JP2004285436A - Method for producing high strength hot dip galvanized steel sheet - Google Patents
Method for producing high strength hot dip galvanized steel sheet Download PDFInfo
- Publication number
- JP2004285436A JP2004285436A JP2003080455A JP2003080455A JP2004285436A JP 2004285436 A JP2004285436 A JP 2004285436A JP 2003080455 A JP2003080455 A JP 2003080455A JP 2003080455 A JP2003080455 A JP 2003080455A JP 2004285436 A JP2004285436 A JP 2004285436A
- Authority
- JP
- Japan
- Prior art keywords
- steel sheet
- steel
- sheet
- hot
- rolling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Coating With Molten Metal (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、溶融亜鉛めっき鋼板の製造方法に関し、特に、ピラー、ルーフレールなどの構造部品に最適な強度780MPa以上で、プレス成形後の製品形状に優れた高強度溶融亜鉛めっき鋼板の製造方法に関する。
【0002】
【従来の技術】
地球環境保護を目的に、自動車、化学メーカを始めとする各種産業界で、CO2ガス低減への取組みが進められ,自動車会社においては、自動車から排出されるCO2ガスを減らすため、ガソリン車の燃費を車体の軽量化により向上させることが従来より検討されている。
【0003】
車体の軽量化では、部品点数の減少とともに、鋼板を薄肉化することが有効であるが、後者の場合では、車体剛性の劣化が懸念されるため、より高強度の鋼板を使用しなければならず、一方、衝突安全性能(自動車が走行中に物体と衝突した際、衝撃に対する部材のエネルギー吸収能を高め、乗員への衝撃負荷を低減し、乗員の生命の安全性を高める)の観点からもピラー、ルーフレールなどへの高強度鋼板の適用が必要とされることもあり、高強度自動車用鋼板の開発が急務とされている。
【0004】
高強度自動車用鋼板に必要とされる特性として、張出し性、伸びフランジ性などのプレス成形性の向上とともに、プレス成形作業におけるスプリングバックや壁そり等の形状不良(プレス金型とプレス成形品との形状のずれ)を低減させることも重要で、スプリングバック量を見込んだ金型設計の試みとともに、降伏比を低くした鋼板等が開発されてきている。
【0005】
特開昭55−100958号公報、特開昭55−100935号公報は形状性に優れた高張力亜鉛めっき鋼板の製造技術に関するもので、前者には、引張強度が56.0〜62.8kgf/mm2(548.8〜615.4MPa)、降伏比が0.47〜0.58の鋼の製造技術が、後者には、引張強度が56.3〜70.5kgf/mm2(551.7〜690.9MPa)で、降伏比が0.51〜0.56の鋼の製造技術がそれぞれ開示されている。
【0006】
【発明が解決しようとする課題】
しかしながら、スプリングバックを低減するため、降伏強度を低下させプレス成形時の弾性変形を小さくした場合、鋼板の引張り強さも低下することになり、鋼板の高強度化は制約され、上記の先行技術においても、得られる鋼板強度は780MPa未満である。
【0007】
そのため、高強度鋼板の場合は、プレス成形技術の観点から、プレス成形性を向上させることが重要で、スプリングバック量を見込んだ金型設計において、所期の目的が得られるよう、鋼板強度の上昇につれて、機械的な均一性はもとより、素材鋼板自体に板反りなどのない優れた形状性が求められる。
【0008】
そこで、本発明は、引張強度780MPa以上の高強度と優れた形状性の両者を備え、プレス成形性に優れた高強度溶融亜鉛めっき鋼板の製造技術を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明者等は、引張強度780MPa以上の高強度が得られる成分組成の鋼を対象に、連続溶融亜鉛めっき処理後において、優れた形状性が得られる鋼板の製造方法について、鋭意検討を行い、鋼板形状がマルテンサイト、ベイナイト生成に影響を及ぼすC量、Cr量、V量、Mn量に影響されること、および、連続溶融亜鉛めっき処理後の調質圧延の影響が大きく、これら元素量に応じた適切な調質圧延中の張力により、鋼板の形状性が改善されることを見出した。本発明はこのような知見を基に更に検討を加えてなされたものであり、すなわち、本発明は、
1. mass(%)で、C:0.03〜0.15%、Si≦0.7%、Mn:2.0〜3.0%、P≦0.05%、S≦0.01%、sol.Al:0.01〜0.1%、N≦0.005%、Cr:0.01〜0.5%、V:0.004〜0.5%、残部実質的にFeからなる鋼を連続溶融亜鉛めっき処理後、調質圧延時の張力T(kgf/mm2)を下記の式を満たすように付与することを特徴とする引張強度が780MPa以上の高強度溶融亜鉛めっき鋼板の製造方法である。
【0010】
2≦T≦80(C+(Cr+V)/10+Mn/20)2+10
但し、C,Cr,V,Mnはmass%とする。
【0011】
2. 鋼組成として、更に、Mo:0.05〜0.3%、Nb:0.005〜0.1%、Ti:0.005〜0.1%、B:0.0002〜0.002%の一種又は二種以上を含有することを特徴とする1記載の高強度溶融亜鉛めっき鋼板の製造方法である。
【0012】
【発明の実施の形態】
本発明における鋼の成分組成、製造条件について、以下に詳細に説明する。
【0013】
1.成分組成
C
Cは、鋼の焼入れ強化に有効で、780MPa以上の引張強度を得るため、0.03%以上添加する。一方、0.15%を超えると、マルテンサイト、ベイナイト等硬質の組織が、圧延方向、板幅方向に不均一に形成され、圧延方向における耳波や板幅方向での反りなどの形状不良が顕著となるため、0.03〜0.15%とする。
【0014】
Si
Siは、鋼を強化するために0.7%以下の範囲内で添加してもよい。0.7%を超えると、溶融亜鉛めっきの密着性が低下するため、Siを添加する場合には0.7%以下とする。
【0015】
Mn
Mnは、鋼の焼入れ強化に有効で、780MPa以上の引張強度を得るため、2.0%以上添加する。一方、3.0%を超えると、溶鋼をスラブに鋳造する際、スラブにMnが偏析し、圧延後の焼鈍時にマルテンサイト、ベイナイト等の硬質相が、フェライト相と共に板厚方向、板幅方向に不均一に形成され、鋼板形状を著しく劣化させるため、2.0〜3.0%とする。
【0016】
P
Pは、鋼の強化に有効なため、本発明では0.05%以下含有させることができる。0.05%を超えると、熱間圧延時に形成される表面酸化層(スケール)の剥離が過剰となり、熱延後の表面性状および、溶融亜鉛めっき後の表面性状も劣化する。
【0017】
また、溶融亜鉛めっき後のめっき層の合金化処理において、めっき層が均一に合金化し難く、めっきの密着性が劣化する。そのため、Pは0.05%以下とする。
【0018】
S
Sは、不純物であり、鋼中に過剰に存在すると、スラブ加熱時にオーステナイトの結晶粒界に偏析し、熱間圧延の際、鋼板表層部から赤熱脆性が起こり易くなるため、0.01%以下とする。
【0019】
sol.Al
Alは、鋼の脱酸のため、0.01%以上添加する。一方、0.1%を超えると溶融亜鉛めっき後の表面外観が著しく劣化するため、0.01〜0.1%とする。
【0020】
N
Nは、鋼中に過剰に存在すると、溶融亜鉛めっき後の鋼板の延性が劣化するため、0.005%以下とする。
【0021】
Cr
Crは、鋼を焼入れ強化するため、0.01%以上添加する。一方、0.5%を超えると、この効果が飽和するとともに、焼鈍中にCr系酸化物が鋼板表面に形成され溶融亜鉛めっきの密着性を劣化させるため、0.01〜0.5%とする。
【0022】
V
Vは、鋼を焼入れ強化するため、0.004%以上添加する。一方、0.5%を超えると、V系窒化物が過剰に生成し、焼鈍中にオーステナイトの結晶粒径が不均一となるため、マルテンサイトが板幅、圧延方向で不均一となり、鋼板形状が著しく劣化するため、0.004〜0.5%とする。
【0023】
以上が、本発明の基本成分組成であるが、所望する特性に応じて、Mo,Nb,Ti,Bの一種または二種以上を添加することができる。
【0024】
Mo
Moは、鋼の強化に有効で、0.05%以上添加するが、0.3%を超えるとその効果が飽和するため、0.05〜0.3%とする。
【0025】
Nb
Nbは、鋼中でCと微細炭化物を形成したり、固溶し、焼鈍段階でオーステナイトを微細化することにより、マルテンサイト、ベイナイトの硬質な組織を細粒化し、均一な組織で形状に優れた鋼板とする。
【0026】
このような効果を得るため、0.005%以上添加するが、0.1%を超えると、焼鈍時のフェライト、オーステナイトの再結晶が抑制され、加工組織が残留しやすくなり、延性が著しく劣化するため、0.005〜0.1%とする。
【0027】
Ti
Tiは、微細炭化物を形成し、焼鈍中のオーステナイト粒の細粒化により、低温変態生成相を均一微細とし、鋼板形状を向上させる。
【0028】
このような効果を得るため、0.005%以上添加するが、0.1%を超えると溶融亜鉛めっき後の表面外観が著しく劣化するため、0.005〜0.1%とする。
【0029】
B
Bは、鋼の焼入れ性を向上させ、焼鈍中にオーステナイトの結晶粒界に偏析し、粒成長を抑制し、微細なマルテンサイト、ベイナイトととし、鋼板形状を向上させる。
【0030】
このような効果を得るため、0.0002%以上添加するが、0.002%を超えるとその効果が飽和するため、0.0002〜0.002%とする。
【0031】
また、上記鋼成分以外の化学成分については、特に過剰に添加しなければ本発明の効果を損なうことはない。本発明において、残部実質的に鉄とは、その他の合金元素あるいは不可避的不純物についても本発明の目的とする特性に悪影響を及ぼさない限り、含有しても良いことを意味する。
【0032】
2.製造条件
連続溶融亜鉛めっき処理後、調質圧延時の張力T(kgf/mm2)
本発明では、上述した成分組成の熱延鋼板を酸洗後そのまま、あるいは酸洗後さらに冷間圧延を施し、連続溶融亜鉛めっき処理後、調質圧延時の張力T(kgf/mm2)を下記の式を満たすように付与する。
【0033】
2≦T≦80(C+(Cr+V)/10+Mn/20)2+10
但し、C,Cr,V,Mnはmass%とする。
【0034】
張力Tが不適切な場合、板幅のエッジ付近に圧延方向に沿って波状の凹凸(耳波)や、板幅方向に板反りなどの形状不良を生じる。
【0035】
張力Tが、2kgf/mm2未満の場合、板幅方向の板反りが十分矯正されず、13〜20mmと大きい。
【0036】
一方、張力Tが、80(C+(Cr+V)/10+Mn/20)2+10より求まる値を超える場合、板幅方向のエッジ近傍で耳波が9〜13mmと大きく、鋼板形状が劣化するため、2≦T≦80(C+(Cr+V)/10+Mn/20)2+10とする。
【0037】
鋼板形状に及ぼす張力Tと母材成分中のC,Cr,V,Mn量の影響を調査した結果を図1に示す。本発明範囲内の成分組成の冷延鋼板(板厚1.4mm,板幅1000mm)を連続溶融亜鉛めっきラインにて焼鈍(820℃で180sec保持)、亜鉛めっきし、室温まで冷却後、鋼板に付与する張力Tを1〜30kgf/mm2に変化させ、伸長率1.0%で調質圧延を行い、得られた亜鉛めっき鋼板の板幅方向の反り量(mm)と圧延方向の耳波(mm)を測定した。
【0038】
板幅方向の反りは、圧延方向に2000mmの範囲内で無作為に選択した5点の測定点において、板幅方向での板の反り量を測定し、平均値を求めた。
【0039】
耳波は、圧延方向に2000mmの範囲内における板幅エッジ部での凹凸の最大値とした。
【0040】
尚、得られた鋼板の引張強度は810〜1120MPaであった。調質圧延時における張力Tとは、調質圧延開始時に、設定した張力であればよく、圧延中その値を制御する必要はない。
【0041】
張力Tが、2≦T≦80(C+(Cr+V)/10+Mn/20)2+10の範囲で板幅方向の反り量が0〜12mm,圧延方向の耳波が0〜8mmの鋼板形状が得られている。
【0042】
圧延方向の耳波が生じる原因は、板幅エッジ部は板幅センター部より冷えやすいため、焼鈍中にフェライトが生成しやすく、張力により塑性変形し、エッジ部の伸びが大きくなったためであると考えられる。一方板幅方向の反りはマルテンサイト、ベイナイト等の硬質相の生成に伴う板幅方向の縮み応力によると考えられる。
【0043】
尚、調質圧延における伸長率は良好な板形状を得るために、0.1〜1.0%とするのが望ましい。
【0044】
本発明の実施において、鋼の溶製法、造塊法は特に指定せず、溶製法は転炉法、電気炉法のいずれでもよく、造塊法は連続鋳造法、分塊法のいずれでもよい。
【0045】
熱間圧延は常法に従い行えばよい。スラブを鋳造後、直ちに、または再加熱後に、粗圧延、仕上圧延、巻き取りを行う。仕上温度は、不均一な組織とならないようにAr3以上、巻取温度は700℃以下とすることが望ましい。
【0046】
熱延鋼板を、酸洗後、冷間圧延し、連続溶融亜鉛めっき処理を施す。連続溶融亜鉛めっき処理における加熱温度は、フェライトを再結晶させ、マルテンサイト、ベイナイトを生成させるため、750℃以上とし、一方、粗大組織となり、板厚方向で不均一組織となることを防止するため、950℃以下とすることが望ましい。
【0047】
本発明では溶融亜鉛めっき処理後、電気めっきを行なうことができる。
【0048】
【実施例】
(実施例1)
種々の成分組成の鋼を用いて本発明の効果を確認した。表1に供試鋼の化学成分を示す。鋼1〜6は、本発明鋼で、鋼7〜12は比較鋼である。それぞれの鋼を実験室にて溶製後、鋳造し、板厚60mmのスラブを製造した。但し、鋼6は、電気炉にて溶製した。該スラブを板厚30mmに分塊圧延し、大気炉で1270℃×1.5hrの加熱処理し、熱間圧延に供した。仕上圧延を860℃で終了し、その後600℃×1hrの巻取り相当の熱処理を施し、板厚3.5mmの熱延板とした。酸洗後、板厚1.4mmまで冷間圧延し、820℃で180sec均熱し、平均冷却速度8℃/secで冷却し、460℃の溶融亜鉛めっき浴中に浸漬した後、550℃で亜鉛めっき層の合金化処理を施した。その後、5kgf/mm2の張力を付加しながら、伸長率1.0%で調質圧延を施した。得られた亜鉛めっき鋼板について、引張試験、表面性状及びめっき表面外観評価を行った。
【0049】
引張試験はJISZ2241に準拠した方法により、引張強度(TS)が780MPa以上を特性良好(表中○で表示)、780MPa未満の場合を強度不足(表中×で表示)とした。
【0050】
鋼板の表面形状は、圧延方向で長さ2000mmの範囲において、板幅エッジ部での凹凸の最大値(耳波形状の最大値)を測定するとともに、長さ2000mmの範囲で無作為に選択した長手方向の5点において、板幅方向での板反り量を測定し、平均値により評価した。耳波が9〜13mmまたは板反り量が13〜20mmの場合を特性劣化(表中×で表示)とし、耳波が5〜8mmを許容範囲、0〜4mmを特性良好とした。板反り量は6〜12mmを許容範囲とし、0〜5mmを特性良好とした。めっき表面外観は、長さ2000mmの範囲を目視で検査し、不めっきなどの欠陥が観察された場合を表面劣化(×)と判定した。
【0051】
表2にこれらの評価結果を示す。本発明例No.1〜6(鋼1〜6)はいずれも本発明成分範囲内で、TSが795〜1100MPa,板幅方向の反りは1〜3mm、圧延方向の耳波は2〜4mmといずれも良好であった。
【0052】
また、めっき表面外観はいずれも良好である。
【0053】
一方、比較例7〜12は、化学成分が本発明範囲外で、強度、表面形状、めっき表面外観に劣っている。
【0054】
比較例7は、TSが720MPaと強度が低く、比較例8、10は強度、鋼板形状は良好であるが、めっき表面に不めっきが認められ、表面外観に劣る。
【0055】
比較例9、11、12は、TSが1010MPa以上と高いが、板幅方向の反り、圧延方向の耳波が共に大きく鋼板形状におとる。
【0056】
(実施例2)
鋼板形状に及ぼす調質圧延時の張力の影響を、鋼6を用いて調査した。上述したように鋼6は電気炉により溶製した。板厚220mmのスラブを製造し、1260℃で1hr加熱後、仕上圧延温度870℃、巻き取り温度550℃で熱間圧延し、板厚3.0mmの熱延材を製造した。酸洗後、冷間圧延で板厚1.4mmとした後、840℃で加熱後、5〜10℃/sの平均速度で冷却し、460℃で溶融亜鉛めっき浴中に浸漬した。550℃でめっき層の合金化処理を行い、冷却後、1〜20kgf/mm2の種々の張力で、伸長率1.0%で調質圧延し、コイルに巻き取った。
【0057】
調質圧延時に、張力を変化させた位置に対応した位置の表面形状、めっき表面外観を調査し、これらの位置から引張試験片を採取した。引張試験、鋼板形状の評価は、実施例1に準じた。
【0058】
表3に評価結果を示す。鋼板22〜25はいずれも張力が、本発明範囲内で、TSが810〜830MPaと高く、板幅方向の反り量、板長手方向の耳波は小さく、めっき表面外観は良好であった。
【0059】
一方、鋼板21、26、27は、鋼板張力が本発明範囲外で、板幅方向の反り量、板長手方向の耳波の何れかが大きく、鋼板形状に劣っている。
【0060】
【表1】
【0061】
【表2】
【0062】
【表3】
【0063】
【発明の効果】
本発明によれば、プレス成形後に優れた製品形状が得られる反りや耳波の小さい優れた鋼板形状で引張強度780MPa以上の高強度鋼板が、鋼の成分組成と連続溶融亜鉛めっき工程での調質圧延の張力の調整により得られるため、鋼板の形状矯正のため、ストレッチャレベラなど用いる必要がなく、産業上極めて有用である。
【図面の簡単な説明】
【図1】鋼板形状(板幅方向の反り、圧延方向の耳波)に及ぼす張力Tと成分組成(C,Cr,V,Mn)の影響を示す図。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a hot-dip galvanized steel sheet, and more particularly to a method for manufacturing a high-strength hot-dip galvanized steel sheet having an optimum strength of 780 MPa or more for structural components such as pillars and roof rails and having an excellent product shape after press forming.
[0002]
[Prior art]
In order to protect the global environment, various industries, including automobile and chemical manufacturers, are making efforts to reduce CO2 gas. Automobile companies are working to reduce the CO2 gas emitted from automobiles by reducing the fuel consumption of gasoline vehicles. It has been conventionally studied to improve the vehicle weight by reducing the body weight.
[0003]
To reduce the weight of the body, it is effective to reduce the number of parts and to reduce the thickness of the steel sheet.However, in the latter case, there is a concern that the rigidity of the body will deteriorate, so a higher strength steel sheet must be used. On the other hand, from the viewpoint of collision safety performance (when a car collides with an object while driving, it increases the energy absorption capacity of members against impact, reduces the impact load on occupants, and enhances the safety of occupants' lives) In some cases, it is necessary to apply high-strength steel sheets to pillars, roof rails, and the like, and there is an urgent need to develop high-strength steel sheets for automobiles.
[0004]
Properties required for high-strength automotive steel sheets include not only improved press formability such as stretchability and stretch flangeability, but also poor shape such as springback and wall warpage during press forming work (press dies and press-formed products). It is also important to reduce the shape deviation), and a steel plate or the like having a low yield ratio has been developed along with an attempt to design a mold in consideration of the amount of springback.
[0005]
JP-A-55-100958 and JP-A-55-100935 relate to a technique for producing a high-strength galvanized steel sheet having excellent shape properties. The former has a tensile strength of 56.0 to 62.8 kgf /. mm 2 (548.8~615.4MPa), steel manufacturing techniques yield ratio from 0.47 to 0.58 is, the latter, tensile strength 56.3~70.5kgf / mm 2 (551.7 69690.9 MPa) and a yield ratio of 0.51 to 0.56, respectively.
[0006]
[Problems to be solved by the invention]
However, in order to reduce springback, if the yield strength is reduced and the elastic deformation during press forming is reduced, the tensile strength of the steel sheet will also decrease, and the high strength of the steel sheet will be restricted, and in the above prior art, Also, the obtained steel sheet strength is less than 780 MPa.
[0007]
Therefore, in the case of high-strength steel sheets, it is important to improve the press formability from the viewpoint of press forming technology. As the temperature rises, not only the mechanical uniformity but also the excellent shape of the material steel plate itself without warpage is required.
[0008]
Therefore, an object of the present invention is to provide a technique for producing a high-strength hot-dip galvanized steel sheet having both high strength of 780 MPa or more in tensile strength and excellent shape properties, and excellent press formability.
[0009]
[Means for Solving the Problems]
The present inventors have conducted intensive studies on a method of manufacturing a steel sheet having excellent shape properties after continuous hot-dip galvanizing, with respect to steel having a component composition capable of obtaining high strength of 780 MPa or more in tensile strength. The shape of the steel sheet is affected by the amounts of C, Cr, V, and Mn that affect the formation of martensite and bainite, and the effect of temper rolling after continuous hot-dip galvanizing is greatly affected. It has been found that the shape of the steel sheet is improved by the appropriate tension during the temper rolling. The present invention has been made by further study based on such findings, that is, the present invention,
1. mass (%), C: 0.03 to 0.15%, Si ≦ 0.7%, Mn: 2.0 to 3.0%, P ≦ 0.05%, S ≦ 0.01%, sol . Al: 0.01% to 0.1%, N ≦ 0.005%, Cr: 0.01% to 0.5%, V: 0.004% to 0.5%, the balance being steel consisting essentially of Fe A method for producing a high-strength hot-dip galvanized steel sheet having a tensile strength of 780 MPa or more, characterized by applying a tension T (kgf / mm 2 ) during temper rolling after the hot-dip galvanizing treatment so as to satisfy the following formula. is there.
[0010]
2 ≦ T ≦ 80 (C + (Cr + V) / 10 + Mn / 20) 2 +10
However, C, Cr, V, and Mn are mass%.
[0011]
2. As the steel composition, Mo: 0.05 to 0.3%, Nb: 0.005 to 0.1%, Ti: 0.005 to 0.1%, B: 0.0002 to 0.002% 2. The method for producing a high-strength hot-dip galvanized steel sheet according to 1, wherein the method includes one or more kinds.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
The composition of the steel and the production conditions in the present invention will be described in detail below.
[0013]
1. Component composition C
C is effective for quenching strengthening of steel, and is added in an amount of 0.03% or more to obtain a tensile strength of 780 MPa or more. On the other hand, if it exceeds 0.15%, hard structures such as martensite and bainite are formed unevenly in the rolling direction and the sheet width direction, and shape defects such as ear waves in the rolling direction and warpage in the sheet width direction are caused. Therefore, the content is set to 0.03 to 0.15%.
[0014]
Si
Si may be added in a range of 0.7% or less to strengthen the steel. If it exceeds 0.7%, the adhesiveness of the hot-dip galvanized coating is reduced. Therefore, when adding Si, the content is made 0.7% or less.
[0015]
Mn
Mn is effective for quenching strengthening of steel, and is added in an amount of 2.0% or more to obtain a tensile strength of 780 MPa or more. On the other hand, if the content exceeds 3.0%, when casting molten steel into a slab, Mn segregates in the slab, and during the annealing after rolling, hard phases such as martensite and bainite, together with the ferrite phase, in the sheet thickness direction and the sheet width direction. To 2.0% to 3.0%, since it is formed unevenly and significantly deteriorates the shape of the steel sheet.
[0016]
P
Since P is effective for strengthening steel, it can be contained at 0.05% or less in the present invention. If it exceeds 0.05%, the surface oxide layer (scale) formed at the time of hot rolling is excessively peeled off, and the surface properties after hot rolling and the surface properties after hot-dip galvanizing also deteriorate.
[0017]
Further, in the alloying treatment of the plating layer after the hot-dip galvanizing, it is difficult to uniformly alloy the plating layer, and the adhesion of the plating deteriorates. Therefore, P is set to 0.05% or less.
[0018]
S
S is an impurity, and if present in steel excessively, segregates at austenite grain boundaries during slab heating, and red hot embrittlement easily occurs from the surface layer of the steel sheet during hot rolling. And
[0019]
sol. Al
Al is added in an amount of 0.01% or more to deoxidize steel. On the other hand, if it exceeds 0.1%, the surface appearance after hot-dip galvanizing is significantly deteriorated.
[0020]
N
If N is excessively present in the steel, the ductility of the steel sheet after hot-dip galvanizing deteriorates, so N is set to 0.005% or less.
[0021]
Cr
Cr is added in an amount of 0.01% or more to harden and strengthen the steel. On the other hand, if it exceeds 0.5%, this effect is saturated, and a Cr-based oxide is formed on the steel sheet surface during annealing to deteriorate the adhesion of hot-dip galvanizing. I do.
[0022]
V
V is added in an amount of 0.004% or more to harden and strengthen the steel. On the other hand, if it exceeds 0.5%, V-based nitrides are excessively generated, and the grain size of austenite becomes non-uniform during annealing. Is significantly deteriorated, so that the content is set to 0.004 to 0.5%.
[0023]
The above is the basic component composition of the present invention, but one or more of Mo, Nb, Ti, and B can be added according to desired characteristics.
[0024]
Mo
Mo is effective for strengthening the steel and is added in an amount of 0.05% or more. However, if the content exceeds 0.3%, the effect is saturated.
[0025]
Nb
Nb forms fine carbides with C in steel or forms a solid solution and refines austenite in the annealing step, thereby reducing the hard structure of martensite and bainite to have a uniform structure and excellent shape. Steel plate.
[0026]
In order to obtain such an effect, 0.005% or more is added. However, if it exceeds 0.1%, recrystallization of ferrite and austenite during annealing is suppressed, a processed structure is likely to remain, and ductility is significantly deteriorated. Therefore, the content is set to 0.005 to 0.1%.
[0027]
Ti
Ti forms fine carbides, refines austenite grains during annealing, makes the low-temperature transformation generation phase uniform and fine, and improves the shape of the steel sheet.
[0028]
In order to obtain such an effect, 0.005% or more is added. However, if it exceeds 0.1%, the surface appearance after hot-dip galvanizing is significantly deteriorated.
[0029]
B
B improves the hardenability of steel, segregates at austenite crystal grain boundaries during annealing, suppresses grain growth, turns into fine martensite and bainite, and improves the shape of the steel sheet.
[0030]
In order to obtain such an effect, 0.0002% or more is added. However, if the content exceeds 0.002%, the effect is saturated, so the content is set to 0.0002 to 0.002%.
[0031]
In addition, the effects of the present invention are not impaired unless chemical components other than the above steel components are added in excess. In the present invention, “substantially iron” means that other alloy elements or unavoidable impurities may be contained as long as they do not adversely affect the properties aimed at by the present invention.
[0032]
2. Manufacturing conditions Tension T (kgf / mm 2 ) during temper rolling after continuous hot-dip galvanizing
In the present invention, the hot-rolled steel sheet having the above-described composition is subjected to pickling as it is, or cold-rolled after pickling, and after continuous galvanizing treatment, the tension T (kgf / mm 2 ) during temper rolling is determined. It is provided so as to satisfy the following equation.
[0033]
2 ≦ T ≦ 80 (C + (Cr + V) / 10 + Mn / 20) 2 +10
However, C, Cr, V, and Mn are mass%.
[0034]
When the tension T is inappropriate, shape defects such as wavy irregularities (ear waves) along the rolling direction near the edge of the sheet width and sheet warpage in the sheet width direction occur.
[0035]
When the tension T is less than 2 kgf / mm 2 , the sheet warpage in the sheet width direction is not sufficiently corrected, and is as large as 13 to 20 mm.
[0036]
On the other hand, when the tension T exceeds the value obtained from 80 (C + (Cr + V) / 10 + Mn / 20) 2 +10, the ear wave is as large as 9 to 13 mm near the edge in the width direction of the plate, and the shape of the steel plate is deteriorated. ≦ T ≦ 80 (C + (Cr + V) / 10 + Mn / 20) 2 +10.
[0037]
FIG. 1 shows the results of investigating the effects of the tension T and the amounts of C, Cr, V, and Mn in the base metal components on the shape of the steel sheet. A cold-rolled steel sheet (sheet thickness: 1.4 mm, sheet width: 1000 mm) having a composition within the range of the present invention is annealed (maintained at 820 ° C. for 180 seconds) in a continuous hot-dip galvanizing line, galvanized, and cooled to room temperature. The tension T to be applied was changed to 1 to 30 kgf / mm 2 , temper rolling was performed at an elongation of 1.0%, and the obtained galvanized steel sheet was warped in the width direction (mm) and rolled in the rolling direction. (Mm) was measured.
[0038]
The warpage in the sheet width direction was determined by measuring the amount of warpage of the sheet in the sheet width direction at five measurement points randomly selected within a range of 2000 mm in the rolling direction, and calculating an average value.
[0039]
The ear wave was defined as the maximum value of the unevenness at the edge of the sheet width within a range of 2000 mm in the rolling direction.
[0040]
In addition, the tensile strength of the obtained steel plate was 810-1120 MPa. The tension T at the time of temper rolling may be a tension set at the start of temper rolling, and it is not necessary to control the value during rolling.
[0041]
When the tension T is in the range of 2 ≦ T ≦ 80 (C + (Cr + V) / 10 + Mn / 20) 2 +10, a steel sheet shape having a warpage amount of 0 to 12 mm in the sheet width direction and an ear wave of 0 to 8 mm in the rolling direction can be obtained. ing.
[0042]
The cause of the generation of ear waves in the rolling direction is that the edge of the sheet width is easier to cool than the center part of the sheet width, so that ferrite is easily generated during annealing, plastically deformed by tension, and the elongation of the edge part increased. Conceivable. On the other hand, it is considered that the warpage in the sheet width direction is due to the shrinkage stress in the sheet width direction due to the formation of a hard phase such as martensite and bainite.
[0043]
The elongation in the temper rolling is desirably 0.1 to 1.0% in order to obtain a good plate shape.
[0044]
In the practice of the present invention, the method of ingot melting and ingot making method of steel are not particularly specified, and the ingot making method may be any of the converter method and the electric furnace method, and the ingot making method may be any of the continuous casting method and the ingot method. .
[0045]
Hot rolling may be performed according to a conventional method. After casting the slab, immediately or after reheating, rough rolling, finish rolling, and winding are performed. The finishing temperature is desirably Ar3 or more and the winding temperature is desirably 700 ° C or less so as not to form an uneven structure.
[0046]
After pickling, the hot-rolled steel sheet is cold-rolled and subjected to continuous hot-dip galvanizing. The heating temperature in the continuous hot-dip galvanizing treatment is set to 750 ° C. or higher in order to recrystallize ferrite and generate martensite and bainite. On the other hand, in order to prevent a coarse structure and a non-uniform structure in the sheet thickness direction. , 950 ° C. or lower.
[0047]
In the present invention, electroplating can be performed after hot-dip galvanizing.
[0048]
【Example】
(Example 1)
The effects of the present invention were confirmed using steels having various component compositions. Table 1 shows the chemical components of the test steel. Steels 1 to 6 are steels of the present invention, and steels 7 to 12 are comparative steels. Each steel was melted and cast in a laboratory to produce a slab having a thickness of 60 mm. However,
[0049]
In the tensile test, a tensile strength (TS) of 780 MPa or more was determined to have good characteristics (indicated by a circle in the table), and a tensile strength (TS) of less than 780 MPa was determined to be insufficient (indicated by a cross in the table) according to JISZ2241.
[0050]
The surface shape of the steel sheet was measured randomly in the rolling direction in the range of 2000 mm in length and the maximum value of the unevenness at the edge of the sheet width (maximum value of the ear wave shape), and was randomly selected in the range of 2000 mm in length. At five points in the longitudinal direction, the amount of sheet warpage in the sheet width direction was measured and evaluated by an average value. The case where the ear wave was 9 to 13 mm or the amount of warpage of the plate was 13 to 20 mm was regarded as characteristic deterioration (indicated by x in the table), the case where the ear wave was 5 to 8 mm was acceptable, and the case where 0 to 4 mm was good. The board warpage amount was set to an allowable range of 6 to 12 mm, and 0 to 5 mm was set to good characteristics. The plating surface appearance was visually inspected in a range of 2000 mm in length, and a case where defects such as non-plating were observed was judged as surface deterioration (x).
[0051]
Table 2 shows the evaluation results. Invention Example No. All of the steels 1 to 6 (steel 1 to 6) were within the range of the present invention, and had a TS of 79 to 1100 MPa, a warp in the width direction of 1 to 3 mm, and an ear wave in the rolling direction of 2 to 4 mm. Was.
[0052]
In addition, the plating surface appearance is all good.
[0053]
On the other hand, Comparative Examples 7 to 12 were inferior in strength, surface shape, and plating surface appearance when the chemical components were outside the range of the present invention.
[0054]
Comparative Example 7 had a low TS of 720 MPa, and Comparative Examples 8 and 10 had good strength and a good steel plate shape. However, non-plating was observed on the plated surface and the surface appearance was poor.
[0055]
In Comparative Examples 9, 11, and 12, the TS is as high as 1010 MPa or more, but both the warp in the sheet width direction and the ear wave in the rolling direction are large, and the sheet takes the shape of a steel sheet.
[0056]
(Example 2)
The effect of the tension during temper rolling on the shape of the steel sheet was investigated using
[0057]
At the time of temper rolling, the surface shape and plating surface appearance at positions corresponding to the positions where the tension was changed were investigated, and tensile test pieces were collected from these positions. The tensile test and the evaluation of the shape of the steel sheet were in accordance with Example 1.
[0058]
Table 3 shows the evaluation results. Each of the steel plates 22 to 25 had a tensile force within the range of the present invention, a high TS of 810 to 830 MPa, a small amount of warpage in the plate width direction and a small ear wave in the plate longitudinal direction, and a good plating surface appearance.
[0059]
On the other hand, the steel plates 21, 26, and 27 have a steel plate tension outside the range of the present invention and have a large amount of warpage in the plate width direction or ear waves in the plate longitudinal direction, and are inferior to the steel plate shape.
[0060]
[Table 1]
[0061]
[Table 2]
[0062]
[Table 3]
[0063]
【The invention's effect】
According to the present invention, a high-strength steel sheet having a tensile strength of 780 MPa or more in an excellent steel sheet shape having a small warpage or an ear wave, which can obtain an excellent product shape after press forming, is obtained by controlling the steel composition and the continuous hot-dip galvanizing process. Since it is obtained by adjusting the tension of temper rolling, there is no need to use a stretcher leveler or the like to correct the shape of the steel sheet, and this is extremely useful in industry.
[Brief description of the drawings]
FIG. 1 is a diagram showing the influence of a tension T and a component composition (C, Cr, V, Mn) on a steel sheet shape (warp in a sheet width direction, ear waves in a rolling direction).
Claims (2)
2≦T≦80(C+(Cr+V)/10+Mn/20)2+10
但し、C,Cr,V,Mnはmass%とする。mass (%), C: 0.03 to 0.15%, Si ≦ 0.7%, Mn: 2.0 to 3.0%, P ≦ 0.05%, S ≦ 0.01%, sol . Al: 0.01% to 0.1%, N ≦ 0.005%, Cr: 0.01% to 0.5%, V: 0.004% to 0.5%, the balance being steel consisting essentially of Fe A method for producing a high-strength hot-dip galvanized steel sheet having a tensile strength of 780 MPa or more, wherein a tension T (kgf / mm 2 ) during temper rolling after the hot-dip galvanizing treatment is applied so as to satisfy the following expression.
2 ≦ T ≦ 80 (C + (Cr + V) / 10 + Mn / 20) 2 +10
However, C, Cr, V, and Mn are mass%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003080455A JP4186665B2 (en) | 2003-03-24 | 2003-03-24 | Method for producing high-strength hot-dip galvanized steel sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003080455A JP4186665B2 (en) | 2003-03-24 | 2003-03-24 | Method for producing high-strength hot-dip galvanized steel sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004285436A true JP2004285436A (en) | 2004-10-14 |
JP4186665B2 JP4186665B2 (en) | 2008-11-26 |
Family
ID=33294301
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003080455A Expired - Fee Related JP4186665B2 (en) | 2003-03-24 | 2003-03-24 | Method for producing high-strength hot-dip galvanized steel sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4186665B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109972037A (en) * | 2019-04-01 | 2019-07-05 | 山东钢铁集团日照有限公司 | A kind of 360Mpa grades or more low yield strength ratio hot-galvanized steel band and its manufacturing method |
-
2003
- 2003-03-24 JP JP2003080455A patent/JP4186665B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109972037A (en) * | 2019-04-01 | 2019-07-05 | 山东钢铁集团日照有限公司 | A kind of 360Mpa grades or more low yield strength ratio hot-galvanized steel band and its manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
JP4186665B2 (en) | 2008-11-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8999085B2 (en) | High manganese steel strips with excellent coatability and superior surface property, coated steel strips using steel strips and method for manufacturing the steel strips | |
JP4730056B2 (en) | Manufacturing method of high-strength cold-rolled steel sheet with excellent stretch flange formability | |
JP3858146B2 (en) | Manufacturing method of high-strength cold-rolled steel sheet and high-strength hot-dip galvanized steel sheet | |
JP2003213369A (en) | High-strength steel sheet, high-strength hot-dip galvanized steel sheet, high-strength alloyed hot-dip galvanized steel sheet excellent in stretch flangeability and impact resistance, and manufacturing method thereof | |
JP7111252B2 (en) | Coated steel member, coated steel plate and manufacturing method thereof | |
JP2008308732A (en) | Hardened steel plate member, hardened steel plate and manufacturing method thereof | |
JP2004068051A (en) | High strength hot-dip galvanized steel sheet and method for producing the same | |
JP2001003150A (en) | High tensile strength hot dip galvanized steel sheet excellent in ductility and its production | |
JP2011080126A (en) | Hot-dip galvannealed steel sheet and method for manufacturing the same | |
JP2003268491A (en) | High-strength steel sheet for working member, production method thereof, and production method for working member having working plane excellent in abrasion resistance | |
JP5012636B2 (en) | Galvanized steel sheet | |
JP2004211140A (en) | Hot-dip galvanized steel sheet and manufacturing method therefor | |
JP2004124123A (en) | Low-yield-ratio high-strength cold-rolled steel sheet excellent in workability and shape freezing property and method for producing the same | |
JP2005008904A (en) | High-tensile cold-rolled steel sheet and its manufacturing method | |
JP2003193189A (en) | High tensile strength galvanized steel sheet with composite structure having excellent deep drawability and production method therefor | |
JP2000109965A (en) | Production of hot dip galvanized high tensile strength steel sheet excellent in workability | |
JP4428075B2 (en) | High-strength hot-dip galvanized steel sheet excellent in stretch flangeability and method for producing the same | |
JP2003064446A (en) | Cold rolled steel sheet and plated cold rolled steel sheet each having excellent strain age hardening characteristic and free from degradation due to room- temperature aging, and manufacturing method of them | |
JP4186665B2 (en) | Method for producing high-strength hot-dip galvanized steel sheet | |
JP2004218018A (en) | High-strength cold-rolled steel sheet which is excellent in workability and strain age-hardening property, high-strength plated steel sheet and their production methods | |
JP3969351B2 (en) | High-tensile cold-rolled steel sheet and its manufacturing method | |
JP4301013B2 (en) | Cold-rolled steel sheet with excellent dent resistance | |
JP4867336B2 (en) | High-tensile cold-rolled steel, high-tensile electroplated steel, and high-tensile hot-dip galvanized steel | |
JP3780611B2 (en) | High strength and high yield ratio hot dip galvanized steel sheet and its manufacturing method | |
JP4569071B2 (en) | Manufacturing method of hot-dip galvanized steel sheet with excellent stretch flangeability |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060221 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080401 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080408 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080609 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080819 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080901 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4186665 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110919 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110919 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120919 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120919 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130919 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |