JP4186665B2 - Method for producing high-strength hot-dip galvanized steel sheet - Google Patents

Method for producing high-strength hot-dip galvanized steel sheet Download PDF

Info

Publication number
JP4186665B2
JP4186665B2 JP2003080455A JP2003080455A JP4186665B2 JP 4186665 B2 JP4186665 B2 JP 4186665B2 JP 2003080455 A JP2003080455 A JP 2003080455A JP 2003080455 A JP2003080455 A JP 2003080455A JP 4186665 B2 JP4186665 B2 JP 4186665B2
Authority
JP
Japan
Prior art keywords
steel
steel sheet
strength
rolling
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003080455A
Other languages
Japanese (ja)
Other versions
JP2004285436A (en
Inventor
総人 北野
広志 松田
康伸 長滝
俊明 占部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003080455A priority Critical patent/JP4186665B2/en
Publication of JP2004285436A publication Critical patent/JP2004285436A/en
Application granted granted Critical
Publication of JP4186665B2 publication Critical patent/JP4186665B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、溶融亜鉛めっき鋼板の製造方法に関し、特に、ピラー、ルーフレールなどの構造部品に最適な強度780MPa以上で、プレス成形後の製品形状に優れた高強度溶融亜鉛めっき鋼板の製造方法に関する。
【0002】
【従来の技術】
地球環境保護を目的に、自動車、化学メーカを始めとする各種産業界で、CO2ガス低減への取組みが進められ,自動車会社においては、自動車から排出されるCO2ガスを減らすため、ガソリン車の燃費を車体の軽量化により向上させることが従来より検討されている。
【0003】
車体の軽量化では、部品点数の減少とともに、鋼板を薄肉化することが有効であるが、後者の場合では、車体剛性の劣化が懸念されるため、より高強度の鋼板を使用しなければならず、一方、衝突安全性能(自動車が走行中に物体と衝突した際、衝撃に対する部材のエネルギー吸収能を高め、乗員への衝撃負荷を低減し、乗員の生命の安全性を高める)の観点からもピラー、ルーフレールなどへの高強度鋼板の適用が必要とされることもあり、高強度自動車用鋼板の開発が急務とされている。
【0004】
高強度自動車用鋼板に必要とされる特性として、張出し性、伸びフランジ性などのプレス成形性の向上とともに、プレス成形作業におけるスプリングバックや壁そり等の形状不良(プレス金型とプレス成形品との形状のずれ)を低減させることも重要で、スプリングバック量を見込んだ金型設計の試みとともに、降伏比を低くした鋼板等が開発されてきている。
【0005】
特開昭55−100958号公報、特開昭55−100935号公報は形状性に優れた高張力亜鉛めっき鋼板の製造技術に関するもので、前者には、引張強度が56.0〜62.8kgf/mm2(548.8〜615.4MPa)、降伏比が0.47〜0.58の鋼の製造技術が、後者には、引張強度が56.3〜70.5kgf/mm2(551.7〜690.9MPa)で、降伏比が0.51〜0.56の鋼の製造技術がそれぞれ開示されている。
【0006】
【発明が解決しようとする課題】
しかしながら、スプリングバックを低減するため、降伏強度を低下させプレス成形時の弾性変形を小さくした場合、鋼板の引張り強さも低下することになり、鋼板の高強度化は制約され、上記の先行技術においても、得られる鋼板強度は780MPa未満である。
【0007】
そのため、高強度鋼板の場合は、プレス成形技術の観点から、プレス成形性を向上させることが重要で、スプリングバック量を見込んだ金型設計において、所期の目的が得られるよう、鋼板強度の上昇につれて、機械的な均一性はもとより、素材鋼板自体に板反りなどのない優れた形状性が求められる。
【0008】
そこで、本発明は、引張強度780MPa以上の高強度と優れた形状性の両者を備え、プレス成形性に優れた高強度溶融亜鉛めっき鋼板の製造技術を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明者等は、引張強度780MPa以上の高強度が得られる成分組成の鋼を対象に、連続溶融亜鉛めっき処理後において、優れた形状性が得られる鋼板の製造方法について、鋭意検討を行い、鋼板形状がマルテンサイト、ベイナイト生成に影響を及ぼすC量、Cr量、V量、Mn量に影響されること、および、連続溶融亜鉛めっき処理後の調質圧延の影響が大きく、これら元素量に応じた適切な調質圧延中の張力により、鋼板の形状性が改善されることを見出した。本発明はこのような知見を基に更に検討を加えてなされたものであり、すなわち、本発明は、
1. mass(%)で、C:0.03〜0.15%、Si≦0.7%、Mn:2.0〜3.0%、P≦0.05%、S≦0.01%、sol.Al:0.01〜0.1%、N≦0.005%、Cr:0.01〜0.5%、V:0.004〜0.5%、残部Feおよび不可避的不純物からなる鋼を連続溶融亜鉛めっき処理後、調質圧延時の張力T(kgf/mm2)を下記の式を満たすように付与することを特徴とする引張強度が780MPa以上の高強度溶融亜鉛めっき鋼板の製造方法である。
【0010】
2≦T≦80(C+(Cr+V)/10+Mn/20)2+10
但し、C,Cr,V,Mnはmass%とする。
【0011】
2. 鋼組成として、更に、Mo:0.05〜0.3%、Nb:0.005〜0.1%、Ti:0.005〜0.1%、B:0.0002〜0.002%の一種又は二種以上を含有することを特徴とする1記載の高強度溶融亜鉛めっき鋼板の製造方法である。
【0012】
【発明の実施の形態】
本発明における鋼の成分組成、製造条件について、以下に詳細に説明する。
【0013】
1.成分組成

Cは、鋼の焼入れ強化に有効で、780MPa以上の引張強度を得るため、0.03%以上添加する。一方、0.15%を超えると、マルテンサイト、ベイナイト等硬質の組織が、圧延方向、板幅方向に不均一に形成され、圧延方向における耳波や板幅方向での反りなどの形状不良が顕著となるため、0.03〜0.15%とする。
【0014】
Si
Siは、鋼を強化するために0.7%以下の範囲内で添加してもよい。0.7%を超えると、溶融亜鉛めっきの密着性が低下するため、Siを添加する場合には0.7%以下とする。
【0015】
Mn
Mnは、鋼の焼入れ強化に有効で、780MPa以上の引張強度を得るため、2.0%以上添加する。一方、3.0%を超えると、溶鋼をスラブに鋳造する際、スラブにMnが偏析し、圧延後の焼鈍時にマルテンサイト、ベイナイト等の硬質相が、フェライト相と共に板厚方向、板幅方向に不均一に形成され、鋼板形状を著しく劣化させるため、2.0〜3.0%とする。
【0016】

Pは、鋼の強化に有効なため、本発明では0.05%以下含有させることができる。0.05%を超えると、熱間圧延時に形成される表面酸化層(スケール)の剥離が過剰となり、熱延後の表面性状および、溶融亜鉛めっき後の表面性状も劣化する。
【0017】
また、溶融亜鉛めっき後のめっき層の合金化処理において、めっき層が均一に合金化し難く、めっきの密着性が劣化する。そのため、Pは0.05%以下とする。
【0018】

Sは、不純物であり、鋼中に過剰に存在すると、スラブ加熱時にオーステナイトの結晶粒界に偏析し、熱間圧延の際、鋼板表層部から赤熱脆性が起こり易くなるため、0.01%以下とする。
【0019】
sol.Al
Alは、鋼の脱酸のため、0.01%以上添加する。一方、0.1%を超えると溶融亜鉛めっき後の表面外観が著しく劣化するため、0.01〜0.1%とする。
【0020】

Nは、鋼中に過剰に存在すると、溶融亜鉛めっき後の鋼板の延性が劣化するため、0.005%以下とする。
【0021】
Cr
Crは、鋼を焼入れ強化するため、0.01%以上添加する。一方、0.5%を超えると、この効果が飽和するとともに、焼鈍中にCr系酸化物が鋼板表面に形成され溶融亜鉛めっきの密着性を劣化させるため、0.01〜0.5%とする。
【0022】

Vは、鋼を焼入れ強化するため、0.004%以上添加する。一方、0.5%を超えると、V系窒化物が過剰に生成し、焼鈍中にオーステナイトの結晶粒径が不均一となるため、マルテンサイトが板幅、圧延方向で不均一となり、鋼板形状が著しく劣化するため、0.004〜0.5%とする。
【0023】
以上が、本発明の基本成分組成であるが、所望する特性に応じて、Mo,Nb,Ti,Bの一種または二種以上を添加することができる。
【0024】
Mo
Moは、鋼の強化に有効で、0.05%以上添加するが、0.3%を超えるとその効果が飽和するため、0.05〜0.3%とする。
【0025】
Nb
Nbは、鋼中でCと微細炭化物を形成したり、固溶し、焼鈍段階でオーステナイトを微細化することにより、マルテンサイト、ベイナイトの硬質な組織を細粒化し、均一な組織で形状に優れた鋼板とする。
【0026】
このような効果を得るため、0.005%以上添加するが、0.1%を超えると、焼鈍時のフェライト、オーステナイトの再結晶が抑制され、加工組織が残留しやすくなり、延性が著しく劣化するため、0.005〜0.1%とする。
【0027】
Ti
Tiは、微細炭化物を形成し、焼鈍中のオーステナイト粒の細粒化により、低温変態生成相を均一微細とし、鋼板形状を向上させる。
【0028】
このような効果を得るため、0.005%以上添加するが、0.1%を超えると溶融亜鉛めっき後の表面外観が著しく劣化するため、0.005〜0.1%とする。
【0029】

Bは、鋼の焼入れ性を向上させ、焼鈍中にオーステナイトの結晶粒界に偏析し、粒成長を抑制し、微細なマルテンサイト、ベイナイトととし、鋼板形状を向上させる。
【0030】
このような効果を得るため、0.0002%以上添加するが、0.002%を超えるとその効果が飽和するため、0.0002〜0.002%とする。
【0031】
また、上記鋼成分以外の化学成分については、特に過剰に添加しなければ本発明の効果を損なうことはない。本発明において、残部実質的に鉄とは、その他の合金元素あるいは不可避的不純物についても本発明の目的とする特性に悪影響を及ぼさない限り、含有しても良いことを意味する。
【0032】
2.製造条件
連続溶融亜鉛めっき処理後、調質圧延時の張力T(kgf/mm2
本発明では、上述した成分組成の熱延鋼板を酸洗後そのまま、あるいは酸洗後さらに冷間圧延を施し、連続溶融亜鉛めっき処理後、調質圧延時の張力T(kgf/mm2)を下記の式を満たすように付与する。
【0033】
2≦T≦80(C+(Cr+V)/10+Mn/20)2+10
但し、C,Cr,V,Mnはmass%とする。
【0034】
張力Tが不適切な場合、板幅のエッジ付近に圧延方向に沿って波状の凹凸(耳波)や、板幅方向に板反りなどの形状不良を生じる。
【0035】
張力Tが、2kgf/mm2未満の場合、板幅方向の板反りが十分矯正されず、13〜20mmと大きい。
【0036】
一方、張力Tが、80(C+(Cr+V)/10+Mn/20)2+10より求まる値を超える場合、板幅方向のエッジ近傍で耳波が9〜13mmと大きく、鋼板形状が劣化するため、2≦T≦80(C+(Cr+V)/10+Mn/20)2+10とする。
【0037】
鋼板形状に及ぼす張力Tと母材成分中のC,Cr,V,Mn量の影響を調査した結果を図1に示す。本発明範囲内の成分組成の冷延鋼板(板厚1.4mm,板幅1000mm)を連続溶融亜鉛めっきラインにて焼鈍(820℃で180sec保持)、亜鉛めっきし、室温まで冷却後、鋼板に付与する張力Tを1〜30kgf/mm2に変化させ、伸長率1.0%で調質圧延を行い、得られた亜鉛めっき鋼板の板幅方向の反り量(mm)と圧延方向の耳波(mm)を測定した。
【0038】
板幅方向の反りは、圧延方向に2000mmの範囲内で無作為に選択した5点の測定点において、板幅方向での板の反り量を測定し、平均値を求めた。
【0039】
耳波は、圧延方向に2000mmの範囲内における板幅エッジ部での凹凸の最大値とした。
【0040】
尚、得られた鋼板の引張強度は810〜1120MPaであった。調質圧延時における張力Tとは、調質圧延開始時に、設定した張力であればよく、圧延中その値を制御する必要はない。
【0041】
張力Tが、2≦T≦80(C+(Cr+V)/10+Mn/20)2+10の範囲で板幅方向の反り量が0〜12mm,圧延方向の耳波が0〜8mmの鋼板形状が得られている。
【0042】
圧延方向の耳波が生じる原因は、板幅エッジ部は板幅センター部より冷えやすいため、焼鈍中にフェライトが生成しやすく、張力により塑性変形し、エッジ部の伸びが大きくなったためであると考えられる。一方板幅方向の反りはマルテンサイト、ベイナイト等の硬質相の生成に伴う板幅方向の縮み応力によると考えられる。
【0043】
尚、調質圧延における伸長率は良好な板形状を得るために、0.1〜1.0%とするのが望ましい。
【0044】
本発明の実施において、鋼の溶製法、造塊法は特に指定せず、溶製法は転炉法、電気炉法のいずれでもよく、造塊法は連続鋳造法、分塊法のいずれでもよい。
【0045】
熱間圧延は常法に従い行えばよい。スラブを鋳造後、直ちに、または再加熱後に、粗圧延、仕上圧延、巻き取りを行う。仕上温度は、不均一な組織とならないようにAr3以上、巻取温度は700℃以下とすることが望ましい。
【0046】
熱延鋼板を、酸洗後、冷間圧延し、連続溶融亜鉛めっき処理を施す。連続溶融亜鉛めっき処理における加熱温度は、フェライトを再結晶させ、マルテンサイト、ベイナイトを生成させるため、750℃以上とし、一方、粗大組織となり、板厚方向で不均一組織となることを防止するため、950℃以下とすることが望ましい。
【0047】
本発明では溶融亜鉛めっき処理後、電気めっきを行なうことができる。
【0048】
【実施例】
(実施例1)
種々の成分組成の鋼を用いて本発明の効果を確認した。表1に供試鋼の化学成分を示す。鋼1〜6は、本発明鋼で、鋼7〜12は比較鋼である。それぞれの鋼を実験室にて溶製後、鋳造し、板厚60mmのスラブを製造した。但し、鋼6は、電気炉にて溶製した。該スラブを板厚30mmに分塊圧延し、大気炉で1270℃×1.5hrの加熱処理し、熱間圧延に供した。仕上圧延を860℃で終了し、その後600℃×1hrの巻取り相当の熱処理を施し、板厚3.5mmの熱延板とした。酸洗後、板厚1.4mmまで冷間圧延し、820℃で180sec均熱し、平均冷却速度8℃/secで冷却し、460℃の溶融亜鉛めっき浴中に浸漬した後、550℃で亜鉛めっき層の合金化処理を施した。その後、5kgf/mm2の張力を付加しながら、伸長率1.0%で調質圧延を施した。得られた亜鉛めっき鋼板について、引張試験、表面性状及びめっき表面外観評価を行った。
【0049】
引張試験はJISZ2241に準拠した方法により、引張強度(TS)が780MPa以上を特性良好(表中○で表示)、780MPa未満の場合を強度不足(表中×で表示)とした。
【0050】
鋼板の表面形状は、圧延方向で長さ2000mmの範囲において、板幅エッジ部での凹凸の最大値(耳波形状の最大値)を測定するとともに、長さ2000mmの範囲で無作為に選択した長手方向の5点において、板幅方向での板反り量を測定し、平均値により評価した。耳波が9〜13mmまたは板反り量が13〜20mmの場合を特性劣化(表中×で表示)とし、耳波が5〜8mmを許容範囲、0〜4mmを特性良好とした。板反り量は6〜12mmを許容範囲とし、0〜5mmを特性良好とした。めっき表面外観は、長さ2000mmの範囲を目視で検査し、不めっきなどの欠陥が観察された場合を表面劣化(×)と判定した。
【0051】
表2にこれらの評価結果を示す。本発明例No.1〜6(鋼1〜6)はいずれも本発明成分範囲内で、TSが795〜1100MPa,板幅方向の反りは1〜3mm、圧延方向の耳波は2〜4mmといずれも良好であった。
【0052】
また、めっき表面外観はいずれも良好である。
【0053】
一方、比較例7〜12は、化学成分が本発明範囲外で、強度、表面形状、めっき表面外観に劣っている。
【0054】
比較例7は、TSが720MPaと強度が低く、比較例8、10は強度、鋼板形状は良好であるが、めっき表面に不めっきが認められ、表面外観に劣る。
【0055】
比較例9、11、12は、TSが1010MPa以上と高いが、板幅方向の反り、圧延方向の耳波が共に大きく鋼板形状におとる。
【0056】
(実施例2)
鋼板形状に及ぼす調質圧延時の張力の影響を、鋼6を用いて調査した。上述したように鋼6は電気炉により溶製した。板厚220mmのスラブを製造し、1260℃で1hr加熱後、仕上圧延温度870℃、巻き取り温度550℃で熱間圧延し、板厚3.0mmの熱延材を製造した。酸洗後、冷間圧延で板厚1.4mmとした後、840℃で加熱後、5〜10℃/sの平均速度で冷却し、460℃で溶融亜鉛めっき浴中に浸漬した。550℃でめっき層の合金化処理を行い、冷却後、1〜20kgf/mm2の種々の張力で、伸長率1.0%で調質圧延し、コイルに巻き取った。
【0057】
調質圧延時に、張力を変化させた位置に対応した位置の表面形状、めっき表面外観を調査し、これらの位置から引張試験片を採取した。引張試験、鋼板形状の評価は、実施例1に準じた。
【0058】
表3に評価結果を示す。鋼板22〜25はいずれも張力が、本発明範囲内で、TSが810〜830MPaと高く、板幅方向の反り量、板長手方向の耳波は小さく、めっき表面外観は良好であった。
【0059】
一方、鋼板21、26、27は、鋼板張力が本発明範囲外で、板幅方向の反り量、板長手方向の耳波の何れかが大きく、鋼板形状に劣っている。
【0060】
【表1】

Figure 0004186665
【0061】
【表2】
Figure 0004186665
【0062】
【表3】
Figure 0004186665
【0063】
【発明の効果】
本発明によれば、プレス成形後に優れた製品形状が得られる反りや耳波の小さい優れた鋼板形状で引張強度780MPa以上の高強度鋼板が、鋼の成分組成と連続溶融亜鉛めっき工程での調質圧延の張力の調整により得られるため、鋼板の形状矯正のため、ストレッチャレベラなど用いる必要がなく、産業上極めて有用である。
【図面の簡単な説明】
【図1】鋼板形状(板幅方向の反り、圧延方向の耳波)に及ぼす張力Tと成分組成(C,Cr,V,Mn)の影響を示す図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a hot dip galvanized steel sheet, and more particularly to a method for producing a high strength hot dip galvanized steel sheet having an optimum strength of 780 MPa or more for structural parts such as pillars and roof rails and excellent in product shape after press forming.
[0002]
[Prior art]
For the purpose of protecting the global environment, various industries, including automobile and chemical manufacturers, are making efforts to reduce CO2 gas. In order to reduce CO2 gas emitted from automobiles, automobile companies reduce the fuel consumption of gasoline cars. Conventionally, it has been studied to improve the vehicle body by reducing the weight of the vehicle body.
[0003]
In reducing the weight of the car body, it is effective to reduce the number of parts and reduce the thickness of the steel sheet. However, in the latter case, there is a concern about deterioration of the car body rigidity, so a higher-strength steel sheet must be used. On the other hand, from the viewpoint of collision safety performance (when a car collides with an object while traveling, the energy absorption capacity of the member against impact is increased, the impact load on the occupant is reduced, and the safety of the occupant's life is increased) However, the application of high-strength steel sheets to pillars, roof rails, etc. is sometimes required, and the development of high-strength automotive steel sheets is urgently needed.
[0004]
Properties required for high-strength automotive steel sheets include improved press formability such as stretchability and stretch flangeability, as well as shape defects such as springback and wall warpage in press forming operations (press molds and press molded products) It is also important to reduce the deviation of the shape of the steel sheet, and steel plates and the like having a low yield ratio have been developed along with attempts to design a mold that allows for the amount of spring back.
[0005]
Japanese Patent Application Laid-Open Nos. 55-100958 and 55-100535 relate to a technique for producing a high-tensile galvanized steel sheet having excellent shape, and the former has a tensile strength of 56.0 to 62.8 kgf / The manufacturing technology for steel with a mm 2 (548.8 to 615.4 MPa) and a yield ratio of 0.47 to 0.58, the latter with a tensile strength of 56.3 to 70.5 kgf / mm 2 (551.7). ˜690.9 MPa), and steel manufacturing techniques with a yield ratio of 0.51 to 0.56 are disclosed.
[0006]
[Problems to be solved by the invention]
However, in order to reduce the springback, when the yield strength is reduced and the elastic deformation at the time of press forming is reduced, the tensile strength of the steel plate is also reduced, and the increase in strength of the steel plate is restricted, and in the above prior art Also, the steel sheet strength obtained is less than 780 MPa.
[0007]
Therefore, in the case of high-strength steel sheets, it is important to improve press formability from the viewpoint of press forming technology. As it rises, not only mechanical uniformity but also excellent shape with no warpage is required in the raw steel plate itself.
[0008]
Therefore, an object of the present invention is to provide a technique for producing a high-strength hot-dip galvanized steel sheet that has both high strength of a tensile strength of 780 MPa or more and excellent shapeability and is excellent in press formability.
[0009]
[Means for Solving the Problems]
The inventors of the present invention have made extensive studies on a method for producing a steel sheet that has excellent shape after continuous hot-dip galvanizing treatment for steel having a component composition that provides a high strength of 780 MPa or higher. The steel plate shape is affected by the amount of C, Cr, V, Mn, which affects martensite and bainite formation, and the effect of temper rolling after continuous hot dip galvanizing is large. It was found that the shape of the steel sheet was improved by the appropriate tension during temper rolling. The present invention has been made on the basis of such findings, and the present invention has been made.
1. In mass (%), C: 0.03 to 0.15%, Si ≦ 0.7%, Mn: 2.0 to 3.0%, P ≦ 0.05%, S ≦ 0.01%, sol . Al: 0.01~0.1%, N ≦ 0.005 %, Cr: 0.01~0.5%, V: 0.004~0.5%, the steel consisting of the remaining portion Fe and unavoidable impurities After the continuous hot dip galvanizing treatment, a tensile strength T (kgf / mm 2 ) at the time of temper rolling is applied so as to satisfy the following formula: manufacture of high strength hot dip galvanized steel sheet having a tensile strength of 780 MPa or more Is the method.
[0010]
2 ≦ T ≦ 80 (C + (Cr + V) / 10 + Mn / 20) 2 +10
However, C, Cr, V, and Mn are set to mass%.
[0011]
2. As the steel composition, Mo: 0.05-0.3%, Nb: 0.005-0.1%, Ti: 0.005-0.1%, B: 0.0002-0.002% It is a manufacturing method of the high intensity | strength hot-dip galvanized steel plate of 1 characterized by including 1 type, or 2 or more types.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The component composition and production conditions of steel in the present invention will be described in detail below.
[0013]
1. Ingredient composition C
C is effective for strengthening the quenching of steel and is added by 0.03% or more in order to obtain a tensile strength of 780 MPa or more. On the other hand, if it exceeds 0.15%, a hard structure such as martensite and bainite is formed non-uniformly in the rolling direction and the sheet width direction, and shape defects such as ear waves in the rolling direction and warpage in the sheet width direction occur. Since it becomes remarkable, it is made 0.03 to 0.15%.
[0014]
Si
Si may be added within a range of 0.7% or less in order to strengthen the steel. If it exceeds 0.7%, the adhesiveness of hot dip galvanizing is lowered. Therefore, when Si is added, the content is made 0.7% or less.
[0015]
Mn
Mn is effective for strengthening the quenching of steel and is added in an amount of 2.0% or more in order to obtain a tensile strength of 780 MPa or more. On the other hand, if it exceeds 3.0%, when casting molten steel into a slab, Mn segregates in the slab, and hard phases such as martensite and bainite, together with the ferrite phase, in the plate thickness direction and plate width direction during annealing after rolling. Therefore, the steel plate shape is remarkably deteriorated, so the content is made 2.0 to 3.0%.
[0016]
P
Since P is effective for strengthening steel, 0.05% or less can be contained in the present invention. If it exceeds 0.05%, peeling of the surface oxide layer (scale) formed during hot rolling becomes excessive, and the surface properties after hot rolling and the surface properties after hot dip galvanizing also deteriorate.
[0017]
Further, in the alloying treatment of the plated layer after hot dip galvanizing, the plated layer is difficult to be alloyed uniformly, and the adhesion of the plating is deteriorated. Therefore, P is set to 0.05% or less.
[0018]
S
S is an impurity and, if present excessively in the steel, segregates at the grain boundaries of austenite during slab heating, and red hot brittleness is likely to occur from the surface portion of the steel sheet during hot rolling. And
[0019]
sol. Al
Al is added in an amount of 0.01% or more for deoxidation of steel. On the other hand, if it exceeds 0.1%, the surface appearance after hot dip galvanization is remarkably deteriorated, so 0.01 to 0.1%.
[0020]
N
If N is excessively present in the steel, the ductility of the steel sheet after hot dip galvanization deteriorates, so 0.005% or less.
[0021]
Cr
Cr is added in an amount of 0.01% or more in order to strengthen the steel by hardening. On the other hand, if it exceeds 0.5%, this effect is saturated, and Cr-based oxide is formed on the surface of the steel sheet during annealing to deteriorate the adhesion of hot dip galvanizing. To do.
[0022]
V
V is added by 0.004% or more in order to strengthen the steel by hardening. On the other hand, if it exceeds 0.5%, V-based nitride is excessively formed, and the grain size of austenite becomes non-uniform during annealing, so the martensite becomes non-uniform in the plate width and rolling direction, and the steel plate shape Is significantly deteriorated, so 0.004 to 0.5% is set.
[0023]
The above is the basic component composition of the present invention, and one or more of Mo, Nb, Ti, and B can be added depending on the desired properties.
[0024]
Mo
Mo is effective for strengthening steel, and is added at 0.05% or more. However, if it exceeds 0.3%, the effect is saturated, so 0.05 to 0.3%.
[0025]
Nb
Nb forms fine carbides with C in steel, dissolves, and refines austenite in the annealing stage to refine the hard structure of martensite and bainite and has a uniform structure and excellent shape. Steel plate.
[0026]
In order to obtain such an effect, 0.005% or more is added. However, if it exceeds 0.1%, recrystallization of ferrite and austenite at the time of annealing is suppressed, the work structure tends to remain, and the ductility is remarkably deteriorated. Therefore, the content is made 0.005 to 0.1%.
[0027]
Ti
Ti forms fine carbides, makes the low temperature transformation generation phase uniform and fine by improving the fineness of the austenite grains during annealing, and improves the steel plate shape.
[0028]
In order to obtain such an effect, 0.005% or more is added, but if it exceeds 0.1%, the surface appearance after hot dip galvanization is significantly deteriorated, so 0.005 to 0.1% is made.
[0029]
B
B improves the hardenability of steel, segregates at the grain boundaries of austenite during annealing, suppresses grain growth, makes fine martensite and bainite, and improves the steel sheet shape.
[0030]
In order to obtain such an effect, 0.0002% or more is added, but if it exceeds 0.002%, the effect is saturated, so 0.0002 to 0.002%.
[0031]
In addition, the chemical components other than the steel components are not particularly impaired unless they are added excessively. In the present invention, the remainder substantially iron means that other alloy elements or unavoidable impurities may be contained as long as they do not adversely affect the intended characteristics of the present invention.
[0032]
2. Manufacturing conditions Tension T (kgf / mm 2 ) during temper rolling after continuous galvanizing treatment
In the present invention, the hot-rolled steel sheet having the above-described component composition is pickled as it is or after pickling, and is further subjected to cold rolling, and after continuous galvanizing treatment, the tension T (kgf / mm 2 ) during temper rolling is set. It grants so that the following formula may be satisfy | filled.
[0033]
2 ≦ T ≦ 80 (C + (Cr + V) / 10 + Mn / 20) 2 +10
However, C, Cr, V, and Mn are set to mass%.
[0034]
When the tension T is inappropriate, a wavy unevenness (ear wave) is formed in the vicinity of the edge of the sheet width along the rolling direction, and shape defects such as sheet warpage are generated in the sheet width direction.
[0035]
When the tension T is less than 2 kgf / mm 2 , the plate warp in the plate width direction is not sufficiently corrected and is as large as 13 to 20 mm.
[0036]
On the other hand, when the tension T exceeds the value obtained from 80 (C + (Cr + V) / 10 + Mn / 20) 2 +10, the ear wave is large as 9 to 13 mm near the edge in the plate width direction, and the steel plate shape deteriorates. ≦ T ≦ 80 (C + (Cr + V) / 10 + Mn / 20) 2 +10.
[0037]
FIG. 1 shows the results of investigating the effects of the tension T on the steel plate shape and the amounts of C, Cr, V, and Mn in the base material components. Cold-rolled steel sheets having a composition within the scope of the present invention (thickness of 1.4 mm, width of 1000 mm) are annealed in a continuous hot dip galvanizing line (held at 820 ° C. for 180 seconds), galvanized, cooled to room temperature, and then into steel sheets The tension T to be applied is changed to 1 to 30 kgf / mm 2 , temper rolling is performed at an elongation rate of 1.0%, and the warp amount (mm) of the obtained galvanized steel sheet in the plate width direction and the ear wave in the rolling direction. (Mm) was measured.
[0038]
The warpage in the plate width direction was determined by measuring the amount of warpage of the plate in the plate width direction at five measurement points randomly selected within a range of 2000 mm in the rolling direction, and obtaining an average value.
[0039]
The ear wave was defined as the maximum unevenness at the plate width edge portion within the range of 2000 mm in the rolling direction.
[0040]
In addition, the tensile strength of the obtained steel plate was 810-1120 MPa. The tension T at the time of temper rolling may be a tension set at the start of temper rolling, and it is not necessary to control the value during rolling.
[0041]
A steel plate shape having a tension T of 2 ≦ T ≦ 80 (C + (Cr + V) / 10 + Mn / 20) 2 +10 and a warp amount in the sheet width direction of 0 to 12 mm and an ear wave in the rolling direction of 0 to 8 mm is obtained. ing.
[0042]
The reason why the ear wave in the rolling direction occurs is that the sheet width edge part is easier to cool than the sheet width center part, so that ferrite is easily generated during annealing, plastic deformation due to tension, and the elongation of the edge part is increased. Conceivable. On the other hand, warpage in the plate width direction is considered to be due to shrinkage stress in the plate width direction accompanying the formation of hard phases such as martensite and bainite.
[0043]
In addition, in order to obtain a favorable plate shape, the elongation rate in temper rolling is desirably 0.1 to 1.0%.
[0044]
In the practice of the present invention, the steel melting method and the ingot forming method are not particularly specified, the melting method may be either a converter method or an electric furnace method, and the ingot method may be either a continuous casting method or a block method. .
[0045]
Hot rolling may be performed according to a conventional method. Rough rolling, finish rolling, and winding are performed immediately after casting the slab or after reheating. It is desirable that the finishing temperature is Ar3 or higher and the winding temperature is 700 ° C. or lower so as not to form a non-uniform structure.
[0046]
The hot-rolled steel sheet is pickled, cold-rolled, and subjected to continuous hot-dip galvanizing treatment. The heating temperature in the continuous hot dip galvanizing process is 750 ° C. or higher in order to recrystallize ferrite and generate martensite and bainite, and on the other hand, to prevent a coarse structure and a non-uniform structure in the thickness direction. 950 ° C. or lower is desirable.
[0047]
In the present invention, electroplating can be performed after the hot dip galvanizing treatment.
[0048]
【Example】
(Example 1)
The effects of the present invention were confirmed using steels having various component compositions. Table 1 shows the chemical composition of the test steel. Steels 1 to 6 are invention steels, and steels 7 to 12 are comparative steels. Each steel was melted in a laboratory and then cast to produce a slab having a thickness of 60 mm. However, the steel 6 was melted in an electric furnace. The slab was batch-rolled to a plate thickness of 30 mm, subjected to heat treatment at 1270 ° C. × 1.5 hr in an atmospheric furnace, and subjected to hot rolling. Finish rolling was completed at 860 ° C., and then heat treatment equivalent to winding at 600 ° C. × 1 hr was performed to obtain a hot rolled sheet having a thickness of 3.5 mm. After pickling, it is cold-rolled to a thickness of 1.4 mm, soaked at 820 ° C. for 180 seconds, cooled at an average cooling rate of 8 ° C./sec, immersed in a 460 ° C. hot dip galvanizing bath, and then zinc plated at 550 ° C. The plating layer was alloyed. Thereafter, temper rolling was performed at an elongation rate of 1.0% while applying a tension of 5 kgf / mm 2 . The obtained galvanized steel sheet was subjected to a tensile test, surface properties, and plating surface appearance evaluation.
[0049]
In the tensile test, the tensile strength (TS) was 780 MPa or more with good properties (indicated by a circle in the table) and the strength was insufficient (indicated by x in the table) by a method based on JISZ2241.
[0050]
The surface shape of the steel sheet was randomly selected in the range of 2000 mm in length while measuring the maximum unevenness (maximum value of the ear wave shape) at the edge of the sheet width in the range of 2000 mm in the rolling direction. At five points in the longitudinal direction, the amount of warpage in the width direction of the plate was measured and evaluated by an average value. When the ear wave was 9 to 13 mm or the plate warpage amount was 13 to 20 mm, the characteristic was deteriorated (indicated by x in the table), the ear wave was 5 to 8 mm, and the tolerance was 0 to 4 mm. The sheet warpage amount was 6 to 12 mm, and the tolerance was 0 to 5 mm. As for the plating surface appearance, a range of 2000 mm in length was visually inspected, and when a defect such as non-plating was observed, it was determined as surface deterioration (x).
[0051]
Table 2 shows the evaluation results. Invention Example No. 1 to 6 (steel 1 to 6) are all within the range of the composition of the present invention, TS is 795 to 1100 MPa, warpage in the plate width direction is 1 to 3 mm, and the acoustic wave in the rolling direction is 2 to 4 mm. It was.
[0052]
Also, the plating surface appearance is good.
[0053]
On the other hand, in Comparative Examples 7 to 12, the chemical components are outside the scope of the present invention, and the strength, surface shape, and plating surface appearance are inferior.
[0054]
Comparative Example 7 has a low strength of TS of 720 MPa, and Comparative Examples 8 and 10 have good strength and steel plate shape, but non-plating is observed on the plated surface and the surface appearance is poor.
[0055]
In Comparative Examples 9, 11, and 12, TS is as high as 1010 MPa or more, but both warpage in the sheet width direction and ear waves in the rolling direction are both large and take a steel plate shape.
[0056]
(Example 2)
The effect of tension during temper rolling on the steel sheet shape was investigated using steel 6. As described above, the steel 6 was melted by an electric furnace. A slab having a plate thickness of 220 mm was manufactured, heated at 1260 ° C. for 1 hr, and then hot-rolled at a finish rolling temperature of 870 ° C. and a winding temperature of 550 ° C. to manufacture a hot rolled material having a plate thickness of 3.0 mm. After pickling, the steel sheet was cold rolled to a thickness of 1.4 mm, heated at 840 ° C., cooled at an average rate of 5 to 10 ° C./s, and immersed in a hot dip galvanizing bath at 460 ° C. The plating layer was alloyed at 550 ° C., cooled, temper-rolled at various elongations of 1 to 20 kgf / mm 2 at an elongation of 1.0%, and wound around a coil.
[0057]
At the time of temper rolling, the surface shape and the plating surface appearance at positions corresponding to the positions where the tension was changed were investigated, and tensile test pieces were collected from these positions. The tensile test and the evaluation of the steel plate shape were in accordance with Example 1.
[0058]
Table 3 shows the evaluation results. All the steel plates 22 to 25 had a high tension within the range of the present invention, TS was as high as 810 to 830 MPa, the warpage amount in the plate width direction, the ear waves in the plate longitudinal direction were small, and the plated surface appearance was good.
[0059]
On the other hand, the steel plates 21, 26 and 27 are inferior in the steel plate shape because the steel plate tension is outside the range of the present invention, and either the warp amount in the plate width direction or the ear wave in the plate longitudinal direction is large.
[0060]
[Table 1]
Figure 0004186665
[0061]
[Table 2]
Figure 0004186665
[0062]
[Table 3]
Figure 0004186665
[0063]
【The invention's effect】
According to the present invention, a high-strength steel sheet having an excellent steel plate shape with a small warp and an ear wave that gives an excellent product shape after press forming and a tensile strength of 780 MPa or more can be adjusted in the component composition of steel and the continuous hot-dip galvanizing process. Since it is obtained by adjusting the tension of quality rolling, it is not necessary to use a stretcher leveler or the like for correcting the shape of the steel sheet, which is extremely useful industrially.
[Brief description of the drawings]
FIG. 1 is a graph showing the influence of tension T and component composition (C, Cr, V, Mn) on steel plate shape (warp in the plate width direction, ear wave in the rolling direction).

Claims (2)

mass(%)で、C:0.03〜0.15%、Si≦0.7%、Mn:2.0〜3.0%、P≦0.05%、S≦0.01%、sol.Al:0.01〜0.1%、N≦0.005%、Cr:0.01〜0.5%、V:0.004〜0.5%、残部Feおよび不可避的不純物からなる鋼を連続溶融亜鉛めっき処理後、調質圧延時の張力T(kgf/mm2)を下記の式を満たすように付与することを特徴とする引張強度が780MPa以上の高強度溶融亜鉛めっき鋼板の製造方法。
2≦T≦80(C+(Cr+V)/10+Mn/20)2+10
但し、C,Cr,V,Mnはmass%とする。
In mass (%), C: 0.03 to 0.15%, Si ≦ 0.7%, Mn: 2.0 to 3.0%, P ≦ 0.05%, S ≦ 0.01%, sol . Al: 0.01~0.1%, N ≦ 0.005 %, Cr: 0.01~0.5%, V: 0.004~0.5%, the steel consisting of the remaining portion Fe and unavoidable impurities After the continuous hot dip galvanizing treatment, a tensile strength T (kgf / mm 2 ) at the time of temper rolling is applied so as to satisfy the following formula: manufacture of high strength hot dip galvanized steel sheet having a tensile strength of 780 MPa or more Method.
2 ≦ T ≦ 80 (C + (Cr + V) / 10 + Mn / 20) 2 +10
However, C, Cr, V, and Mn are set to mass%.
鋼組成として、更に、Mo:0.05〜0.3%、Nb:0.005〜0.1%、Ti:0.005〜0.1%、B:0.0002〜0.002%の一種又は二種以上を含有することを特徴とする請求項1記載の高強度溶融亜鉛めっき鋼板の製造方法。  As the steel composition, Mo: 0.05-0.3%, Nb: 0.005-0.1%, Ti: 0.005-0.1%, B: 0.0002-0.002% The manufacturing method of the high intensity | strength hot-dip galvanized steel plate of Claim 1 characterized by including 1 type, or 2 or more types.
JP2003080455A 2003-03-24 2003-03-24 Method for producing high-strength hot-dip galvanized steel sheet Expired - Fee Related JP4186665B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003080455A JP4186665B2 (en) 2003-03-24 2003-03-24 Method for producing high-strength hot-dip galvanized steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003080455A JP4186665B2 (en) 2003-03-24 2003-03-24 Method for producing high-strength hot-dip galvanized steel sheet

Publications (2)

Publication Number Publication Date
JP2004285436A JP2004285436A (en) 2004-10-14
JP4186665B2 true JP4186665B2 (en) 2008-11-26

Family

ID=33294301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003080455A Expired - Fee Related JP4186665B2 (en) 2003-03-24 2003-03-24 Method for producing high-strength hot-dip galvanized steel sheet

Country Status (1)

Country Link
JP (1) JP4186665B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109972037A (en) * 2019-04-01 2019-07-05 山东钢铁集团日照有限公司 A kind of 360Mpa grades or more low yield strength ratio hot-galvanized steel band and its manufacturing method

Also Published As

Publication number Publication date
JP2004285436A (en) 2004-10-14

Similar Documents

Publication Publication Date Title
JP4288138B2 (en) Steel sheet for hot forming
US8999085B2 (en) High manganese steel strips with excellent coatability and superior surface property, coated steel strips using steel strips and method for manufacturing the steel strips
JP4730056B2 (en) Manufacturing method of high-strength cold-rolled steel sheet with excellent stretch flange formability
JP3887235B2 (en) High-strength steel sheet, high-strength hot-dip galvanized steel sheet, high-strength galvannealed steel sheet excellent in stretch flangeability and impact resistance, and manufacturing method thereof
KR20100133506A (en) High-tensile cold-rolled steel sheet, high-tensile plated steel sheet and process for producing them
JP5070947B2 (en) Hardened steel plate member, hardened steel plate and manufacturing method thereof
JP4000943B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP5953695B2 (en) High-strength hot-dip galvanized steel sheet with excellent plating adhesion and formability and its manufacturing method
JP4320913B2 (en) High-tensile hot-dip galvanized steel sheet with excellent formability and method for producing the same
JP3969350B2 (en) High-tensile cold-rolled steel sheet and its manufacturing method
JP6947327B2 (en) High-strength steel sheets, high-strength members and their manufacturing methods
JP7111252B2 (en) Coated steel member, coated steel plate and manufacturing method thereof
JP2001011565A (en) High strength steel sheet excellent in impact energy absorbability and its production
JP4186665B2 (en) Method for producing high-strength hot-dip galvanized steel sheet
JP2000109965A (en) Production of hot dip galvanized high tensile strength steel sheet excellent in workability
JP4867336B2 (en) High-tensile cold-rolled steel, high-tensile electroplated steel, and high-tensile hot-dip galvanized steel
JP2009263713A (en) Cold-rolled steel sheet with high tensile strength, plated steel sheet with high tensile strength, and manufacturing method therefor
JP4428075B2 (en) High-strength hot-dip galvanized steel sheet excellent in stretch flangeability and method for producing the same
JP3812248B2 (en) High-strength cold-rolled steel sheet with excellent surface properties and press formability and method for producing the same
JP3587114B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP3475560B2 (en) High tensile alloyed hot-dip galvanized steel sheet excellent in plating characteristics and secondary work brittleness resistance and method for producing the same
JP3969351B2 (en) High-tensile cold-rolled steel sheet and its manufacturing method
JP2002266032A (en) Galvanized steel sheet and production method therefor
JP5953694B2 (en) High-strength hot-dip galvanized steel sheet with excellent plating adhesion and formability and its manufacturing method
JP3716439B2 (en) Manufacturing method of high-tensile alloyed hot-dip galvanized steel sheet with excellent plating characteristics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080819

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080901

R150 Certificate of patent or registration of utility model

Ref document number: 4186665

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees