0.001%未満では十分
脱酸できないため、0.001%を下限とする。また、
0.1%を越えると脱酸の効果は飽和するので、0.1
%を上限とする。また、更にTiを添加して介在物を形
態制御して、プレス割れを少なくするには、Alは0.
001〜0.005%が好ましい。
Al is usually added as a deoxidizing component to prevent the occurrence of defects such as blowholes.
% Must be added. If it is less than 0.001%, it cannot be sufficiently deoxidized, so the lower limit is 0.001%. Also,
If it exceeds 0.1%, the effect of deoxidation is saturated.
% As the upper limit. Further, in order to reduce press cracking by further controlling the inclusion by adding Ti, Al is added in an amount of 0.1%.
001 to 0.005% is preferred.

【0022】Nは、加工性を確保するためには少ない方
が良いが、0.0002%未満では製造コストが飛躍的
に上がり経済的でなくなるので、0.0002%を下限
とし、0.01%を越えると加工性が劣化してくるの
で、0.01%を上限とする。
N is preferably as small as possible in order to ensure workability, but if it is less than 0.0002%, the production cost will increase dramatically and it will not be economical. %, The workability deteriorates, so the upper limit is 0.01%.

【0023】加工成形後の所定の低温熱処理の際に、引
張強さを上昇させる効果を発揮するには、前記元素に加
えて必須元素として、更にMo、W、Crの1種または
2種以上を、Mo、W、Crの合計量が0.05〜3.
0%鋼に含有せしめる。合計量が0.05%未満では、
前記の熱処理を施しても、引張強さの上昇が十分に期待
できない。また、合計量が3.0%を超えるとMo、
W、Crが鋼を強化しすぎて、加工成形前の強度が高く
なりすぎ加工性を損ったり、前記の加工後熱処理を施し
ても引張強さを上昇させる効果が小さいか又は飽和して
しまうために、経済的に不都合となるためである。
In order to exhibit the effect of increasing the tensile strength at the time of a predetermined low-temperature heat treatment after working and forming, one or more of Mo, W, and Cr as essential elements in addition to the above-mentioned elements are further required. , The total amount of Mo, W, and Cr is 0.05 to 3.
It is contained in 0% steel. If the total amount is less than 0.05%,
Even if the above-mentioned heat treatment is performed, an increase in tensile strength cannot be expected sufficiently. When the total amount exceeds 3.0%, Mo,
W and Cr strengthen the steel too much, and the strength before working and forming becomes too high, impairing the workability, and the effect of increasing the tensile strength even if the heat treatment is performed after the working is small or saturated. This is economically inconvenient.

【0024】Cr、W、Moを含有する鋼板に2%以上
の歪みを付与するようなプレス成形等の加工成形を行
い、200〜450℃の熱処理を施すと、鋼板の引張強
さが上昇する。鋼へCr、W、Moを所定量添加してこ
の熱処理を施した際の引張強さの上昇理由は明らかでは
ないが、2%以上の歪みの付与によって、鋼板中のフェ
ライト部に相当量の転位が導入され、C、Cr、W、M
oの鋼中での拡散は低温でも飛躍的に高まり、またさら
に導入された転位を核として、転位上にCr、W、Mo
炭化物の析出が生じるため、低温短時間で炭化物が析出
して部材や部品の引張強さが高まると本発明者らは考え
ている。
When a steel sheet containing Cr, W, and Mo is subjected to processing such as press forming to give a strain of 2% or more and subjected to a heat treatment at 200 to 450 ° C., the tensile strength of the steel sheet increases. . The reason for the increase in tensile strength when a predetermined amount of Cr, W, and Mo is added to steel and this heat treatment is performed is not clear. However, by applying strain of 2% or more, a considerable amount of ferrite portion in the steel sheet is added. Dislocations are introduced, C, Cr, W, M
The diffusion of o in steel is dramatically increased even at low temperatures, and Cr, W, and Mo
The present inventors believe that since carbide is precipitated, carbide is precipitated in a short time at low temperature to increase the tensile strength of members and components.

【0025】また、さらに加工成形後熱処理の際、引張
強さを上昇させるには、前記のCr、W、Moに加え
て、選択元素としてTi、Nb、Vを添加することが出
来る。Ti、Nb、Vを含有した部材又は部品の引張強
さや硬さを上昇させる効果が高まる理由は明らかではな
いが、 Ti、Nb、Vを添加すると、前記のCr、
W、Mo添加による低温熱処理での作用と相乗作用を発
揮し、鋼板中で微細な炭化物を形成し、この微細炭化物
は、プレス時に付与する歪みに対して、転位を効果的に
増殖させ、歪み量を増やしたような効果が現れるためと
本発明者らは考ている。特に、Vを添加し、更にTi、
Nbの1種又は2種を添加が加工成形後絶処理を短縮で
きるので好ましい。
In addition, in order to increase the tensile strength during the heat treatment after forming, it is possible to add Ti, Nb and V as selective elements in addition to Cr, W and Mo described above. It is not clear why the effect of increasing the tensile strength and hardness of the member or component containing Ti, Nb, V is increased, but when Ti, Nb, V is added, the aforementioned Cr,
It exerts a synergistic effect with the action of the low-temperature heat treatment by the addition of W and Mo, and forms fine carbides in the steel sheet. The present inventors consider that the effect of increasing the amount appears. In particular, V is added, and Ti,
It is preferable to add one or two types of Nb since the post-working treatment can be shortened.

【0026】Tiは熱処理の際、強度を上昇させる効果
を高める元素であり、0.005%未満では、その効果
が小さいので、0.005%を下限としする。また、T
iは鋼の強度を高める元素であり、0.1%を超えると
加工性が劣化するので、0.1%を上限とする。
Ti is an element that enhances the effect of increasing the strength during heat treatment. If the content is less than 0.005%, the effect is small, so the lower limit is 0.005%. Also, T
i is an element that increases the strength of the steel. If it exceeds 0.1%, the workability deteriorates, so the upper limit is 0.1%.

【0027】Nbは熱処理の際、強度を上昇させる効果
を高める元素であり、0.005%未満では、その効果
が小さいので、0.005%を下限としする。また、N
bは鋼の強度を高める元素であり、0.1%を超えると
加工性が劣化するので、0.1%を上限とする。
Nb is an element that enhances the effect of increasing the strength during heat treatment. If the content is less than 0.005%, the effect is small, so the lower limit is 0.005%. Also, N
b is an element that increases the strength of steel, and if it exceeds 0.1%, the workability deteriorates. Therefore, the upper limit is set to 0.1%.

【0028】Vは熱処理の際、強度を上昇させる効果を
高める元素であり、0.005%未満では、その効果が
小さいので、0.005%を下限としする。また、Vは
鋼の強度を高める元素であり、0.1%を超えると加工
性が劣化するので、0.1%を上限とする。
V is an element that enhances the effect of increasing the strength during the heat treatment. If it is less than 0.005%, the effect is small, so the lower limit is 0.005%. Further, V is an element that increases the strength of steel, and if it exceeds 0.1%, the workability is deteriorated. Therefore, the upper limit is 0.1%.

【0029】以上のように成分を調整するが、成形後熱
処理の際、強度を上昇させる効果を高めるためには、鋼
板中のC量を熱処理温度で、固溶状態にしておく事が望
ましいので、炭化物形成元素であるTi、Nb、VをT
i量で{(48/12)×C[%]+(48/14)×
N[%]}以下、もしくはNb量を{(93/12)×
C[%]+(93/14)×N[%]}以下、もしくは
V量を{(51×4/12/3)×C[%]+(51/
14)×N[%]}以下、もしくはTi、Nb、Vを複
合添加する場合では、{Ti[%]×12/48+Nb
[%]×12/93+V[%]×12×3/51/4}
<C[%]+N[%]×12/14を満足するように添
加することが望ましい。
Although the components are adjusted as described above, in order to enhance the effect of increasing the strength at the time of heat treatment after forming, it is desirable that the amount of C in the steel sheet be in a solid solution state at the heat treatment temperature. , T, Nb, and V, which are carbide forming elements,
i (48/12) × C [%] + (48/14) ×
N [%]} or less, or Nb amount is {(93/12) ×
C [%] + (93/14) × N [%]} or less, or V amount = {(51 × 4/12/3) × C [%] + (51 /
14) × N [%] or less, or when Ti, Nb and V are added in combination, {Ti [%] × 12/48 + Nb
[%] × 12/93 + V [%] × 12 × 3 / 551
It is desirable to add so as to satisfy <C [%] + N [%] × 12/14.

【0030】ついで本発明の製造方法で得られる鋼ミク
ロ組織の好ましい態様についてのべる。
Next, a preferred embodiment of the steel microstructure obtained by the production method of the present invention will be described.

【0031】鋼のミクロ組織は、フェライトまたはフェ
ライトを主体(鋼のミクロ組織のフェライトの組織分率
を60%以上)とすることが好ましい。フェライトは軟
質で加工性に優れる上に、加工を加えたときに結晶粒内
に多くの転位を蓄積することができる。また、歪みを加
えたときに転位が均一に入り、鋼板全体の強度を均一に
高めることができるので、鋼のミクロ組織をフェライト
またはフェライトを主体とする。またさらに、フェライ
ト主体とする組織のフェライトでない残部の組織をパー
ライト及び又はベイナイトとするとフェライトと残部組
織の界面に応力集中が高まり、効果的にフェライトに転
位を付与することができる。そのうえ、パーライト及び
又はベイナイト組織はマルテンサイト組織ほど硬質でな
いので、パーライト及び又はベイナイト組織自身も変形
し、鋼板全体として転位量が増加するので熱処理の際鋼
の強度が効果的に上昇する。
The microstructure of steel is preferably composed mainly of ferrite or ferrite (the microstructure fraction of ferrite in the steel microstructure is 60% or more). Ferrite is soft and excellent in workability, and can accumulate many dislocations in crystal grains when processed. Further, when dislocations are applied, dislocations enter uniformly and the strength of the entire steel sheet can be increased uniformly, so that the microstructure of the steel is mainly ferrite or ferrite. Furthermore, when the remaining structure that is mainly ferrite and is not ferrite is pearlite and / or bainite, stress concentration increases at the interface between the ferrite and the remaining structure, and dislocation can be effectively imparted to the ferrite. In addition, since the pearlite and / or bainite structure is not as hard as the martensite structure, the pearlite and / or bainite structure itself is also deformed and the dislocation amount increases as a whole steel sheet, so that the strength of the steel during heat treatment is effectively increased.

【0032】本発明の成形後強度上昇熱処理性能とは、
塑性相当ひずみで2%以上のひずみが加わる成形加工を
施した後、200〜450℃(更に好ましくは220〜
370℃)の温度範囲での1分〜30分間の短時間保持
(冷間成形後の加熱または温間成形後の温度保持など)
において、加工成形前後の引張強さを比較した引張強さ
ΔTS(=加工後熱処理後TS−加工前TS)で60M
Pa以上(更に好ましくはΔTSで90Mp以上)強度
向上可能な、またはビッカース硬さΔHv(=加工後熱
処理後ΔHv−加工前ΔHv)で18以上(更に好まし
くはΔHvで27以上)熱処理後に上昇可能な熱処理を
示す。但し、この熱処理は窒化処理等のように成形体に
外部から硬化元素(例えば窒素等)を積極的に侵入せし
める必要がない。 本発明の加工成形後強度(引張強
さ)上昇熱処理素材としての、高強度合金化溶融亜鉛め
っき鋼板としては、熱延鋼板でも、冷延鋼板でもかまわ
ず、板厚も限定されるものではないが、0.4〜6mm
で特に有効である。
The post-molding strength increase heat treatment performance of the present invention is as follows.
After performing a forming process in which a strain of 2% or more is applied at a plastic equivalent strain, 200 to 450 ° C. (more preferably 220 to 450 ° C.)
370 ° C) for a short time of 1 to 30 minutes (heating after cold forming or temperature holding after warm forming)
, A tensile strength ΔTS (= TS after heat treatment after processing minus TS before processing) comparing the tensile strength before and after processing and forming is 60 M
The strength can be improved by Pa or more (more preferably, 90 Mp or more in ΔTS) or the Vickers hardness ΔHv (= ΔHv after heat treatment after processing−ΔHv before processing) can be increased by 18 or more (more preferably 27 or more in ΔHv) after heat treatment. Shows heat treatment. However, this heat treatment does not require the hardening element (for example, nitrogen or the like) to enter the molded body from the outside positively unlike the nitriding treatment. The hot-rolled steel sheet or cold-rolled steel sheet may be used as the high-strength alloyed hot-dip galvanized steel sheet as the post-processing strength (tensile strength) increase heat treatment material of the present invention, and the sheet thickness is not limited. But 0.4-6mm
Is particularly effective.

【0033】本発明鋼の製造に際しては、上記成分に調
整された溶鋼を連続鋳造法にて鋳片又は鋼片となすか造
塊法にて鋼片となし、高温のまま加熱することなく又は
加熱後に熱間圧延を施す。熱間圧延後、脱スケール処理
を施して、そのまま溶融亜鉛めっきを行いその後に加熱
合金化処理を施して高強度合金化溶融亜鉛めっき鋼板と
なす。熱間圧延や巻取り条件に関しては特段の制限はな
く、常法に従い実施する。
In the production of the steel of the present invention, the molten steel adjusted to the above-mentioned components is made into a slab or a slab by continuous casting to form a slab by the ingot ingot method, without heating at high temperature or After the heating, hot rolling is performed. After hot rolling, descaling is performed, hot-dip galvanizing is performed as it is, and then heat alloying is performed to form a high-strength galvannealed steel sheet. There are no particular restrictions on the conditions for hot rolling and winding, and the hot rolling and winding are carried out according to ordinary methods.

【0034】あるいは、熱間圧延後、脱スケール処理を
施し、冷間圧延して冷延鋼板とする。その後、焼鈍・溶
融亜鉛めっきを行い、その後に加熱合金化処理を施し高
強度合金化溶融亜鉛めっき鋼板とする。この際の焼鈍温
度は、650〜900℃とする。650℃未満では、再
結晶が完了せず、十分な伸びが得られないので650℃
を下限として焼鈍を施す。900℃超では、伸びを良く
する効果が飽和するだけでなく、粗大粒が発生しかえっ
て加工性を劣化させるので900℃を上限とする。加熱
合金化処理の加熱方式は特に限定あれるものではなく、
燃焼ガスによる直接加熱や、誘導加熱、直接通電加熱
等、を適宜選択出来る。
Alternatively, after hot rolling, a descaling treatment is performed and cold rolling is performed to obtain a cold-rolled steel sheet. Thereafter, annealing and hot-dip galvanizing are performed, and thereafter, a heat-alloying treatment is performed to obtain a high-strength galvannealed steel sheet. The annealing temperature at this time is 650 to 900 ° C. If the temperature is lower than 650 ° C, recrystallization is not completed and sufficient elongation cannot be obtained.
Is given as the lower limit. If the temperature exceeds 900 ° C., the effect of improving elongation is not only saturated, but also coarse grains are generated and workability is deteriorated. The heating method of the heating alloying treatment is not particularly limited,
Direct heating by combustion gas, induction heating, direct current heating, and the like can be appropriately selected.

【0035】高強度合金化溶融亜鉛めっき鋼板となした
後、加工性の向上や、加工後の外観のために調質圧延を
施した鋼板(ダル仕上げ鋼板、ブライト仕上げ鋼板、表
面に特定形状のパターンを転写された鋼板等)、表面に
防錆油、潤滑油などの油膜層を有する鋼板など、通常に
薄鋼板として用いられる表面の処理を施したいずれの鋼
板においても、本発明の成分範囲の鋼板であれば本発明
の効果を十分に享受することができる。
After being formed into a high-strength alloyed hot-dip galvanized steel sheet, a steel sheet (dull-finished steel sheet, bright-finished steel sheet, a specific shape Any steel sheet that has been subjected to surface treatment that is usually used as a thin steel sheet, such as a steel sheet having a pattern transferred thereon, a steel sheet having an oil film layer such as a rust-preventive oil or a lubricating oil on the surface, the component range of the present invention. With the steel plate described above, the effects of the present invention can be sufficiently enjoyed.

【0036】ついで、上記化学成分の鋼板を用いて加工
成形、例えば絞り加工などのプレス加工を行う。プレス
加工を施すにあたっては、鋼板に適当な量の転位を与え
るために、強度(引張強さ)や硬度が必要とされる部位
に、2%以上の塑性相当ひずみが加えられる成形を施
す。歪み量が少ない場合には、後熱処理を施しても本願
発明の強度上昇の効果が発揮できないので、プレス時に
加える歪み量は2%以上、好ましくは5%以上とする。
また、プレス成形法は、2%超の歪みを付与する方法で
あれば、特に規定するものではなく、絞り加工、張り出
し加工、曲げ加工、しごき加工、打ち抜き加工等を加え
ても何等差し支えない。図2にプレス成形時の歪み量と
プレス成形および熱処理後の引張り強さの上昇量(ΔT
S)の関係を示す。2%以上、好ましくは5%以上の歪
みで、引張強さの上昇量が著しいことが分かる。
Then, press forming such as drawing is performed by using the steel plate having the above chemical composition. In performing the press working, in order to impart an appropriate amount of dislocation to the steel sheet, a portion where a strength (tensile strength) or hardness is required is formed by applying a plastic equivalent strain of 2% or more. If the amount of strain is small, the effect of increasing the strength of the present invention cannot be exerted even if post-heating is performed, so the amount of strain applied at the time of pressing is set to 2% or more, preferably 5% or more.
The press forming method is not particularly limited as long as it gives a strain of more than 2%, and there is no problem even if drawing, stretching, bending, ironing, punching or the like is added. FIG. 2 shows the amount of strain during press forming and the amount of increase in tensile strength (ΔT) after press forming and heat treatment.
S) shows the relationship. It can be seen that the amount of increase in tensile strength is remarkable at a strain of 2% or more, preferably 5% or more.

【0037】プレス成形後、低温での熱処理を施す。こ
の際、熱処理温度が200℃未満では、本願発明の効果
が発現できないので200℃を下限とし、450℃を越
えると亜鉛めっき層の鉄・亜鉛合金化反応が進行して、
めっき層中の鉄濃度が異常に高まり、できあがった部品
の耐食性を損ねることになるので、450℃を上限とす
る。
After press molding, heat treatment is performed at a low temperature. At this time, if the heat treatment temperature is less than 200 ° C., the effect of the present invention cannot be exhibited, so the lower limit is 200 ° C., and if it exceeds 450 ° C., the iron-zinc alloying reaction of the galvanized layer proceeds,
Since the iron concentration in the plating layer abnormally increases and the corrosion resistance of the finished component is impaired, the upper limit is set to 450 ° C.

【0038】200〜450℃の温度に加熱する熱処理
方法としては、特に規定するものではなく、部分高周波
加熱、通電加熱、温浴熱処理、赤外線加熱、熱風加熱な
ど、少なくとも歪み付与部を200〜450℃の温度に
加熱する方法であれば、いずれでもかまわない。図3に
熱処理温度と熱処理後の引張り強さの上昇量(ΔTS)
の関係を示す。成形後ΔTSが更に剛性上好ましい90
MPa以上となる成形後熱処理としては、好ましくは温
度が220〜370℃の範囲である。
The heat treatment method for heating to a temperature of 200 to 450 ° C. is not particularly limited, and at least the strain imparting portion is heated to 200 to 450 ° C., such as partial high-frequency heating, electric heating, warm bath heat treatment, infrared heating, and hot air heating. Any method may be used as long as it is heated to the above temperature. Figure 3 shows the heat treatment temperature and the increase in tensile strength after heat treatment (ΔTS).
Shows the relationship. ΔTS after molding is even more preferable in terms of rigidity.
The temperature of the post-molding heat treatment of not less than MPa is preferably in the range of 220 to 370 ° C.

【0039】[0039]

【実施例】以下に、本発明を実施例に基づいて具体的に
説明する。表2に示す成分の鋼を溶製し、常法に従い連
続鋳造でスラブとした。そして、加熱炉中で1200℃
まで加熱し、880℃の仕上げ温度で、熱間圧延を行
い、550℃で巻取り、ついで、酸洗を施し熱延鋼板と
した。また、熱延鋼板の一部に、表2で示す圧延率が2
〜20%の調質圧延を施した。調質圧延を施さない(調
質圧延率が0%の)ものを含め被めっき鋼板が板厚0.
8〜5.1mmの熱延鋼板を製造した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below based on embodiments. Steels having the components shown in Table 2 were melted and continuously cast into slabs according to a conventional method. And 1200 ° C. in a heating furnace
And hot-rolled at a finishing temperature of 880 ° C., wound at 550 ° C., and then pickled to obtain a hot-rolled steel sheet. In addition, a part of the hot-rolled steel sheet had a rolling reduction of 2 shown in Table 2.
-20% temper rolling was performed. The steel plate to be plated has a thickness of 0%, including those not subjected to temper rolling (temper reduction ratio is 0%).
A hot-rolled steel sheet of 8 to 5.1 mm was produced.

【0040】更に、熱延鋼板の一部には、表2で示す圧
延率が63〜85%の冷間圧延を行い、板厚0.4〜
3.9mmの冷延鋼板を製造した。いづれの鋼板も溶融
亜鉛めっき前に、表2の温度で60秒の焼鈍後、830
℃×60秒の再結晶焼鈍を行い、冷延鋼板となした。
Further, a part of the hot-rolled steel sheet was subjected to cold rolling at a rolling ratio of 63 to 85% as shown in Table 2, and a sheet thickness of 0.4 to 85%.
A 3.9 mm cold rolled steel sheet was manufactured. Before the hot dip galvanizing, both steel sheets were annealed at the temperature shown in Table 2 for 60 seconds, and then 830
Recrystallization annealing at 60 ° C. × 60 seconds was performed to obtain a cold-rolled steel sheet.

【0041】得られた熱延鋼板、冷延鋼板をJIS5号
引張試験片に加工し、機械的特性値(熱処理なし)の評
価を行った。
The obtained hot-rolled steel sheet and cold-rolled steel sheet were processed into JIS No. 5 tensile test pieces, and their mechanical property values (without heat treatment) were evaluated.

【0042】また、別途、該鋼板をプレスにて成形し、
図4に示されるハット型のプレス成形品となした。この
とき、しわ押さえ圧を調整し、たて壁部Aに平均で5
%、平坦部Bに2%の塑性相当ひずみを加えた。該部品
を雰囲気が250℃に保たれた炉に10分間入れ、その
後空冷し、熱を加えた。該部品のたて壁部Aと平坦部B
から引張試験片を切り出し、引張強さを測定した。プレ
ス加工後の引張試験では、真の応力−歪み関係を測定す
ることになるので、公称応力での上昇代を見るために、
プレス加工前の板厚を試験片板厚とし換算して、公称応
力とした。
Separately, the steel sheet is formed by pressing,
This was a hat-shaped press-formed product shown in FIG. At this time, the wrinkle holding pressure was adjusted, and the vertical
%, And a plastic equivalent strain of 2% was applied to the flat portion B. The parts were placed in a furnace maintained at 250 ° C. for 10 minutes, then air cooled and heated. Vertical part A and vertical part B of the part
A tensile test piece was cut out from the sample and the tensile strength was measured. In the tensile test after press working, the true stress-strain relationship will be measured, so to see the rise in nominal stress,
The plate thickness before press working was converted to the test plate thickness, and the result was defined as the nominal stress.

【0043】以上の結果を表1に併記する。The above results are also shown in Table 1.

【0044】表1から明らかなように、本発明の製造方
法による鋼板の方が、熱処理硬化性に優れていることが
分かる。
As is evident from Table 1, it is understood that the steel sheet produced by the production method of the present invention has better heat treatment hardening properties.

【0045】[0045]

【表1】 [Table 1]

【0046】[0046]

【発明の効果】本発明によれば、加工成形前は強度レベ
ルが300Mpa級、400Mpa級、500Mpa
級、600Mpa級、あるいは700Mpa級で比較的
軟質の高強度鋼でプレス成形等の加工成形がしやすく、
そして、プレス成形等の成形加工後には比較的低温での
短時間熱処理を行うことで、引張強さ又は硬さが上昇し
部材や部品の変形強度を高めるか、あるいは剛性を高め
ることが可能な合金化溶融亜鉛めっき鋼板を製造するこ
とができる。
According to the present invention, the strength level is 300 Mpa class, 400 Mpa class, 500 Mpa before working and forming.
Grade, 600Mpa grade, or 700Mpa grade, relatively soft, high-strength steel that can be easily formed by press forming, etc.
Then, by performing a short-time heat treatment at a relatively low temperature after molding such as press molding, the tensile strength or the hardness increases, and the deformation strength of the member or component can be increased, or the rigidity can be increased. An alloyed hot-dip galvanized steel sheet can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明法と従来方法による鋼板の応力ー歪み曲
線を説明する模式図である。
FIG. 1 is a schematic diagram illustrating a stress-strain curve of a steel sheet according to a method of the present invention and a conventional method.

【図2】本発明法による鋼板にプレス成形で付与した歪
み量と熱処理硬化量の関係を示す図である。
FIG. 2 is a diagram showing the relationship between the amount of strain imparted by press forming to a steel sheet according to the method of the present invention and the amount of heat treatment hardening.

【図3】成形後熱処理温度と熱処理後の引張強さ上昇量
との関係を示す図である。
FIG. 3 is a diagram showing a relationship between a post-molding heat treatment temperature and an increase in tensile strength after heat treatment.

【図4】ハット型のプレス成形品の形状を示す模式図で
ある。
FIG. 4 is a schematic view showing the shape of a hat-shaped press-formed product.

【符号の説明】[Explanation of symbols]

A 壁部 B 平坦部 A Wall part B Flat part

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C22C 38/18 C22C 38/18 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI C22C 38/18 C22C 38/18

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重量%にてC :0.01〜0.08
%、Si:0.005〜1.0%、Mn:0.01〜
3.0%、P :0.001〜0.15%、S :0.
001〜0.02%、Al:0.001〜0.1%、N
:0.0002〜0.01%、およびW、Cr、Mo
の1種または2種以上を、合計量が0.05〜3.0%
含有し、残部が鉄および不可避的不純物からなる鋼を熱
間圧延した後、冷間圧延を施すことなく、溶融亜鉛めっ
きを行い、その後加熱合金化処理を施したことを特徴と
する成形後強度上昇熱処理性能を有する合金化溶融亜鉛
めっき鋼板の製造方法。
C: 0.01 to 0.08 by weight%
%, Si: 0.005 to 1.0%, Mn: 0.01 to
3.0%, P: 0.001 to 0.15%, S: 0.
001-0.02%, Al: 0.001-0.1%, N
: 0.0002 to 0.01%, and W, Cr, Mo
One or two or more of the total amount is 0.05 to 3.0%
Contained, the balance after hot rolling steel consisting of iron and unavoidable impurities, hot-dip galvanizing without cold rolling, and then subjected to heat alloying treatment, characterized by strength after forming A method for producing an alloyed hot-dip galvanized steel sheet having ascending heat treatment performance.
【請求項2】 鋼組成として、更に重量%で、Ti:
0.005〜0.1%、Nb:0.005〜0.1%、
V:0.005〜0.1%の1種または2種以上を含有
せしめたことを特徴とする請求項1に記載の成形後強度
上昇熱処理性能を有する合金化溶融亜鉛めっき鋼板の製
造方法。
2. The steel composition further comprises, by weight%, Ti:
0.005 to 0.1%, Nb: 0.005 to 0.1%,
The method for producing an alloyed hot-dip galvanized steel sheet having post-forming strength increasing heat treatment performance according to claim 1, wherein one or more of V: 0.005 to 0.1% is contained.
【請求項3】 重量%にてC :0.01〜0.08
%、Si:0.005〜1.0%、Mn:0.01〜
3.0%、P :0.001〜0.15%、S :0.
001〜0.02%、Al:0.001〜0.1%、N
:0.0002〜0.01%およびW、Cr、Moの
1種または2種以上を、合計量が0.05〜3.0%含
有し、残部が鉄および不可避的不純物からなる成分を有
する鋼を熱間圧延した後に、調質圧延または冷間圧延を
施し、次いで650〜900℃の温度で焼鈍を施し、そ
の後溶融亜鉛めっきを行い、加熱合金化処理を施したこ
とを特徴とする成形後強度上昇熱処理性能を有する合金
化溶融亜鉛めっき鋼板の製造方法。
3. C: 0.01 to 0.08 by weight%
%, Si: 0.005 to 1.0%, Mn: 0.01 to
3.0%, P: 0.001 to 0.15%, S: 0.
001-0.02%, Al: 0.001-0.1%, N
: 0.0002 to 0.01% and one or more of W, Cr and Mo in a total amount of 0.05 to 3.0%, with the balance having iron and unavoidable impurities Forming characterized by subjecting steel to hot rolling, temper rolling or cold rolling, then annealing at a temperature of 650 to 900 ° C, hot-dip galvanizing, and heat-alloying. A method for producing an alloyed hot-dip galvanized steel sheet having post-strength heat treatment performance.
【請求項4】 鋼組成として、更に重量%で、Ti:
0.005〜0.1%、Nb:0.005〜0.1%、
V :0.005〜0.1%の1種または2種以上を含
有せしめたことを特徴とする請求項3に記載の成形後強
度上昇熱処理性能を有する合金化溶融亜鉛めっき鋼板の
製造方法。
4. The steel composition further comprises, by weight%, Ti:
0.005 to 0.1%, Nb: 0.005 to 0.1%,
The method for producing an alloyed hot-dip galvanized steel sheet having a post-forming strength increase heat treatment performance according to claim 3, wherein one or more of V: 0.005 to 0.1% is contained.
JP13163597A 1997-05-07 1997-05-07 Method for producing alloyed hot-dip galvanized steel sheet with increased heat treatment performance after forming Expired - Fee Related JP4299377B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13163597A JP4299377B2 (en) 1997-05-07 1997-05-07 Method for producing alloyed hot-dip galvanized steel sheet with increased heat treatment performance after forming

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13163597A JP4299377B2 (en) 1997-05-07 1997-05-07 Method for producing alloyed hot-dip galvanized steel sheet with increased heat treatment performance after forming

Publications (2)

Publication Number Publication Date
JPH10310824A true JPH10310824A (en) 1998-11-24
JP4299377B2 JP4299377B2 (en) 2009-07-22

Family

ID=15062669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13163597A Expired - Fee Related JP4299377B2 (en) 1997-05-07 1997-05-07 Method for producing alloyed hot-dip galvanized steel sheet with increased heat treatment performance after forming

Country Status (1)

Country Link
JP (1) JP4299377B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003013177A (en) * 2001-07-03 2003-01-15 Kawasaki Steel Corp Hot-dip galvanized sheet steel with high ductility superior in press formability and strain aging hardening characteristics, and manufacturing method thereor
US6818074B2 (en) 2001-06-06 2004-11-16 Jfe Steel Corporation High-ductility steel sheet excellent in press formability and strain age hardenability, and method for manufacturing the same
KR100590723B1 (en) 2004-05-03 2006-06-19 주식회사 포스코 A continuous hot-dip galvanizing method for manufacturing a high strength steels
KR100711445B1 (en) 2005-12-19 2007-04-24 주식회사 포스코 A method for manu- facturing alloyed hot dip galvanized steel sheet for hot press forming having excellent plating adhesion and impact property, the method for manufacturing hot press parts made of it
JP2009174021A (en) * 2008-01-25 2009-08-06 Sumitomo Metal Ind Ltd High strength galvannealed steel sheet
JP2009249737A (en) * 2008-04-11 2009-10-29 Nippon Steel Corp Steel sheet for hot dip galvanizing and hot dip galvannealed steel sheet
JP2011017089A (en) * 2000-04-17 2011-01-27 Jfe Steel Corp Hot rolled steel plate excellent in strain aging hardening characteristic, and its manufacturing method
KR101149193B1 (en) 2009-04-27 2012-05-24 현대제철 주식회사 Steel sheet having excellent formability and galvanizing property, and method for producing the same
US8828154B2 (en) 2005-03-31 2014-09-09 Jfe Steel Corporation Hot-rolled steel sheet, method for making the same, and worked body of hot-rolled steel sheet

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011017089A (en) * 2000-04-17 2011-01-27 Jfe Steel Corp Hot rolled steel plate excellent in strain aging hardening characteristic, and its manufacturing method
US6818074B2 (en) 2001-06-06 2004-11-16 Jfe Steel Corporation High-ductility steel sheet excellent in press formability and strain age hardenability, and method for manufacturing the same
JP2003013177A (en) * 2001-07-03 2003-01-15 Kawasaki Steel Corp Hot-dip galvanized sheet steel with high ductility superior in press formability and strain aging hardening characteristics, and manufacturing method thereor
KR100590723B1 (en) 2004-05-03 2006-06-19 주식회사 포스코 A continuous hot-dip galvanizing method for manufacturing a high strength steels
US8828154B2 (en) 2005-03-31 2014-09-09 Jfe Steel Corporation Hot-rolled steel sheet, method for making the same, and worked body of hot-rolled steel sheet
KR100711445B1 (en) 2005-12-19 2007-04-24 주식회사 포스코 A method for manu- facturing alloyed hot dip galvanized steel sheet for hot press forming having excellent plating adhesion and impact property, the method for manufacturing hot press parts made of it
JP2009174021A (en) * 2008-01-25 2009-08-06 Sumitomo Metal Ind Ltd High strength galvannealed steel sheet
JP2009249737A (en) * 2008-04-11 2009-10-29 Nippon Steel Corp Steel sheet for hot dip galvanizing and hot dip galvannealed steel sheet
KR101149193B1 (en) 2009-04-27 2012-05-24 현대제철 주식회사 Steel sheet having excellent formability and galvanizing property, and method for producing the same

Also Published As

Publication number Publication date
JP4299377B2 (en) 2009-07-22

Similar Documents

Publication Publication Date Title
JP6475861B2 (en) Steel plates used for hot stamping, hot stamping process and hot stamping components
JP2005126733A (en) Steel sheet for hot press having excellent hot workability, and automotive member
WO1994000615A1 (en) Cold-rolled steel plate having excellent baking hardenability, non-cold-ageing characteristics and moldability, and molten zinc-plated cold-rolled steel plate and method of manufacturing the same
JP2000234153A (en) Steel sheet excellent in heat treatment hardenability, and manufacture of high strength press formed body using the steel sheet
JPH0123530B2 (en)
JP4299377B2 (en) Method for producing alloyed hot-dip galvanized steel sheet with increased heat treatment performance after forming
JP3263143B2 (en) Bake hardening type high strength alloyed hot-dip galvanized steel sheet excellent in workability and method for producing the same
JP3447233B2 (en) Method for producing thin steel sheet and high-strength pressed body excellent in heat-hardening ability
JP2003268491A (en) High-strength steel sheet for working member, production method thereof, and production method for working member having working plane excellent in abrasion resistance
JP3840901B2 (en) Cold-rolled steel sheet, plated steel sheet, and method for producing cold-rolled steel sheet having excellent strength increasing ability by heat treatment after forming
JP2761096B2 (en) Manufacturing method of high ductility and high strength alloyed hot-dip galvanized steel sheet
KR102487306B1 (en) Ultra high strength cold rolled steel sheet having excellent spot weldability and formability, ultra high strength galvanized steel sheet and method of manufacturing the same
JP3822711B2 (en) Alloyed hot-dip galvanized steel sheet
JP6780804B1 (en) High-strength steel sheet and its manufacturing method
JP3911972B2 (en) Manufacturing method of high strength hot-dip galvanized steel sheet
JPH0321611B2 (en)
JPH04346625A (en) Manufacture of baking hardening type cold rolled steel sheet excellent in aging resistance and press formability
JP2002241895A (en) Thin steel sheet having excellent ductility and strength stability after heat treatment
JP2002266032A (en) Galvanized steel sheet and production method therefor
KR20050095776A (en) Method of producing ultra-high-strength cold-and hot-rolled steel sheets and plate thus obtained
JPH02145747A (en) Hot rolled steel sheet for deep drawing and its manufacture
JP4038303B2 (en) Manufacturing method of formed body using thin steel plate
JP4501290B2 (en) Cold-rolled steel sheet, plated steel sheet excellent in heat-treating ability to increase strength after forming, and manufacturing method thereof
JP2005146354A (en) Reinforcing parts for collision with high energy absorption when bend-deformed at high speed
JP4186665B2 (en) Method for producing high-strength hot-dip galvanized steel sheet

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061031

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061226

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070817

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071001

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090109

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090417

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140424

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees