JPH10310432A - Lithium multiple oxide, its production and positive electrode active material for lithium ion secondary battery - Google Patents

Lithium multiple oxide, its production and positive electrode active material for lithium ion secondary battery

Info

Publication number
JPH10310432A
JPH10310432A JP9130269A JP13026997A JPH10310432A JP H10310432 A JPH10310432 A JP H10310432A JP 9130269 A JP9130269 A JP 9130269A JP 13026997 A JP13026997 A JP 13026997A JP H10310432 A JPH10310432 A JP H10310432A
Authority
JP
Japan
Prior art keywords
lithium
composite oxide
secondary battery
positive electrode
ion secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9130269A
Other languages
Japanese (ja)
Other versions
JP4043000B2 (en
Inventor
Shigeyasu Kimura
重保 木村
Nobuyuki Yamazaki
信幸 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP13026997A priority Critical patent/JP4043000B2/en
Publication of JPH10310432A publication Critical patent/JPH10310432A/en
Application granted granted Critical
Publication of JP4043000B2 publication Critical patent/JP4043000B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To produce a lithium multiple oxide adaptable to a positive electrode material for a lithium ion secondary battery, excellent in energy density and having stable characteristics. SOLUTION: Particles of an Ni salt or an Ni-Co salt and an Li salt are mixed and fired while blowing air having <=20 g/kg absolute humidity to produce the objective lithium multiple oxide represented by the formula, Lix Ni1-y Coy O2 (where 0<x<1.1 and 0<=y<=0.6) and having <=0.1 wt.% water content and/or having <=0.6 wt.% water content after it is allowed to stand at 30 deg.C and 60% relative humidity for 12 hr.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウム複合酸化
物及びその製造方法、更に、エネルギー密度の優れるリ
チウムイオン二次電池用正極活物質に関するものであ
る。
The present invention relates to a lithium composite oxide, a method for producing the same, and a positive electrode active material for a lithium ion secondary battery having excellent energy density.

【0002】[0002]

【技術の技術】近年、家庭電器においてポータブル化、
コードレス化が急速に進むに従い、ラップトップ型パソ
コン、携帯電話、ビデオカメラ等の小型電子機器の電源
としてリチウムイオン二次電池が実用化されている。こ
のリチウムイオン二次電池については、1980年に水
島等によりコバルト酸リチウムがリチウムイオン二次電
池の正極活物質として有用であるとの報告(「マテリア
ル リサーチブレティン」vo115,P783-789(1980))がな
されて以来、リチウム系複合酸化物に関する研究開発が
活発に進められており、これまでにコバルト酸リチウ
ム、ニッケル酸リチウム及びマンガン酸リチウム等の化
合物について、多くの提案がなされている。
[Technology] In recent years, home appliances have become portable,
With the rapid progress in cordless use, lithium ion secondary batteries have been put into practical use as power supplies for small electronic devices such as laptop computers, mobile phones, and video cameras. Regarding this lithium ion secondary battery, Mizushima et al. Reported in 1980 that lithium cobaltate was useful as a positive electrode active material for lithium ion secondary batteries ("Material Research Bulletin" vo115, P783-789 (1980)). Since then, research and development on lithium-based composite oxides have been actively promoted, and many proposals have been made on compounds such as lithium cobaltate, lithium nickelate and lithium manganate.

【0003】ニッケル酸リチウムとしては、例えばLi
1-x NiO2 (但し、0 ≦x≦1 )(米国明細書430
2518号明細書)、Liy Ni2-y 2 (特開平2−
40861号公報)、Liy Nix Co1-x 2 (但し
0<x≦0.75、y≦1)(特開昭63−29905
6号公報)などのリチウムと遷移金属を主体とする複合
酸化物が提案されている。また、物性に関しては、〔0
03〕面の結晶子が50オングストローム、格子体積が
0.295〜0.305であるLiNix Co1-X 2
(特開平6−275274号公報)、粒子形状が球状で〔00
3〕面の半値幅が0.14〜0.3でNiが2.9〜
3.1の範囲であるLiNix Co1-x 2 (特開平6
−267539号公報)、〔003〕面/〔104〕面の強度
が1.5以上であるLiNiO2 (特開平6−215773号
公報)、〔003〕面/〔104〕面の強度比が1.2
以上であるLiNiO2 (特開平6−96769 号公報)、
平均粒子径10〜35μmのLiNix Co1-x
2 (特開平7−142056号公報)、平均粒径10μm以下
の多結晶粉末LiNiO2 (特開平7−114942号公報)
等が提案されている。
[0003] As lithium nickelate, for example, Li
1-x NiO 2 (where 0 ≦ x ≦ 1) (US Pat. No. 430)
2518), Li y Ni 2-y O 2 (Japanese Unexamined Patent Publication No.
No. 40861), Li y Ni x Co 1-x O 2 (where 0 <x ≦ 0.75, y ≦ 1) (JP-A-63-29905)
No. 6) has been proposed as a composite oxide mainly containing lithium and a transition metal. Regarding physical properties, [0
03] LiNi x Co 1-x O 2 having a crystallite size of 50 angstroms and a lattice volume of 0.295 to 0.305
(JP-A-6-275274), the particle shape is spherical
3] The half width of the surface is 0.14 to 0.3 and Ni is 2.9 to
LiNi x Co 1-x O 2 in the range of 3.1
JP-A-267539), LiNiO 2 having a [003] plane / [104] plane strength of 1.5 or more (JP-A-6-215773), and a [003] plane / [104] plane having an intensity ratio of 1 .2
LiNiO 2 (Japanese Patent Laid-Open No. 6-96769),
LiNi x Co 1-x O having an average particle diameter of 10 to 35 μm
2 (Japanese Patent Application Laid-Open No. 7-142056), polycrystalline powder LiNiO 2 having an average particle diameter of 10 μm or less (Japanese Patent Application Laid-Open No. 7-149424).
Etc. have been proposed.

【0004】[0004]

【発明が解決しようとする課題】また、ニッケル酸リチ
ウムは、コバルト酸リチウムと比べて安価であるといっ
た有利な点はあるが、電池の正極材として使用中に欠陥
を生じやすく、そのため電池の安定性に欠けるなど容量
特性はコバルト系に劣ると考えられている。従って、で
きるだけ化学量論的比に近いLiNiO2 及びニッケル
(Ni)の一部を他の遷移金属で置換したリチウム複合
酸化物やその合成法が検討されている。しかしながら、
未だリチウムイオン二次電池用の正極材として、十分に
満足する特性のものは見い出されておらず、該正極材に
適合するエネルギー密度に優れ、安定な特性を有するリ
チウム複合酸化物の開発が望まれている。
Lithium nickelate has the advantage of being less expensive than lithium cobaltate, but tends to cause defects during use as a positive electrode material of a battery. Capacitance characteristics such as lack of properties are considered to be inferior to those of the cobalt type. Therefore, a lithium composite oxide in which part of LiNiO 2 and nickel (Ni) having a stoichiometric ratio as close as possible is replaced by another transition metal, and a method of synthesizing the same are being studied. However,
As a positive electrode material for a lithium ion secondary battery, a material having sufficiently satisfactory characteristics has not yet been found, and it is desired to develop a lithium composite oxide having an excellent energy density suitable for the positive electrode material and having stable characteristics. It is rare.

【0005】従って、本発明の目的は、リチウムイオン
二次電池用の正極材に適合するエネルギー密度に優れ、
安定な特性を有するリチウム複合酸化物及びその製造方
法を提供することにある。
Accordingly, an object of the present invention is to provide an excellent energy density suitable for a cathode material for a lithium ion secondary battery,
An object of the present invention is to provide a lithium composite oxide having stable characteristics and a method for producing the same.

【0006】[0006]

【課題を解決するための手段】かかる実情において、本
発明者は鋭意検討を行った結果、リチウムイオン二次電
池用の正極材として好適なニッケル酸リチウムについ
て、製造時の焼成中に吹き込む空気の絶対湿度を制御す
ることにより製造されるニッケル酸リチウムは、極めて
少ない水分量のものが得られるばかりでなく、湿度雰囲
気下でも吸湿することが少ない化合物が得られること、
また、これがコバルトを含むリチウム複合酸化物につい
ても同様であることを知見し、本発明を完成するに至っ
た。すなわち、本発明は、下記一般式(1); Lix Ni1-y Coy 2 (1) (式中、0<x<1.1、0≦y≦0.6を示す。)で
表されるリチウム複合酸化物において、該リチウム複合
酸化物中の水分量が、0.1重量%以下及び/又は30
°C、相対湿度60%、12時間放置後の水分量が0.
6重量%以下であるリチウム複合酸化物を提供するもの
である。
Under such circumstances, the present inventors have conducted intensive studies and as a result, have found that lithium nickel oxide suitable as a positive electrode material for a lithium ion secondary battery can be produced using air blown during firing during production. Lithium nickelate produced by controlling the absolute humidity not only obtains an extremely small amount of water, but also obtains a compound that absorbs less moisture even under a humid atmosphere.
Further, they have found that this is the same for the lithium composite oxide containing cobalt, and have completed the present invention. That is, the present invention is represented by the following general formula (1): Li x Ni 1-y Co y O 2 (1) (in the formula, 0 <x <1.1, 0 ≦ y ≦ 0.6). In the lithium composite oxide represented, the water content in the lithium composite oxide is 0.1% by weight or less and / or 30% by weight or less.
° C, relative humidity 60%, moisture content after standing for 12 hours is 0.
It is intended to provide a lithium composite oxide of not more than 6% by weight.

【0007】また、本発明は、ニッケル塩の結晶粒子又
はニッケルとコバルトとのNi−Co塩の結晶粒子とリ
チウム塩を混合し、次いで焼成してリチウム複合酸化物
を製造する方法において、焼成中に絶対湿度20g/k
g’以下の空気を炉内に吹き込みながら製造することを
特徴とするリチウム複合酸化物の製造方法を提供するも
のである。また、本発明は、前記リチウム複合酸化物を
主材とするリチウムイオン二次電池用正極活物質を提供
するものである。
The present invention also provides a method for producing a lithium composite oxide by mixing a lithium salt with crystal particles of a nickel salt or crystal particles of a Ni—Co salt of nickel and cobalt, followed by firing. Absolute humidity 20g / k
An object of the present invention is to provide a method for producing a lithium composite oxide, which is produced while blowing air of g ′ or less into a furnace. Further, the present invention provides a positive electrode active material for a lithium ion secondary battery, comprising the lithium composite oxide as a main material.

【0008】[0008]

【発明の実施の形態】本発明のリチウム複合酸化物は、
一般式(1) Lix Ni1-y Coy 2 (1) (式中、0<x<1.1、0≦y≦0.6を示す。)で
表される化合物であるが、その特徴とするものは、カー
ルフィッシャー滴定法による120°C水分気化法にお
いて、水分量が0.1重量%以下、好ましくは0.05
重量%以下のリチウム複合酸化物である。また、該化合
物を30°C、相対湿度60%、12時間放置後の水分
量がカールフィッシャー滴定法による120°C水分気
化法による測定で、0.6重量%以下である。該カール
フィッシャー滴定法による120°C水分気化法による
水分測定法は、JIS K 0068(化学製品の水分測定法)に
準拠して求められる。上記水分量が0.1重量%及び/
又は上記特定吸湿後の水分量が0.6重量%を超えるも
のを正極材として使用すると、電解液等を分解し、二次
電池特性の低下を招く結果となり、好ましくない。
BEST MODE FOR CARRYING OUT THE INVENTION The lithium composite oxide of the present invention
A compound represented by the general formula (1) Li x Ni 1-y Co y O 2 (1) (where 0 <x <1.1, 0 ≦ y ≦ 0.6), It is characterized by a water content of 0.1% by weight or less, preferably 0.05% by moisture vaporization at 120 ° C. by Karl Fischer titration.
% By weight or less of lithium composite oxide. The water content of the compound after standing for 12 hours at 30 ° C. and a relative humidity of 60% is 0.6% by weight or less as measured by Karl Fischer titration at 120 ° C. water vaporization. The moisture measurement by the Karl Fischer titration at 120 ° C. is determined in accordance with JIS K0068 (method for measuring moisture in chemical products). The water content is 0.1% by weight and / or
Alternatively, if the water content after the specific moisture absorption exceeds 0.6% by weight is used as the positive electrode material, the electrolyte solution or the like is decomposed and the characteristics of the secondary battery are deteriorated, which is not preferable.

【0009】また、本発明のリチウム複合酸化物の製造
方法において、その出発原料の一方は、ニッケル(N
i)塩の結晶粒子又はニッケル(Ni)とコバルト(C
o)とのNi−Co塩の結晶粒子である。Ni−Co塩
の場合、原子比(Ni:Co)は、1:0〜0.4:
0.6、好ましくは1:0〜0.7:0.3の範囲のも
のであるが、Ni−Co塩は単に所定量混合されている
もであればよいが、Ni塩とCo塩とが固溶及び/又は
共沈していて所定量が均一に混合されているものが、特
に好ましい。
In the method for producing a lithium composite oxide according to the present invention, one of the starting materials is nickel (N
i) Salt crystal particles or nickel (Ni) and cobalt (C
o) and Ni-Co salt crystal particles. In the case of a Ni—Co salt, the atomic ratio (Ni: Co) is 1: 0 to 0.4:
0.6, preferably in the range of 1: 0 to 0.7: 0.3, and the Ni—Co salt may be simply mixed in a predetermined amount. Are preferably dissolved in a solid solution and / or coprecipitated and uniformly mixed in a predetermined amount.

【0010】かかるNi塩又はNi−Co塩としては、
加熱すれば金属酸化物となるもので、いわゆる前駆体化
合物であって、例えば、水酸化物、炭酸塩、酸化物、シ
ュウ酸塩等の有機酸塩等が挙げられ、このうち水酸化物
が好ましい。
As such Ni salt or Ni—Co salt,
It becomes a metal oxide when heated, and is a so-called precursor compound, and examples thereof include hydroxides, carbonates, oxides, organic acid salts such as oxalates, and the like. preferable.

【0011】他の原料であるリチウム(Li)塩として
は、水酸化リチウム、酸化リチウム、炭酸リチウム、硝
酸リチウム、酢酸リチウム、過酸化リチウム、硫酸リチ
ウム等が挙げられる。また、本発明ではリチウム塩とし
ては水酸化リチウムが好ましい。
The lithium (Li) salt as another raw material includes lithium hydroxide, lithium oxide, lithium carbonate, lithium nitrate, lithium acetate, lithium peroxide, lithium sulfate and the like. In the present invention, the lithium salt is preferably lithium hydroxide.

【0012】また、本発明の製造方法は、上記原料を所
定量混合し、焼成するものであるが、かかる焼成条件と
しては、特に制限されず、公知の条件に従えばよい。例
えば、焼成は多段焼成で行うことが好ましく、焼成温度
は750〜800°C付近で焼成すればよい。また、焼
成の焼成速度は、速い方が好ましく、通常1°C/分で
あればよい。具体的には、原料中に含まれる水分が消失
する約200〜400°Cの範囲でゆっくり焼成した
後、更に700〜800°C付近まで4°C/分の昇温
速度で急速に昇温し、到達温度で数時間〜10時間程度
保持し焼成する方法が、特に好ましい。
In the production method of the present invention, a predetermined amount of the above raw materials is mixed and fired. The firing conditions are not particularly limited, and any known conditions may be used. For example, firing is preferably performed in a multi-stage firing, and firing may be performed at a firing temperature of about 750 to 800 ° C. In addition, the firing rate of firing is preferably higher, and may be usually 1 ° C./min. Specifically, after sintering slowly in the range of about 200 to 400 ° C. at which the water contained in the raw material disappears, the temperature is rapidly raised to about 700 to 800 ° C. at a rate of 4 ° C./min. A method of firing at a temperature attained for several hours to 10 hours is particularly preferable.

【0013】また、前記一般式(1)のy値が大きいほ
ど低温で焼成する必要があるが、Ni、Coの混合が不
十分であると、例えばy=0.5のリチウム複合酸化物
を合成しようとしても、組成が異なったリチウム酸化物
が得られてしまうため、原料の混合は十分行う必要があ
る。
It is necessary to calcine at a lower temperature as the y value of the general formula (1) is larger. However, if the mixture of Ni and Co is insufficient, for example, a lithium composite oxide with y = 0.5 may be used. Even if the synthesis is attempted, lithium oxides having different compositions are obtained, so that it is necessary to sufficiently mix the raw materials.

【0014】本発明の製造方法においては、前記焼成中
に絶対湿度20g/kg’以下の空気を吹き込む必要があ
る。かかる絶対湿度とは、重量基準の湿度を意味し、乾
燥空気1kg中に伴われる水蒸気の重量(g/kg’(乾
燥空気))を指す。焼成中に吹き込む空気中の湿度は、
なるべく低い方が好ましく、特に、絶対湿度10g/k
g’以下が好ましく、更に絶対湿度5g/kg’以下が好
ましい。絶対湿度が20g/kg’を超える空気中で焼成
されたリチウム複合酸化物をリチウムイオン二次電池の
正極材として使用してリチウムイオン二次電池を作成し
た場合、初期放電容量及び容量保持率の低い電池が作成
され、好ましくない。
In the manufacturing method of the present invention, it is necessary to blow air having an absolute humidity of 20 g / kg 'or less during the firing. The absolute humidity means humidity on a weight basis, and indicates the weight (g / kg ′ (dry air)) of water vapor accompanying 1 kg of dry air. The humidity in the air blown during firing is
It is preferable that the temperature is as low as possible.
g 'or less, and more preferably 5 g / kg' or less in absolute humidity. When a lithium-ion secondary battery was prepared using a lithium composite oxide fired in air having an absolute humidity of more than 20 g / kg 'as a positive electrode material of the lithium-ion secondary battery, the initial discharge capacity and the capacity retention were reduced. Low batteries are created, which is undesirable.

【0015】また、本発明の製造方法において、前記焼
成後は、冷却、粉砕分級する工程を経てリチウム複合酸
化物の粉末を得るが、かかる冷却、粉砕分級工程におい
ても、絶対湿度が20g/kg’以下の空気を吹き込んで
行うことが好ましい。
In the production method of the present invention, after the calcination, a lithium composite oxide powder is obtained through a step of cooling and pulverizing and classifying. Even in the step of cooling and pulverizing, the absolute humidity is 20 g / kg. 'It is preferable to blow the following air.

【0016】前記製造方法によって得られるリチウム複
合酸化物は、前記一般式(1)で示され、その配合比
は、リチウム(Li)、ニッケル(Ni)及びコバルト
(Co)の原子比が各々x(Li)、1-y (Ni)及び
y(Co)(但し、0<x<1.1、0≦y≦0.6を
示す)からなるように選択される。例えば、配合比をL
i/(Ni又はNiとCoの合計量)比として1付近に
設定されるが、原料の性状や焼成条件などにより、前記
配合比は1前後で多少の幅を持たせることは許容され
る。好ましい配合比としては0.99〜1.10の範囲
である。
The lithium composite oxide obtained by the above production method is represented by the above general formula (1), and its compounding ratio is such that the atomic ratio of lithium (Li), nickel (Ni) and cobalt (Co) is x (Li), 1-y (Ni) and y (Co) (provided that 0 <x <1.1 and 0 ≦ y ≦ 0.6). For example, if the mixing ratio is L
The ratio of i / (total amount of Ni or Ni and Co) is set to around 1, but depending on the properties of the raw materials and the sintering conditions, it is permissible that the blending ratio has a certain width around 1. A preferred compounding ratio is in the range of 0.99 to 1.10.

【0017】また、前記一般式(1)中のNi−Coの
混合物の好ましい形態としては、単に両金属の混合物で
はなく、結晶構造中のニッケルの一部をコバルトで置換
した固溶性化合物であるものが、リチウムイオンのイン
ターカレーション、デインターカレーション反応をより
円滑に、より高い電位範囲で行うことができリチウムイ
オン二次電池用正極材として実用性の高いものである。
The preferred form of the mixture of Ni—Co in the general formula (1) is not a mixture of both metals, but a solid solution compound in which a part of nickel in the crystal structure is replaced by cobalt. The lithium ion secondary battery has a high practicality as a positive electrode material for a lithium ion secondary battery because the lithium ion intercalation and deintercalation reactions can be performed more smoothly in a higher potential range.

【0018】本発明のリチウム複合酸化物は、リチウム
二次電池用正極活物質として有用であり、該化合物を主
成分として含有するリチウム二次電池用正極活物質で導
電性基板を被覆してリチウム二次電池用正極板を得るこ
とができ、さらにその正極板を用いることによりリチウ
ム二次電池を提供することができる。
The lithium composite oxide of the present invention is useful as a positive electrode active material for a lithium secondary battery, and is prepared by coating a conductive substrate with a positive electrode active material for a lithium secondary battery containing the compound as a main component. A positive electrode plate for a secondary battery can be obtained, and a lithium secondary battery can be provided by using the positive electrode plate.

【0019】次に、本発明に係るリチウム二次電池の基
本的な構成の一例を示す。すなわち、前記のようにして
製造し得られたリチウム複合酸化物を主成分として、黒
鉛粉末、ポリフッ化ビニリデンなどを混合加工して正極
材(リチウム二次電池正極活物質)とし、これを有機溶
媒に分散させて混練ペーストを調製する。該混練ペース
トをアルミ箔などの導電性基板に塗布した後、乾燥し、
加圧して適宜の形状に切断して正極板を得る。この正極
板を用いて、リチウム二次電池を構成する各部材を積層
してリチウム二次電池を製作する。
Next, an example of the basic structure of the lithium secondary battery according to the present invention will be described. That is, the lithium composite oxide obtained as described above is used as a main component, and a graphite powder, polyvinylidene fluoride, or the like is mixed and processed to form a positive electrode material (a positive electrode active material for a lithium secondary battery). To prepare a kneaded paste. After applying the kneading paste to a conductive substrate such as an aluminum foil, drying,
The positive electrode plate is obtained by pressing and cutting into an appropriate shape. Using this positive electrode plate, each member constituting the lithium secondary battery is laminated to manufacture a lithium secondary battery.

【0020】[0020]

【発明の効果】本発明のリチウム複合酸化物をリチウム
イオン二次電池用正極材として用いることにより、エネ
ルギー密度の高い、安定した性能を有するリチウムイオ
ン二次電池を得ることができる。また、本発明のリチウ
ム複合酸化物の製造方法によれば、簡便にして、優れた
性能を示すリチウムイオン二次電池用正極活物質を得る
ことができる。
By using the lithium composite oxide of the present invention as a positive electrode material for a lithium ion secondary battery, a lithium ion secondary battery having high energy density and stable performance can be obtained. Further, according to the method for producing a lithium composite oxide of the present invention, a positive electrode active material for a lithium ion secondary battery exhibiting excellent performance can be obtained in a simple manner.

【0021】[0021]

【実施例】次に、実施例を挙げて、本発明を更に具体的
に説明するが、これは単に例示であって、本発明を制限
するものではない。
EXAMPLES Next, the present invention will be described more specifically with reference to examples, but this is merely an example and does not limit the present invention.

【0022】実施例1 ニッケルとコバルトの原子比が8:2の共沈状態にある
Ni−Co水酸化物と水酸化リチウムをリチウムと遷移
金属(Ni・Co)の原子比が1.03:1.00とな
るように秤量し、均一に混合した。この混合物を350
°Cで仮焼したのち720°Cまで4°C/分で昇温
し、その後770°Cまで1°C/分で昇温して、7時
間保持した。焼成中は炉内に絶対湿度0.5g/kg’の
空気を吹き込んだ。焼成終了後、粉砕分級してリチウム
複合酸化物を得た。
Example 1 Ni-Co hydroxide and lithium hydroxide in a coprecipitated state of nickel and cobalt having an atomic ratio of 8: 2 were replaced with lithium and a transition metal (Ni.Co) having an atomic ratio of 1.03: It was weighed to 1.00 and mixed uniformly. This mixture is
After calcination at ° C, the temperature was raised to 720 ° C at 4 ° C / minute, and then to 770 ° C at 1 ° C / minute and held for 7 hours. During firing, air having an absolute humidity of 0.5 g / kg 'was blown into the furnace. After the completion of the calcination, the mixture was pulverized and classified to obtain a lithium composite oxide.

【0023】実施例2 ニッケルとコバルトの原子比が8:2となるように水酸
化ニッケルと酸化コバルトを均一に混合し、この混合物
とリチウムと遷移金属の原子比が1.03:1.00と
なるように秤量し、均一に混合した。この混合物を35
0°Cで仮焼したのち720°Cまで4°C/分で昇温
し、その後770°Cまで1°C/分で昇温して、7時
間保持した。焼成中は炉内に絶対湿度0.5g/kg’の
空気を吹き込んだ。焼成終了後、粉砕分級してリチウム
酸化物を得た。
Example 2 Nickel hydroxide and cobalt oxide were uniformly mixed such that the atomic ratio of nickel to cobalt was 8: 2, and the atomic ratio of this mixture to lithium and transition metal was 1.03: 1.00. Were weighed so as to be mixed uniformly. 35 of this mixture
After calcination at 0 ° C., the temperature was raised to 720 ° C. at 4 ° C./min, and then to 770 ° C. at 1 ° C./min and held for 7 hours. During firing, air having an absolute humidity of 0.5 g / kg 'was blown into the furnace. After the completion of the firing, pulverization and classification were performed to obtain a lithium oxide.

【0024】実施例3 ニッケルとコバルトの原子比が8:2の共沈状態にある
Ni−Co水酸化物と水酸化リチウムをリチウムと遷移
金属(Ni・Co)の原子比が1.03:1.00とな
るように秤量し、均一に混合した。この混合物を350
°Cで仮焼したのち720°Cまで4°C/分で昇温
し、その後770°Cまで1°C/分で昇温して、7時
間保持した。焼成中は炉内に絶対湿度10g/kg’の空
気を吹き込んだ。焼成終了後、粉砕分級してリチウム複
合酸化物を得た。
Example 3 Ni-Co hydroxide and lithium hydroxide in a co-precipitated state with an atomic ratio of nickel and cobalt of 8: 2 were replaced with an atomic ratio of lithium and a transition metal (Ni.Co) of 1.03: It was weighed to 1.00 and mixed uniformly. This mixture is
After calcination at ° C, the temperature was raised to 720 ° C at 4 ° C / minute, and then to 770 ° C at 1 ° C / minute and held for 7 hours. During firing, air having an absolute humidity of 10 g / kg 'was blown into the furnace. After the completion of the calcination, the mixture was pulverized and classified to obtain a lithium composite oxide.

【0025】比較例1 ニッケルとコバルトの原子比が8:2の共沈状態にある
Ni−Co水酸化物と水酸化リチウムをリチウムと遷移
金属(Ni・Co)の原子比が1.03:1.00とな
るように秤量し、均一に混合した。この混合物を350
°Cで仮焼したのち720°Cまで4°C/分で昇温
し、その後770°Cまで1°C/分で昇温して、7時
間保持した。焼成中は炉内に絶対湿度25g/kg’の空
気を吹き込んだ。焼成終了後、炉内から速やかに取り出
し、大気中で放冷して粉砕分級してリチウム複合酸化物
を得た。
COMPARATIVE EXAMPLE 1 Ni-Co hydroxide and lithium hydroxide in a coprecipitated state of nickel and cobalt having an atomic ratio of 8: 2 were replaced with lithium and a transition metal (Ni.Co) having an atomic ratio of 1.03: It was weighed to 1.00 and mixed uniformly. This mixture is
After calcination at ° C, the temperature was raised to 720 ° C at 4 ° C / minute, and then to 770 ° C at 1 ° C / minute and held for 7 hours. During firing, air having an absolute humidity of 25 g / kg 'was blown into the furnace. After the completion of the calcination, the mixture was quickly taken out of the furnace, allowed to cool in the air, and pulverized and classified to obtain a lithium composite oxide.

【0026】上記実施例1〜3及び比較例1の水分量
(吸湿前)及び30°C、相対湿度60%、12時間放
置後の水分量(吸湿後)をカールフィッシャー滴定法に
よる120°C水分気化法により測定した。結果を表1
に示した。
The moisture content (before moisture absorption) and the moisture content (after moisture absorption) of the above Examples 1 to 3 and Comparative Example 1 after standing for 12 hours at 30 ° C. and a relative humidity of 60% were measured at 120 ° C. by Karl Fischer titration. It was measured by the moisture vaporization method. Table 1 shows the results
It was shown to.

【0027】(電池の性能評価)上記実施例及び比較例
で得られたリチウム複合酸化物を正極活物質とし、リチ
ウムイオン二次電池を作製した。次いで、作製したリチ
ウム二次電池を作動させ、初期放電容量及び容量保持率
を測定して電池性能を評価した。その結果を表1に示し
た。
(Evaluation of Battery Performance) Using the lithium composite oxides obtained in the above Examples and Comparative Examples as a positive electrode active material, lithium ion secondary batteries were manufactured. Next, the produced lithium secondary battery was operated, the initial discharge capacity and the capacity retention were measured, and the battery performance was evaluated. The results are shown in Table 1.

【0028】・放電容量の測定 放電容量は正極に対して1mA/cm2 で4.2Vまで
充電した後、2.7Vまで放電させる充放電を繰り返す
ことにより測定し、容量保持率は前記の充放電を反復し
た結果から、下記の式により算出した。
Measurement of Discharge Capacity The discharge capacity is measured by repeating charging and discharging of the positive electrode at 1 mA / cm 2 to 4.2 V and then discharging to 2.7 V. From the result of repeating the discharge, it was calculated by the following equation.

【0029】[0029]

【表1】 [Table 1]

【0030】表1より、焼成中、絶対湿度20g/kg’
以下の空気を吹き込むことにより得られた実施例1〜3
は、いずれも初期放電容量及び容量保持率に優れるもの
であった。
According to Table 1, during firing, the absolute humidity was 20 g / kg '.
Examples 1 to 3 obtained by blowing the following air
All had excellent initial discharge capacity and capacity retention.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】下記一般式(1); Lix Ni1-y Coy 2 (1) (式中、0<x<1.1、0≦y≦0.6を示す。)で
表されるリチウム複合酸化物において、該リチウム複合
酸化物中の水分量が、0.1重量%以下及び/又は30
°C、相対湿度60%、12時間放置後の水分量が0.
6重量%以下であることを特徴とするリチウム複合酸化
物。
1. A compound represented by the following general formula (1): Li x Ni 1 -y Co y O 2 (1) (where 0 <x <1.1, 0 ≦ y ≦ 0.6) In the lithium composite oxide to be produced, the water content in the lithium composite oxide is 0.1% by weight or less and / or 30% by weight.
° C, relative humidity 60%, moisture content after standing for 12 hours is 0.
A lithium composite oxide, which is not more than 6% by weight.
【請求項2】ニッケル塩の結晶粒子又はニッケルとコバ
ルトとのNi−Co塩の結晶粒子とリチウム塩を混合
し、次いで焼成してリチウム複合酸化物を製造する方法
において、焼成中に絶対湿度20g/kg’以下の空気
を炉内に吹き込みながら製造することを特徴とするリチ
ウム複合酸化物の製造方法。
2. A method for producing a lithium composite oxide by mixing nickel salt crystal particles or Ni-Co salt crystal particles of nickel and cobalt with a lithium salt, followed by firing to produce a lithium composite oxide. / Kg 'or less while blowing into the furnace.
【請求項3】請求項1記載のリチウム複合酸化物を主材
とするリチウムイオン二次電池用正極活物質。
3. A positive electrode active material for a lithium ion secondary battery, comprising the lithium composite oxide according to claim 1 as a main material.
JP13026997A 1997-05-02 1997-05-02 Method for producing lithium composite oxide Expired - Fee Related JP4043000B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13026997A JP4043000B2 (en) 1997-05-02 1997-05-02 Method for producing lithium composite oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13026997A JP4043000B2 (en) 1997-05-02 1997-05-02 Method for producing lithium composite oxide

Publications (2)

Publication Number Publication Date
JPH10310432A true JPH10310432A (en) 1998-11-24
JP4043000B2 JP4043000B2 (en) 2008-02-06

Family

ID=15030263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13026997A Expired - Fee Related JP4043000B2 (en) 1997-05-02 1997-05-02 Method for producing lithium composite oxide

Country Status (1)

Country Link
JP (1) JP4043000B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007258139A (en) * 2005-04-28 2007-10-04 Sumitomo Chemical Co Ltd Active material for nonaqueous secondary battery and its manufacturing method
JP2022516955A (en) * 2019-01-10 2022-03-03 エルジー・ケム・リミテッド A method for producing a positive electrode active material for a lithium secondary battery, and a positive electrode active material produced by the above-mentioned manufacturing method.

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102646712B1 (en) 2017-11-22 2024-03-12 주식회사 엘지에너지솔루션 Method for preparing positive electrode additives of lithium secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007258139A (en) * 2005-04-28 2007-10-04 Sumitomo Chemical Co Ltd Active material for nonaqueous secondary battery and its manufacturing method
JP2022516955A (en) * 2019-01-10 2022-03-03 エルジー・ケム・リミテッド A method for producing a positive electrode active material for a lithium secondary battery, and a positive electrode active material produced by the above-mentioned manufacturing method.

Also Published As

Publication number Publication date
JP4043000B2 (en) 2008-02-06

Similar Documents

Publication Publication Date Title
JP4894969B1 (en) Nickel-manganese composite hydroxide particles and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery and production method thereof, and non-aqueous electrolyte secondary battery
KR101787141B1 (en) Lithium composite compound particle powder, method for producing same, and nonaqueous electrolyte secondary battery
JP3047827B2 (en) Lithium secondary battery
JP6578634B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same
KR101409191B1 (en) Manufacturing method of cathode active material for lithium secondary battery
JP2002373658A (en) Method for producing positive electrode active material for lithium secondary battery
JP2009120480A (en) Cobalt oxide particle powder and process for producing the same, cathode active material for non-aqueous electrolyte secondary cell and process for producing the same, and non-aqueous electrolyte secondary cell
JP2006253140A (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, its manufacturing method and lithium secondary battery containing the same
JP2000306584A (en) Positive electrode active material for lithium secondary battery and its manufacture
JPH09175825A (en) Production of compound oxide using sol-gel method
JP3943168B2 (en) Lithium composite oxide, method for producing the same, and positive electrode active material for lithium secondary battery
JP2006318929A (en) Cathode active substance for lithium secondary battery, and nonaqueous lithium secondary battery
JP2019067529A (en) Positive electrode active material for lithium ion secondary battery, method of producing positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
JP2008156163A (en) Spinel type lithium manganese oxide and method for manufacturing the same
JP2006318928A (en) Cathode active substance for lithium secondary battery, and nonaqueous lithium secondary battery
JP2006093067A (en) Lithium secondary battery positive pole material and method for manufacturing it
JP4172024B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and non-aqueous lithium secondary battery
JP3661183B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP3695366B2 (en) Positive electrode active material for lithium ion secondary battery and method for producing the same
JP2005320184A (en) Lithium-manganese multiple oxide and its producing method
JP2001023641A (en) Positive electrode active material for lithium secondary battery and manufacture of the same
JP2006196293A (en) Manufacturing method of positive electrode active material for nonaqueous electrolyte secondary battery, and positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2006012616A (en) Positive electrode material for lithium secondary battery and its manufacturing method
JP2001297761A (en) Positive electrode activator for nonaqueous electrolyte secondary cell
JP4043000B2 (en) Method for producing lithium composite oxide

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20070904

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20070907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071112

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees