JPH10298609A - Manufacture of porous metallic sintered compact - Google Patents

Manufacture of porous metallic sintered compact

Info

Publication number
JPH10298609A
JPH10298609A JP11064097A JP11064097A JPH10298609A JP H10298609 A JPH10298609 A JP H10298609A JP 11064097 A JP11064097 A JP 11064097A JP 11064097 A JP11064097 A JP 11064097A JP H10298609 A JPH10298609 A JP H10298609A
Authority
JP
Japan
Prior art keywords
capsule
hip
sintered body
metal
sintered compact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11064097A
Other languages
Japanese (ja)
Inventor
Akira Kosaka
晃 小阪
Takahiro Kitagawa
貴宏 北川
Takashi Nishi
隆 西
Atsushi Funakoshi
淳 船越
Ryutaro Motoki
龍太郎 元木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP11064097A priority Critical patent/JPH10298609A/en
Publication of JPH10298609A publication Critical patent/JPH10298609A/en
Pending legal-status Critical Current

Links

Landscapes

  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problem of difficulties in the removal of a capsule after hot isostatic pressing(HIP) at the time of manufacturing, in particular, a thin- walled sintered compact, in the manufacture of a porous metallic sintered compact by sealing a metal powder in a metallic capsule and applying HIP, and to attain the reduction of working costs and the improvement of manufacturing yield. SOLUTION: A layer composed of a green part of ceramic powder is provided along the inner surface of a capsule, and the space inside the green part is filled with a metal powder. Then, the capsule is sealed and subjected to HIP treatment. The layer of ceramic powder functions as a barrier layer for interrupting the solid-phase diffusion (joining) between a sintered compact and the capsule in the course of HIP and further shows a state of integrable powder even after HIP. A simplified operation of merely cutting a part of the capsule is enough for the extraction of the sintered compact, and yield is improved as compared with the case by the conventional lathe machining, etc., and the sintered compact as a product of net shape is obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、熱間静水圧加圧処
理による金属系多孔質焼結体の製造方法に関し、特に処
理後のカプセルからの焼結体の取り出し加工の困難を解
消すると共に、焼結体のネットシェイプ成形を可能と
し、薄肉焼結製品等をも効率的に製造することができる
ようにしたものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a metal-based porous sintered body by hot isostatic pressing and, more particularly, to a method for removing a sintered body from a capsule after the treatment. Thus, it is possible to form a sintered body in a net shape and efficiently manufacture a thin-walled sintered product or the like.

【0002】[0002]

【従来の技術】金属粉末をカプセルに封入して、比較的
低温・低圧力の熱間静水圧加圧処理を行うことにより、
多孔質の金属焼結体を得ることができ、このものは、例
えば廃棄物焼却炉の除塵処理用フィルタ材などとして有
用である。熱間静水圧加圧処理(以下「HIP法」)
は、一般に金属カプセルが使用される。ガラスカプセル
を用いるHIP法や、カプセルを使用しないカプセルレ
スHIP法等もあるが、ガラスカプセルHIP法は、ガ
ラスの材種の選択が困難であり、カプセルレスHIP法
では、原料粉末の予備成形を必要とし、工程の煩瑣化を
避け得ず、このため金属カプセルHIP法以外は殆ど実
用されていない。
2. Description of the Related Art By encapsulating metal powder in a capsule and performing hot isostatic pressing at a relatively low temperature and a low pressure,
It is possible to obtain a porous metal sintered body, which is useful, for example, as a filter material for dust removal in a waste incinerator. Hot isostatic pressing (HIP method)
In general, a metal capsule is used. There are a HIP method using a glass capsule, a capsuleless HIP method using no capsule, and the like. However, in the glass capsule HIP method, it is difficult to select a material type of glass. However, it is inevitable that the process is complicated, so that it is hardly practically used except for the metal capsule HIP method.

【0003】[0003]

【発明が解決しようとする課題】金属カプセルHIP法
は、処理後、焼結体を取り出すためのカプセル除去加工
を必要とし、その除去処理は、従来より旋盤加工等によ
り行われている。しかし、金属カプセルと焼結体との界
面は、HIP処理過程で生じる固相拡散により接合して
おり、金属カプセルだけを除去することはできず、製品
焼結体の表面層を同時に除去することになる。このた
め、製品焼結体が比較的単純な形状のものである場合に
も、ネットシェイプ成形は不可能であり、焼結体の表面
層が除去されることによる歩留りの低下を避け得ない。
殊に、製品焼結体が、フィルタ部材等に供される多孔質
体である場合は、これに損傷を与えないようにカプセル
を除去することは困難である。多孔質焼結体が薄肉体で
ある場合、カプセル除去の困難と製品歩留りの低下は一
層顕著となる。本発明は、金属系多孔質焼結体の製造に
関する上記問題を解決しようとするものである。
The metal capsule HIP method requires a capsule removing process for taking out a sintered body after the treatment, and the removing process is conventionally performed by a lathe process or the like. However, the interface between the metal capsule and the sintered body is joined by solid phase diffusion generated during the HIP process, so that the metal capsule alone cannot be removed and the surface layer of the product sintered body must be removed at the same time. become. For this reason, even when the product sintered body has a relatively simple shape, net shape molding is impossible, and a reduction in yield due to removal of the surface layer of the sintered body cannot be avoided.
In particular, when the product sintered body is a porous body provided for a filter member or the like, it is difficult to remove the capsule so as not to damage it. When the porous sintered body is a thin-walled body, difficulties in removing the capsules and a decrease in the product yield become more remarkable. The present invention is intended to solve the above-mentioned problems relating to the production of a metal-based porous sintered body.

【0004】[0004]

【課題を解決するための手段】本発明の熱間静水圧加圧
による金属系多孔質焼結体の製造方法は、金属粉末と金
属カプセルとの界面の固相拡散を阻止するバリアー層と
して、セラミツクス粉末の成形体からなる層を金属カプ
セルの内面に沿って設け、該成形体層の内側空間に金属
粉末を充填したうえ、カプセルを密封して熱間静水圧加
圧処理することを特徴としている。
According to the method of the present invention for producing a metal-based porous sintered body by hot isostatic pressing, a barrier layer for preventing solid phase diffusion at an interface between a metal powder and a metal capsule is provided. A layer made of a ceramic powder compact is provided along the inner surface of the metal capsule, and the inside space of the compact layer is filled with the metal powder, and the capsule is sealed and subjected to hot isostatic pressing. I have.

【0005】バリアー層となるセラミックス粉末層は、
粉末の成形体として金属カプセル内面に装填されるの
で、金属粉末を充填する際に、金属粉末とセラミツクス
粉末とが混じり合うことはなく、金属粉末の充填操作は
容易であり、セラミツクス粉末層との境界面の明瞭な積
層充填が行われる。金属粉末の焼結処理は、セラミツク
ス粉末層でカプセルとの接触を遮断された状態で行われ
るので、カプセルとの固相拡散がなく、焼結体はカプセ
ルに対し非接合の状態を保持する。セラミツクス粉末
は、金属粉末のHIP処理過程で焼結せず、処理後も易
崩壊性の非固結状態を保持する。このため、HIP処理
後の焼結体の取出しは、カプセルの一部を切断する簡単
な加工操作により達成される。セラミックス粉末は、焼
結体の取り出しの際に崩壊し焼結体から分離される。
The ceramic powder layer serving as a barrier layer is
Since the metal powder is loaded on the inner surface of the metal capsule as a compact, the metal powder and the ceramic powder do not mix with each other when the metal powder is filled, and the filling operation of the metal powder is easy. A clear lamination filling of the interface takes place. Since the sintering process of the metal powder is performed in a state in which the ceramic powder layer blocks the contact with the capsule, there is no solid phase diffusion with the capsule, and the sintered body maintains a non-bonded state to the capsule. The ceramic powder does not sinter during the HIP process of the metal powder, and retains a readily collapsible non-consolidated state after the process. Therefore, removal of the sintered body after the HIP processing is achieved by a simple processing operation of cutting a part of the capsule. The ceramic powder collapses upon removal of the sintered body and is separated from the sintered body.

【0006】[0006]

【発明の実施の形態】金属カプセルは、軟鋼製缶容器
等、HIP処理に通常使用される金属材種を用いて製品
焼結体の形状に相応する形状に形成された容器である。
バリアー層を形成するセラミックス粉末の材種は、例え
ばアルミナ(Al2 3 ),シリカ(Si2 O), 窒化珪
素(Si3 4 ), 窒化硼素( BN) 等の一般的なセラ
ミックスから適宜選択される。セラミックス粉末成形体
の成形加工は、所望の形状・サイズ等に応じた各種の方
法、例えば木型による成形,ラバープレス,押出成形,
冷間静水圧加圧成形等が適用される。セラミックス粉末
は、その粉末粒度や適用される成形加工法等に応じて、
例えばフェノール樹脂等の有機バインダおよび硬化剤を
添加された混合物として成形加工に供される。中空円筒
形状の成形体を成形する場合は、遠心力を利用した泥し
ょう鋳込み成形法を適用することができ、そのセラミッ
クス粉末として微細粉末(平均粒径約10μmないしそ
れ以下)を使用する場合は、有機バインダ等の添加を必
要とせず、セラミックス粉末を水に懸濁してスラリー
(泥しょう)とし、遠心泥しょう鋳込み成形に付して、
中空円筒状の成形体を得ることができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A metal capsule is a mild steel can container.
Products using metal materials commonly used for HIP processing
This is a container formed in a shape corresponding to the shape of the sintered body.
The grade of the ceramic powder that forms the barrier layer is, for example,
Ba alumina (AlTwoO Three), Silica (SiTwoO), silicon nitride
Element (SiThreeNFour), Boron nitride (BN), etc.
It is appropriately selected from the mix. Ceramic powder compact
The molding process of various types according to the desired shape, size, etc.
Method, such as molding with a wooden mold, rubber pressing, extrusion molding,
Cold isostatic pressing is applied. Ceramic powder
Depends on the particle size of the powder and the applicable molding method, etc.
For example, an organic binder such as phenol resin and a curing agent
It is subjected to molding as the added mixture. Hollow cylinder
When molding a shaped article, use a mud using centrifugal force.
The casting method can be applied and the ceramic
Fine powder (average particle size of about 10 μm or less)
When using), it is necessary to add an organic binder, etc.
No need, ceramic powder is suspended in water and slurry
(Sludge) and then centrifugal slip casting.
A hollow cylindrical molded body can be obtained.

【0007】図1は、金属カプセル内に、セラミックス
粉末からなるバリアー層と金属粉末とを積層充填した例
を示している。この例は、パイプ形状の多孔質焼結体を
製造するものであり、金属カプセル(1)は、大径の外
筒部材(11 )と小径の内筒部材(12 )を有し、これ
にバリアー層となるセラミックス粉末層(2)として、
外筒部材11 の内周面に沿う中空円筒状の粉末成形体
(21 )と、内筒部材(12 )の外周面に沿う粉末成形
体(22 )が装填され、その内側空間内に焼結原料であ
る金属粉末(3)が充填されている。セラミツクス粉末
層の層厚は、例えば5〜15mmであり、セラミツクス粉
末の粒径は、金属粉末と同程度のもの、あるいはそれよ
り微細粒径のものであってよい。
FIG. 1 shows an example in which a metal capsule is stacked and filled with a barrier layer made of ceramic powder and a metal powder. In this example, a pipe-shaped porous sintered body is manufactured. The metal capsule (1) has a large-diameter outer cylinder member (1 1 ) and a small-diameter inner cylinder member (1 2 ), As a ceramic powder layer (2) to be a barrier layer,
Hollow cylindrical powder compact along the inner peripheral surface of the outer tube member 1 1 (2 1), the powder compact along the outer peripheral surface of the inner cylindrical member (1 2) (2 2) is loaded, the inner space The inside is filled with a metal powder (3) as a sintering raw material. The thickness of the ceramic powder layer is, for example, 5 to 15 mm, and the particle diameter of the ceramic powder may be the same as that of the metal powder, or may be finer than that.

【0008】焼結原料である金属粉末の材種は、例えば
ステンレス鋼,工具鋼,高速度鋼、その他、製品焼結体
の用途・要求特性に応じた各種金属(合金)が適宜選択
使用される。金属カプセル内にバリアー層となるセラミ
ックス圧粉成形体を装填し、焼結原料(金属粉末)を積
層充填したのち、カプセルを密封する。なお、セラミッ
クス圧粉成形体が、有機バインダを含有するものである
場合は、カプセルの密封に先立って、有機バインダを除
去するための一次熱処理を施す。処理温度は、バインダ
の剤種により異なるが、例えば400〜500℃であ
る。遠心力泥しょう鋳込み成形法等により成形された成
形体であって、有機バインダ等を含有しないものである
場合でも、未乾燥状態のものを使用する場合には、カプ
セルの密封に先立って、乾燥のための適当な熱処理が施
される。
As the kind of metal powder as a sintering raw material, for example, stainless steel, tool steel, high-speed steel, and various metals (alloys) according to the use and required characteristics of the product sintered body are appropriately selected and used. You. A ceramic green compact serving as a barrier layer is loaded into a metal capsule, and a sintering material (metal powder) is stacked and filled, and then the capsule is sealed. When the ceramic green compact contains an organic binder, a primary heat treatment for removing the organic binder is performed prior to sealing the capsule. The processing temperature varies depending on the type of binder, but is, for example, 400 to 500 ° C. Even if it is a molded article formed by centrifugal force slurry casting method or the like and does not contain an organic binder or the like, if it is in an undried state, it is dried before sealing the capsule. Is subjected to a suitable heat treatment.

【0009】金属カプセルを密封した後のHIP処理
は、高緻密質の焼結製品を目的とする通常のHIP処理
と異なり、多孔質の焼結体を得るために、低温・低圧の
処理条件が適用される。そのHIP処理は、好ましく
は、温度: 0.35〜0.85mpK (mpKは金属粉末の融点,絶
対温度)、加圧力: 5 〜150 MPaで行われる。これよ
り低温・低圧では金属粉末の焼結反応が不足し、他方こ
れより高温・高圧では、得られる焼結体の多孔性が損な
われるからである。
The HIP treatment after sealing the metal capsule is different from the usual HIP treatment for a high-density sintered product, in order to obtain a porous sintered body, low-temperature and low-pressure treatment conditions are required. Applied. The HIP treatment is preferably performed at a temperature of 0.35 to 0.85 mpK (mpK is the melting point of the metal powder, absolute temperature) and a pressure of 5 to 150 MPa. At a lower temperature and a lower pressure, the sintering reaction of the metal powder is insufficient, and at a higher temperature and a higher pressure, the porosity of the obtained sintered body is impaired.

【0010】上記HIP処理は低温・低圧の条件下に行
われるので、形成される多孔質焼結体は、その用途によ
り強度が不足する場合がある。このため、所望により、
その焼結体の粒子間結合を強化するための熱処理が施さ
れる。熱処理温度は、約0.6〜0.95mpK の範囲が適当で
あり、同温度域に適当時間保持することにより、焼結体
の多孔性を損なわずに、焼結体の強度を高めることがで
きる。この熱処理は、HIP装置内において、静水圧媒
体の加圧作用を解除し常圧に戻した状態で行うこともで
きる。
[0010] Since the HIP treatment is performed under low-temperature and low-pressure conditions, the strength of the formed porous sintered body may be insufficient depending on its use. For this reason, if desired
The sintered body is subjected to heat treatment for strengthening the interparticle bonding. The heat treatment temperature is suitably in the range of about 0.6 to 0.95 mpK, and by maintaining the temperature in the same temperature range for an appropriate time, the strength of the sintered body can be increased without impairing the porosity of the sintered body. This heat treatment may be performed in the HIP device in a state where the pressurizing action of the hydrostatic medium is released and the pressure is returned to the normal pressure.

【0011】HIP処理(および所望により実施される
強化熱処理)の後、金属カプセルから焼結体を取り出
す。焼結体は、セラミツクス粉末層に被包されて金属カ
プセルに対し非接合の状態に保持され、またセラミツク
ス粉末層は崩壊可能な非固結状態を維持している。この
ため、カプセルの一部を切断することにより、焼結体に
損傷を与えることなく、これをカプセル内から取り出す
ことができる。例えば、前記図1のような金属カプセル
を使用して製造されるパイプ状焼結体の場合は、金属カ
プセルの片側部を切断除去して開口させるだけで、バリ
アー層であるセラミックス粉末層を崩壊させながら焼結
体を取り出すことができる。
After the HIP treatment (and the optional heat treatment), the sintered body is removed from the metal capsule. The sintered body is encapsulated in the ceramic powder layer and held in a non-bonded state to the metal capsule, and the ceramic powder layer maintains a collapsible non-consolidated state. Therefore, by cutting a part of the capsule, the sintered body can be taken out from the capsule without damaging the sintered body. For example, in the case of a pipe-shaped sintered body manufactured using the metal capsule as shown in FIG. 1, only one side of the metal capsule is cut off and opened to break the ceramic powder layer as a barrier layer. The sintered body can be taken out while performing.

【0012】従って、旋盤加工でカプセルを焼結体の表
面から除去する方法に比し、カプセル除去工程が著しく
簡素・低コスト化され、また従来法のように焼結体表面
を切削除去することもなく、製造歩留りが高められると
共に、ネットシェイプの製品焼結体を得ることができ
る。この焼結体表面の切削除去が回避されることによる
歩留りの向上およびネットシェイプ成形の効果は、特に
薄肉焼結製品の製造において顕著である。なお、カプセ
ルから取り出した焼結体の表面には、少量のセラミック
ス粉末が付着している場合もあるが、これはブラシなど
で軽くこすることにより容易に除去される。
Therefore, the capsule removing step is remarkably simplified and reduced in cost as compared with the method of removing the capsule from the surface of the sintered body by lathing, and the surface of the sintered body is cut and removed as in the conventional method. In addition, the production yield can be improved, and a net-shaped product sintered body can be obtained. The improvement in yield and the effect of net-shape forming by avoiding the cutting and removal of the surface of the sintered body are particularly remarkable in the production of thin-walled sintered products. A small amount of ceramic powder may adhere to the surface of the sintered body taken out of the capsule, but this is easily removed by lightly rubbing with a brush or the like.

【0013】[0013]

〔実施例1〕[Example 1]

(1) アルミナ系の砂に、フェノール系樹脂(神戸理化学
工業(株)「フェニックス620L」) および硬化剤(神戸
理化学工業(株)「C-45」)を、それぞれ2.0重量%
(対砂比)、25重量%(対樹脂比)添加し混合する。
混合物を木型で成形加工し、口径の異なる2つの円筒状
成形体(外筒成形体21 ; 内径104 ×肉厚10×長さ500,
内筒成形体22 : 外径100 ×肉厚10×長さ500 ,mm)を
得る。 (2) 金属カプセル1は、外筒部材11 (内径125 ×肉厚
2 ×長さ500,mm),内筒部材12 (外径79×肉厚2 ×長
さ500,mm)および下蓋材と上蓋材からなり、外筒部材1
1 と内筒部材12 および下蓋材を溶接で組立て、これに
セラミックス成形体21 ,22 を装入したうえ、ステン
レス鋼SUS316L のアトマイズ粉末(粒径: -300/+210 μ
m)を充填する。
(1) Phenolic resin (Phoenix 620L, Kobe Rika Kogyo Co., Ltd.) and curing agent (C-45, Kobe Rika Kogyo Co., Ltd.) were added to alumina sand at 2.0% by weight, respectively.
(Ratio to sand) and 25% by weight (ratio to resin) are added and mixed.
The mixture is molded in a wooden mold, and two cylindrical molded bodies having different diameters (outer cylindrical molded body 2 1 ; inner diameter 104 × thickness 10 × length 500,
Inner cylinder molded body 2 2 : outer diameter 100 × wall thickness 10 × length 500, mm) is obtained. (2) The metal capsule 1 is made of an outer cylinder member 1 1 (inner diameter 125 × wall thickness
2 x length 500, mm), inner cylinder member 1 2 (outer diameter 79 x wall thickness 2 x length 500, mm), lower lid material and upper lid material, and outer cylinder member 1
1 and assembled inner cylindrical member 1 2 and the lower lid by welding, which on top was charged with the ceramic molded body 2 1, 2 2, stainless steel SUS316L atomized powder (particle size: -300 / + 210 μ
m).

【0014】(3) 一次熱処理として、450 ℃の大気熱処
理を施した後、上蓋材を被せ溶接してカプセルを密封
し、HIP処理(620 ℃×108Mpa×3Hr)に付す。HIP
処理後、HIP装置内で、焼結体の粒子間結合を強化す
るための熱処理(1100℃×4 Hrの大気熱処理)を施す。
処理後、カプセルの底板側を切断除去し、セラミックス
粉末層を崩壊させて焼結体を取り出す。 焼結体サイズ: 外径103.5 ×内径100.0(肉厚1.75) ×長
さ490, mm 。 焼結体の気孔率: 約25%。
(3) As a primary heat treatment, an air heat treatment at 450 ° C. is performed, and then the capsule is sealed by covering with a top lid material, and the capsule is sealed and subjected to a HIP treatment (620 ° C. × 108 Mpa × 3Hr). HIP
After the treatment, heat treatment (atmospheric heat treatment at 1100 ° C. × 4 Hr) for strengthening the interparticle bonding of the sintered body is performed in the HIP device.
After the treatment, the bottom plate side of the capsule is cut and removed, the ceramic powder layer is collapsed, and the sintered body is taken out. Sintered body size: outer diameter 103.5 × inner diameter 100.0 (wall thickness 1.75) × length 490, mm. Porosity of sintered body: about 25%.

【0015】〔実施例2〕 (1) シリカ粉末(平均粒径:10 μm) を水に懸濁したス
ラリーを遠心力泥しょう鋳込み成形に付し、口径の異な
る2つの円筒状成形体(外筒成形体21 ; 内径105 ×肉
厚10×長さ500,内筒成形体22 : 外径100 ×肉厚10×長
さ500 ,mm)を得、風乾の後、加熱乾燥して水分を除去
する。 (2) 金属カプセル1は、外筒部材11 (内径126 ×肉厚
2 ×長さ500,mm),内筒部材12 (外径79×肉厚2 ×長
さ500,mm)および下蓋材と上蓋材からなり、外筒部材1
1 と内筒部材12 および下蓋材を溶接で組立て、これに
セラミックス成形体21 ,22 を装入したうえ、ステン
レス鋼SUS316L のアトマイズ粉末(粒径: -300/+210 μ
m)を充填する。
Example 2 (1) A slurry in which silica powder (average particle size: 10 μm) was suspended in water was subjected to centrifugal slurry casting, and two cylindrical molded bodies having different diameters (outside) were formed. Cylindrical molded body 2 1 ; inner diameter 105 × wall thickness 10 × length 500, inner cylindrical molded body 2 2 : outer diameter 100 × wall thickness 10 × length 500, mm), air-dried, heated and dried to obtain moisture Is removed. (2) The metal capsule 1 is made of an outer cylinder member 1 1 (inner diameter 126 × wall thickness
2 x length 500, mm), inner cylinder member 1 2 (outer diameter 79 x wall thickness 2 x length 500, mm), lower lid material and upper lid material, and outer cylinder member 1
1 and assembled inner cylindrical member 1 2 and the lower lid by welding, which on top was charged with the ceramic molded body 2 1, 2 2, stainless steel SUS316L atomized powder (particle size: -300 / + 210 μ
m).

【0016】(3)上蓋材を被せ、溶接によりカプセルを
密封し、HIP処理(620 ℃×108Mpa×2Hr)に付す。H
IP処理後、HIP装置内で、焼結体の粒子間結合を強
化するための熱処理(1100℃×4 Hrの大気熱処理)を施
す。処理後、カプセルの底板側を切断除去し、セラミッ
クス粉末層を崩壊させて焼結体を取り出す。 焼結体サイズ: 外径104 ×内径100(肉厚2), 長さ490, m
m 。 焼結体の気孔率: 約27%。
(3) Cover the capsule with a lid material, seal the capsule by welding, and perform HIP treatment (620 ° C. × 108 MPa × 2 hr). H
After the IP treatment, a heat treatment (atmospheric heat treatment at 1100 ° C. × 4 Hr) for strengthening the interparticle bonding of the sintered body is performed in the HIP device. After the treatment, the bottom plate side of the capsule is cut and removed, the ceramic powder layer is collapsed, and the sintered body is taken out. Sintered body size: outer diameter 104 x inner diameter 100 (thickness 2), length 490, m
m. Porosity of sintered body: about 27%.

【0017】[0017]

【発明の効果】本発明によれば、熱間静水圧加圧処理に
よる金属系多孔質焼結体の製造において、カプセルを切
断する簡単な処理で、製品焼結体を取り出すことがで
き、従来の旋盤加工等に比し、カプセル除去コストを大
幅に低減することができると共に、ネットシェイプの焼
結体を得ることができ、特に薄肉厚の多孔質焼結体の製
造における効果は顕著である。本発明により製造れる金
属系多孔質焼結体は、例えば廃棄物焼却炉に設置される
除塵用フィルタ装置を構成する多孔質体等の製造法とし
て有用である。
According to the present invention, in the production of a metal-based porous sintered body by hot isostatic pressing, a product sintered body can be taken out by a simple process of cutting a capsule. Capsule removal cost can be significantly reduced as compared with lathing, etc., and a net-shaped sintered body can be obtained. Particularly, the effect in the production of a thin-walled porous sintered body is remarkable. . The metal-based porous sintered body produced by the present invention is useful as a method for producing a porous body or the like constituting a dust filter device installed in a waste incinerator, for example.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明におけるカプセル内のバリアー層(セラ
ミツクス粉末層)および金属粉末の積層充填形態の例を
示す径方向断面図である。
FIG. 1 is a radial cross-sectional view showing an example of a laminating and filling form of a barrier layer (ceramics powder layer) and a metal powder in a capsule according to the present invention.

【符号の説明】[Explanation of symbols]

1(11,2 ): 金属カプセル 2(21,2 ) : バリアー層(セラミックス粉末層) 3: 金属粉末1 (1 1, 1 2 ): Metal capsule 2 (2 1, 2 2 ): Barrier layer (ceramic powder layer) 3: Metal powder

───────────────────────────────────────────────────── フロントページの続き (72)発明者 船越 淳 大阪府枚方市中宮大池1丁目1番1号 株 式会社クボタ枚方製造所内 (72)発明者 元木 龍太郎 大阪府枚方市中宮大池1丁目1番1号 株 式会社クボタ枚方製造所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Atsushi Funakoshi 1-1-1, Nakamiya Oike, Hirakata City, Osaka Prefecture Inside Kubota Hirakata Manufacturing Co., Ltd. (72) Inventor Ryutaro Motoki 1-1-1, Nakamiya Oike, Hirakata City, Osaka Prefecture No. 1 Inside Kubota Hirakata Factory

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 金属カプセルに金属粉末を封入して熱間
静水圧加圧処理する金属系多孔質焼結体の製造方法にお
いて、金属粉末と金属カプセルとの界面の固相拡散を阻
止するバリアー層として、セラミツクス粉末の成形体か
らなる層を金属カプセルの内面に沿って設け、該成形体
層の内側空間に金属粉末を充填したうえ、カプセルを密
封して熱間静水圧加圧処理することを特徴とする金属系
多孔質焼結体の製造方法。
1. A method for producing a metal-based porous sintered body in which a metal powder is encapsulated in a metal capsule and subjected to hot isostatic pressing, wherein a barrier for preventing solid phase diffusion at an interface between the metal powder and the metal capsule is provided. As a layer, a layer made of a ceramic powder compact is provided along the inner surface of the metal capsule, the inside space of the compact layer is filled with the metal powder, the capsule is sealed, and hot isostatic pressing is performed. A method for producing a metal-based porous sintered body, characterized in that:
JP11064097A 1997-04-28 1997-04-28 Manufacture of porous metallic sintered compact Pending JPH10298609A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11064097A JPH10298609A (en) 1997-04-28 1997-04-28 Manufacture of porous metallic sintered compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11064097A JPH10298609A (en) 1997-04-28 1997-04-28 Manufacture of porous metallic sintered compact

Publications (1)

Publication Number Publication Date
JPH10298609A true JPH10298609A (en) 1998-11-10

Family

ID=14540849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11064097A Pending JPH10298609A (en) 1997-04-28 1997-04-28 Manufacture of porous metallic sintered compact

Country Status (1)

Country Link
JP (1) JPH10298609A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012522893A (en) * 2009-04-02 2012-09-27 サンドヴィク インテレクチュアル プロパティー アーゲー Manufacturing method of powder products
JP2013524010A (en) * 2010-03-31 2013-06-17 メッツオ ミネラルズ インク. Method and arrangement for manufacturing parts by hot isostatic pressing, core, cladding preform and use of core
CN105170978A (en) * 2015-09-11 2015-12-23 华中科技大学 Hot isostatic pressing forming method for homogeneous sheath with gradient gradual change structure at connection interface
JP2019152384A (en) * 2018-03-05 2019-09-12 住友金属鉱山株式会社 Fluidization roasting furnace
CN110238403A (en) * 2018-03-09 2019-09-17 河南理工大学 The composite material and preparation method of lightweight interlayer structure

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012522893A (en) * 2009-04-02 2012-09-27 サンドヴィク インテレクチュアル プロパティー アーゲー Manufacturing method of powder products
US9205492B2 (en) 2009-04-02 2015-12-08 Sandvik Intellectual Property Ab Method for manufacturing a powder based article
JP2013524010A (en) * 2010-03-31 2013-06-17 メッツオ ミネラルズ インク. Method and arrangement for manufacturing parts by hot isostatic pressing, core, cladding preform and use of core
CN105170978A (en) * 2015-09-11 2015-12-23 华中科技大学 Hot isostatic pressing forming method for homogeneous sheath with gradient gradual change structure at connection interface
CN105170978B (en) * 2015-09-11 2017-07-28 华中科技大学 Linkage interface has the homogeneity jacket high temperature insostatic pressing (HIP) manufacturing process of gradient structure
JP2019152384A (en) * 2018-03-05 2019-09-12 住友金属鉱山株式会社 Fluidization roasting furnace
CN110238403A (en) * 2018-03-09 2019-09-17 河南理工大学 The composite material and preparation method of lightweight interlayer structure
CN110238403B (en) * 2018-03-09 2021-05-14 河南理工大学 Composite material with lightweight sandwich structure and preparation method thereof

Similar Documents

Publication Publication Date Title
US4744943A (en) Process for the densification of material preforms
KR101366721B1 (en) Improved method for preparation metal-matrix composite and device for implementing said method
US4032335A (en) Process for making metallic, molded composite bodies
KR970001557B1 (en) Method of manufacturing an object of powdered material by isostatic pressing
JPS63195203A (en) Composite metal article and its production
MX2007011145A (en) Hair and/or scalp care compositions incorporating flavonoid compounds.
CA1299335C (en) Plastic foam container for the densification of powder material
JPH10298609A (en) Manufacture of porous metallic sintered compact
JP2001501254A (en) Die and mold with net shape, and manufacturing method therefor
JPH02167667A (en) Making of abrasive products
JPH09194906A (en) Production of porous sintered compact of metal
JPH09287004A (en) Metal porous body and its production
JPH1046210A (en) Core material
US5623727A (en) Method for manufacturing powder metallurgical tooling
JP3869072B2 (en) Molding method of green compact
JPH10317012A (en) Production of metal porous powder sintered body by hot isostatic pressing
JP2003154494A (en) Method for manufacturing green compact
JP2001122669A (en) Carbon mold for firing annular ceramic
RU2174906C1 (en) Method of forming abrasive tool
JPH04341502A (en) Production of high-density sintered compact made of amorphous alloy powder
RU2167741C2 (en) Method of producing low-porous powder materials
RU2149749C1 (en) Method for moulding of abrasive tool blanks
JPH06279808A (en) Metallic powder sintered compact having high strength and high void volume and production thereof
JPH08302404A (en) Composite layer metallic porous body and its manufacture
JPH0499104A (en) Capsule structure of green compact for sintering and manufacture of sintered body with this capsule