JPH08302404A - Composite layer metallic porous body and its manufacture - Google Patents

Composite layer metallic porous body and its manufacture

Info

Publication number
JPH08302404A
JPH08302404A JP7111593A JP11159395A JPH08302404A JP H08302404 A JPH08302404 A JP H08302404A JP 7111593 A JP7111593 A JP 7111593A JP 11159395 A JP11159395 A JP 11159395A JP H08302404 A JPH08302404 A JP H08302404A
Authority
JP
Japan
Prior art keywords
powder
treatment
layer
metal
porous body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7111593A
Other languages
Japanese (ja)
Inventor
Akira Kosaka
晃 小阪
Takashi Nishi
隆 西
Atsushi Funakoshi
淳 船越
Toru Tanaka
徹 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP7111593A priority Critical patent/JPH08302404A/en
Publication of JPH08302404A publication Critical patent/JPH08302404A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2027Metallic material
    • B01D39/2031Metallic material the material being particulate
    • B01D39/2034Metallic material the material being particulate sintered or bonded by inorganic agents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE: To provide a metallic porous body having a laminated structure consisting of a plurality of layers of different pore distribution, and its manufacturing method. CONSTITUTION: A composite layer porous body is manufactured as a hot isostatically pressed sintered body by either the process (a) where plural kinds of the metallic powder, the powder compact or the metallic powder combined with the powder compact of different material and/or different grain size are layered (lamination filling) as the layer forming materials to achieve the hot isostatic pressing treatment (HIP treatment), or the process (b) where the layer forming materials are layered (lamination filling), and the HIP treatment is achieved after the cold isostatic pressing treatment. The HIP treatment in the process (a) is preferably achieved under the condition that the temperature is 0.2-0.85mpK [mpK is the melting point (absolute temperature) of the powder] and the pressure is 0.5-150MPa, while the HIP treatment in the process (b) is preferably achieved under the condition where the temperature is 0.5-0.98mpK, and the pressure is 0.5-150MPa.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、フィルタ材,触媒担
体,金属鋳造用金型・プラスチック成形用金型,断熱
材,防音材等として有用な金属多孔質体およびその製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a porous metal material useful as a filter material, a catalyst carrier, a metal casting mold, a plastic molding mold, a heat insulating material, a soundproofing material, and a method for producing the same.

【0002】[0002]

【従来の技術】上記各種の用途に供される金属多孔質体
は、金属粉末にステンレス鋼等の金属繊維を配合した混
合物を、所要形状に加圧成形した後、加熱焼結処理する
方法、あるいは金属粉末に適量のバインダ,溶剤等を加
えてスラリーを調製した後、予備焼成でバインダや溶剤
等を除去し、ついで焼成による焼結を行う方法等により
製造されている。また、金属多孔質体を、気孔分布の異
なる複数の層からなる積層構造を有する複層多孔質体と
して製造する方法としては、金属粉末や金属繊維に、加
熱消失性繊維を異なる配合比率で混合した複数枚の成形
体を加圧成形し、その成形体を積層して加熱焼結処理す
る方法が提案されている(特開昭63-171803 号公報) 。
2. Description of the Related Art A porous metal body used for the above-mentioned various uses is a method in which a mixture of metal powder and a metal fiber such as stainless steel is pressure-molded into a desired shape and then heat-sintered. Alternatively, it is produced by a method in which an appropriate amount of a binder, a solvent and the like are added to metal powder to prepare a slurry, the binder and the solvent are removed by preliminary firing, and then sintering is performed by firing. Further, as a method for producing a metal porous body as a multi-layered porous body having a laminated structure composed of a plurality of layers having different pore distributions, a metal powder or a metal fiber is mixed with a heat-dissipating fiber at different mixing ratios. There has been proposed a method in which a plurality of the above-mentioned molded bodies are pressure-molded, the molded bodies are laminated and heated and sintered (Japanese Patent Application Laid-Open No. 63-171803).

【0003】[0003]

【発明が解決しようとする課題】従来の金属多孔質体の
製造方法は、原料粉末を加圧成形した後、成形体の焼結
処理を常圧焼結により行うものである。しかし、その製
造プロセスでは、得られる金属多孔質体の気孔率・気孔
径等の気孔特性の制御が困難である。また、難成形性の
原料を使用して製造される多孔質体の場合は、強度を確
保し難く、複層多孔質体では、積層界面の接合強度を確
保することも容易でない。本発明は、気孔特性の異なる
複数の層からなる積層構造を有する複層金属多孔質体に
ついて、各層が所要の気孔分布を有し、層間の接合強度
も確保された複層金属多孔質体およびその製造方法を提
供するものである。
In the conventional method for producing a porous metal body, the raw material powder is pressure-molded and then the green body is sintered by pressureless sintering. However, in the manufacturing process, it is difficult to control the pore characteristics such as porosity and pore diameter of the obtained porous metal body. Further, it is difficult to secure the strength in the case of a porous body manufactured by using a raw material having poor moldability, and it is not easy to secure the bonding strength at the laminated interface in a multi-layer porous body. The present invention relates to a multi-layer metal porous body having a laminated structure composed of a plurality of layers having different pore characteristics, each layer having a required pore distribution, and a multi-layer metal porous body in which the bonding strength between layers is also secured, and The manufacturing method is provided.

【0004】[0004]

【課題を解決するための手段】本発明の複層金属多孔質
体は、気孔分布の異なる複数の多孔質金属層からなる積
層構造を有する熱間等方加圧焼結体であることを特徴と
している。本発明の複層金属多孔質体は、(a) 粒度また
は/および材種の異なる複数種の金属粉末を層状に充填
(積層充填)し、またはその金属粉末を事前に加圧成形
処理して形成した複数個の粉末成形体を積層充填し、あ
るいは金属粉末と粉末成形体とを積層充填したうえ、熱
間等方加圧処理(以下「HIP処理」ともいう)により
焼結する方法、(b)粒度または/および材種の異なる複
数種の金属粉末を層状に充填(積層充填)し、またはそ
の金属粉末を事前に加圧成形処理して形成した複数個の
粉末成形体を積層充填し、あるいは金属粉末と粉末成形
体とを積層充填し、これを冷間加圧処理を施した後、H
IP処理に付して焼結せしめる方法、により製造するこ
とができる。
The multi-layer metal porous body of the present invention is a hot isotropic pressure sintered body having a laminated structure composed of a plurality of porous metal layers having different pore distributions. I am trying. The multi-layer metal porous body of the present invention is obtained by (a) filling a plurality of kinds of metal powders having different particle sizes and / or grades into a layer (lamination filling), or preliminarily press-molding the metal powder. A method of laminating and filling a plurality of formed powder compacts, or laminating and filling a metal powder and a powder compact, and then sintering by hot isostatic pressing (hereinafter also referred to as "HIP treatment"), ( b) A plurality of kinds of metal powders having different particle sizes and / or grades are packed in layers (lamination and packing), or a plurality of powder compacts formed by subjecting the metal powders to pressure molding in advance are stacked and packed. Alternatively, the metal powder and the powder compact are laminated and filled, and after cold pressing, H
It can be manufactured by a method of subjecting to IP treatment and sintering.

【0005】[0005]

【作用】層構成材料として材種・粒度等の異なる金属粉
末(または粉末成形体等)を層状に充填(積層充填)し
焼結処理することにより、各層の材種・粒度等の差異に
基づいて気孔分布を異にする複数の層からなる積層構造
を有する多孔質焼結体が得られる。その焼結処理にHI
P処理法を適用したので、等方的な圧力作用下に焼結反
応が行われる効果として、複層多孔質焼結体に良好な均
質性が付与され、また粒子間の結合が強まり、多孔質体
としての強度が高く、異材種の組合せになる積層構造で
あっても、層界面に良好な接合強度が付与される。
[Function] Based on the difference in material type, particle size, etc. of each layer by layer-filling (laminating and packing) metal powders (or powder compacts, etc.) having different material types, particle sizes, etc. Thus, a porous sintered body having a laminated structure composed of a plurality of layers having different pore distributions can be obtained. HI for the sintering process
Since the P treatment method is applied, the effect that the sintering reaction is performed under the isotropic pressure action is that good homogeneity is imparted to the multilayer porous sintered body, the bonding between particles is strengthened, and Even if the laminated structure has a high strength as a material and a combination of different material types, good bonding strength is given to the layer interface.

【0006】複層焼結体の各層の気孔率,開気孔率,平
均孔径等の気孔分布(気孔特性)は、各層の構成材料の
材種・粒度、層材料の積層充填体に対する冷間加圧処理
の有無とその処理条件、およびHIP処理条件(温度,
加圧力,処理時間等)等により広範囲に制御することが
できる。例えば、フィルタ等として使用される多孔質体
で、特に厚肉であることを要求される場合には、その表
層部のみを気孔径の比較的小さい多孔質層とし、内部は
気孔径の大きな多孔質層とした気孔分布の勾配を持たせ
れば、肉厚全体に要求される気孔径をもたせた多孔質体
と異なり、圧損を可及的に低減し、より高いフィルタ機
能を確保することも容易になる。
The porosity, open porosity, average pore size, and other pore distributions (pore characteristics) of each layer of the multilayer sintered body are determined by the type and grain size of the constituent material of each layer, and the cold addition of the layer material to the laminated packing. Presence or absence of pressure treatment and its treatment condition, and HIP treatment condition (temperature,
It can be controlled over a wide range by the applied pressure, processing time, etc. For example, when a porous body used as a filter or the like is required to have a particularly large wall thickness, only the surface layer portion is a porous layer having a relatively small pore diameter, and the inside is a porous body having a large pore diameter. By providing a gradient of pore distribution as a porous layer, unlike a porous body that has the pore size required for the entire wall thickness, it is possible to reduce pressure loss as much as possible and to secure a higher filter function. become.

【0007】更に、複層多孔質体をHIP処理による焼
結体として製造する本発明では、各層を構成する層材料
の選択の自由度が高く、種々の材種や粒度の層材料を、
複層多孔質体の用途・使用態様等に応じ、幅広く選択す
ることができる。このことは、種々の使用環境に必要な
材料特性(例えば,耐熱性,耐食性,耐摩耗性等)の要
請に対処することを容易にし、かつその要求特性を経済
的に有利に充足せしめ、金属多孔質体の用途の拡大・多
様化を可能とすることを意味している。例えば、多孔質
体の表層部に高温強度が要求され、他の部分はそれ程の
高温強度を必要としないような場合には、表層にのみ高
温強度の高い層材料を適用し、残余の層は比較的安価な
層材料を充当することにより、目的に適った複層多孔質
体の経済的に有利な製造が可能となる。
Further, in the present invention in which a multilayer porous body is manufactured as a sintered body by HIP treatment, there is a high degree of freedom in selecting the layer material constituting each layer, and layer materials of various material types and particle sizes can be used.
The multi-layer porous body can be widely selected depending on the use and usage of the multi-layer porous body. This makes it easy to meet the requirements of material properties (for example, heat resistance, corrosion resistance, wear resistance, etc.) necessary for various usage environments, and the required properties can be economically advantageously satisfied. This means that the applications of porous materials can be expanded and diversified. For example, when high temperature strength is required for the surface layer portion of the porous body and other portions do not require such high temperature strength, the layer material with high temperature strength is applied only to the surface layer, and the remaining layer is By applying a relatively inexpensive layer material, it is possible to economically manufacture a multi-layer porous body suitable for the purpose.

【0008】本発明の複層多孔質体を形成する各層の層
材料は、用途・要求特性に応じて、例えばステンレス鋼
(SUS304,同630等)、工具鋼(SKD11,
同61等)、マルエージング鋼(18Ni系,20Ni
系等)、高速度鋼(SKH51,同55等)、非鉄金属
(Al合金,Ti合金,Ni合金,Co合金等)、広範
囲に亘つて種々の材種を選択使用することができる。粉
末の粒度は、市販品として入手される各種粒径のものを
はじめ、微細粒径から粗大粒径(例えば、サブミクロン
・オーダから、数百ミクロン)に亘り、目的とする複層
多孔質体の気孔特性に応じて適宜選択・組合せ使用する
ことができる。
The layer material of each layer forming the multi-layer porous body of the present invention may be, for example, stainless steel (SUS304, 630, etc.), tool steel (SKD11, SKD11,
61 etc.), maraging steel (18Ni series, 20Ni
System), high speed steel (SKH51, 55, etc.), non-ferrous metal (Al alloy, Ti alloy, Ni alloy, Co alloy, etc.), and various materials can be selected and used over a wide range. The particle size of the powder ranges from a fine particle size to a coarse particle size (for example, from submicron order to several hundreds of microns), including various particle sizes that are commercially available. Can be appropriately selected and used in combination depending on the pore characteristics of

【0009】層構成材料は、材種/粒度等の異なるもの
を粉末のまま、もしくはこれを事前に粉末成形体に加圧
成形して積層充填し、あるいは粉末と粉末成形体との組
合せとして積層充填したうえ、その積層充填体をそのま
まHIP処理する工程〔前記a工程〕、またはその積層
充填体に冷間加圧処理を施した後、HIP処理する工程
〔前記b工程〕により、複層多孔質焼結体に焼き上げら
れる。上記の各工程において、粉末成形体を層材料とし
て使用する場合の粉末成形体は、冷間等方加圧成形法
(CIP成形法)により成形したものが、均質性の良好
な点から好適に使用される。そのCIP成形は、約20
〜490MPa(300 〜5000気圧)の加圧力を適用して
行うことができる。また、粉末や粉末成形体等を層状に
充填した後、HIP処理に先立って冷間加圧処理する場
合(上記b工程)の冷間加圧成形処理も、均質性を確保
する観点から、CIP処理法が好ましく採用される。そ
の加圧成形処理は、約20〜490MPa(300 〜5000
気圧)の加圧力を適用して行われる。
As the layer-constituting material, materials having different material types / grain sizes are powdered as they are, or the powder is preliminarily pressure-molded into a powder compact to be laminated and filled, or a combination of the powder and the powder compact is laminated. After the filling, the laminated packing is subjected to the HIP treatment as it is [the step a], or the laminated filling is subjected to the cold pressure treatment and then the HIP treatment is carried out [the step b] to obtain the multilayer porosity. Baked into a quality sintered body. In each of the above steps, the powder compact when the powder compact is used as the layer material is preferably formed by the cold isostatic pressing method (CIP molding method) from the viewpoint of good homogeneity. used. The CIP molding is about 20
It can be performed by applying a pressure of 490 MPa (300 to 5000 atm). In addition, in the case of performing cold pressure treatment prior to HIP treatment after filling powders or powder compacts in a layered manner (step b above), the cold pressure compaction treatment also requires CIP from the viewpoint of ensuring homogeneity. A treatment method is preferably adopted. The pressure molding process is performed at about 20 to 490 MPa (300 to 5,000 MPa).
(Atmospheric pressure) is applied.

【0010】積層充填体のHIP処理における温度,加
圧力等の焼結反応条件は、層材料の種類とその組合せ、
および所望の気孔特性等に応じて制御される。カプセル
の積層充填体を、冷間加圧処理することなく、そのまま
HIP処理する場合〔a工程〕においては、処理温度:
0.2〜0.85mpK〔mpKは、金属粉末の融点
(絶対温度),異種材の組合せの場合は、低融点粉末の
融点〕、加圧力:約0.5〜150MPaの範囲に調節
するのが好ましい。それより低温・低圧力の処理では、
焼結反応の不足(粒子間結合の不足)を生じ易く、他方
それより高温・高圧力での処理は、焼結反応の過度の進
行により、多孔質を損なうおそれがある。処理時間は、
0.5〜5Hr程度であればよい。HIP処理により得
られる複層焼結体は、所望により、粒子間結合を強化す
るための熱処理(強化熱処理)が施される。その熱処理
は、カプセルから焼結体を取り出して、またはカプセル
を除去することなくそのまま行ってもよく、度:0.
5〜0.98mpKに適当時間(約2〜12Hr)保持
することにより首尾よく達成される。
The sintering reaction conditions such as temperature and pressure in the HIP treatment of the laminated packing are determined by the type of layer material and its combination,
And controlled according to desired pore characteristics and the like. In the case where the laminated filling body of the capsules is subjected to the HIP treatment as it is without being subjected to the cold pressure treatment, the treatment temperature is:
0.2 to 0.85 mpK [mpK is the melting point (absolute temperature) of the metal powder, in the case of a combination of different materials, the melting point of the low melting point powder], the pressing force: adjusted to a range of about 0.5 to 150 MPa. Is preferred. At lower temperature and lower pressure,
Insufficient sintering reaction (insufficient interparticle bonding) is likely to occur, while treatment at a higher temperature and higher pressure may damage the porosity due to excessive progress of the sintering reaction. The processing time is
It may be about 0.5 to 5 hours. The multilayer sintered body obtained by the HIP treatment is optionally subjected to a heat treatment (strengthening heat treatment) for strengthening the interparticle bond. Its heat treatment takes out a sintered body from the capsule, or may be carried out as it is without removing the capsule, temperature: 0.
It is successfully achieved by holding at 5 to 0.98 mpK for a suitable time (about 2 to 12 hours).

【0011】他方、積層充填体を冷間加圧処理した後、
HIP処理する場合(b工程)においては、冷間加圧処
理で形成された複層粉末成形体を、カプセルに封入せ
ず、裸のまま(カプセルフリー)の状態でHIP処理に
供するのがよい。こうすれば、カプセルを使用したHI
P処理と異なり、複層粉末成形体(その成形体内には多
数の連通気孔が存在する)の内部連通気孔内に静水圧力
媒体が侵入し、そのため静水圧力媒体の加圧作用が、複
層粉末成形体の外側だけでなく内側からも加わる。その
効果として、連通気孔を圧着させずに焼結を行わせるこ
とができ、またHIP処理温度を高めに設定し、気孔特
性を損なわずに粒子間結合を強化することも可能とな
る。そのHIP処理は、処理温度:0.5〜0.98m
pK〔mpKは、前記と同義〕、加圧力:約0.5〜1
50MPaの範囲に調節するのが好ましい。それより低
温・低圧力の処理では、焼結反応の不足(粒子間結合の
不足)を生じ易く、他方それより高温・高圧力での処理
は、焼結反応が過度に進み、多孔性の低下をきたすおそ
れがある。処理時間は、0.5〜5Hr程度であればよ
い。なお、上記のようにHIP処理に高温度を適用して
焼結反応による粒子間結合を促進することができるの
で、前記a工程の焼結体と異なって、HIP処理後の焼
結体に対する強化熱処理は特に必要とされない。但し、
強化熱処理の実施を排除するものではなく、要すればそ
の処理を付加することにより、焼結体の強度を更に高め
ることもできる。その処理は前記と同様の条件で行えば
よい。
On the other hand, after the laminated packing is subjected to cold pressure treatment,
In the case of HIP treatment (step b), it is preferable that the multi-layered powder compact formed by the cold pressure treatment is not encapsulated in the capsule but is left naked (capsule-free) for the HIP treatment. . This way, HI using capsules
Unlike the P treatment, the hydrostatic pressure medium penetrates into the internal ventilation holes of the multi-layer powder compact (there are a large number of multi-vent holes in the compact), so that the pressurizing action of the hydrostatic pressure medium is It is added not only from the outside of the molded body but also from the inside. As an effect thereof, it is possible to carry out sintering without pressurizing the continuous air holes, and it is also possible to set the HIP treatment temperature at a high temperature and strengthen the interparticle bond without impairing the pore characteristics. The HIP treatment is performed at a treatment temperature of 0.5 to 0.98 m.
pK [mpK has the same meaning as above], applied pressure: about 0.5 to 1
It is preferable to adjust the pressure in the range of 50 MPa. Treatments at lower temperatures and lower pressures tend to cause insufficient sintering reactions (lack of interparticle bonding), while treatments at higher temperatures and higher pressures lead to excessive sintering reactions and lower porosity. May cause The processing time may be about 0.5 to 5 hours. As described above, since a high temperature can be applied to the HIP treatment to promote interparticle bonding due to the sintering reaction, unlike the sintered body of the step a, strengthening of the sintered body after the HIP treatment is performed. No heat treatment is specifically required. However,
The strengthening heat treatment is not excluded, and the strength of the sintered body can be further increased by adding the treatment if necessary. The processing may be performed under the same conditions as above.

【0012】[0012]

〔実施例1〕[Example 1]

−粉末の積層充填→HIP処理− (1)層材料粉末 M1 :SUS 316Lステンレス鋼粉末(粒度 100メッシュ・
アンダ) M2 :SUS 316Lステンレス鋼粉末(粒度 40メッシュ・
アンダ) (2)積層充填・焼結処理および熱処理 図1に示すように、カプセル11 内に、上記粉末を、L
11層(粉末M1 )とL12層(粉末M2 )の上下2段に積
層充填し、脱気密封(1 ×10-2Torr)したうえ、HIP
処理に付して厚板ブロック状の複層多孔質焼結体を得
る。 焼結体サイズ:100×100×100(mm)〔L11層
厚50,L12層厚50,mm〕。
-Layered filling of powder → HIP treatment- (1) Layer material powder M1: SUS 316L stainless steel powder (grain size 100 mesh
Under) M2: SUS 316L stainless steel powder (grain size 40 mesh,
Underflow) (2) as shown in stacked filling and sintering and heat treatment Figure 1, the capsule 1 1, the powder, L
11 layers (powder M1) and L12 layer (powder M2) are stacked and filled in two layers, degassed and sealed (1 x 10 -2 Torr), and HIP.
By subjecting it to a treatment, a thick plate block-shaped multilayer porous sintered body is obtained. Sintered body size: 100 × 100 × 100 (mm) [L11 layer thickness 50, L12 layer thickness 50, mm].

【0013】〔実施例2〕 −粉末の積層充填→HIP処理→強化熱処理− (1)層材料粉末 M1 :SUS 316Lステンレス鋼粉末(粒度 100メッシュ・
アンダ) M2 :SUS 316Lステンレス鋼粉末(粒度 40メッシュ・
アンダ) (2)積層充填・焼結処理および熱処理 図1に示すように、カプセル11 内に、上記粉末を、L
11層(粉末M1 )とL12層(粉末M2 )の上下2段に積
層充填し、脱気密封(1 ×10-2Torr)したうえ、HIP
処理に付して厚板ブロック状の複層多孔質焼結体を得
る。カプセルを除去した後、焼結体に強化熱処理を施
す。 焼結体サイズ:100×100×100(mm)〔L11層
厚50,L12層厚50,mm〕。
[Example 2] -Layered filling of powder-> HIP treatment-> Reinforcement heat treatment- (1) Layer material powder M1: SUS 316L stainless steel powder (particle size 100 mesh
Under) M2: SUS 316L stainless steel powder (grain size 40 mesh,
Underflow) (2) as shown in stacked filling and sintering and heat treatment Figure 1, the capsule 1 1, the powder, L
11 layers (powder M1) and L12 layer (powder M2) are stacked and filled in two layers, degassed and sealed (1 x 10 -2 Torr), and HIP.
By subjecting it to a treatment, a thick plate block-shaped multilayer porous sintered body is obtained. After removing the capsules, the sintered body is subjected to a strengthening heat treatment. Sintered body size: 100 × 100 × 100 (mm) [L11 layer thickness 50, L12 layer thickness 50, mm].

【0014】〔実施例3〕 −粉末積層充填→HIP処理→強化熱処理− (1)層材料粉末 M1 :SUS 316Lステンレス鋼粉末(粒度 100メッシュ・
アンダ) M3 :インコネル 625合金粉末(粒度 100メッシュ・ア
ンダ) (2)積層充填・焼結処理および熱処理 図2のように、カプセル11 内の空間を仕切り板31
2つに分け、上記粉末を、L21層(粉末M1 )とL22層
(粉末M3 )の2層に積層充填したうえ、仕切り板31
を抜き取る。脱気密封(1 ×10-2Torr)の後、HIP処
理し、厚板ブロック状の複層多孔質焼結体を得る。カプ
セルを除去し、焼結体に強化熱処理を施す。 焼結体サイズ:100×100×100(mm)〔L21層
厚50,L22層厚50,mm〕。
[Example 3] -Powder layer-filling-> HIP treatment-> Reinforcement heat treatment- (1) Layer material powder M1: SUS 316L stainless steel powder (particle size 100 mesh
Under) M3: Inconel 625 alloy powder (grain size 100 mesh, under) (2) Layer-filling, sintering process and heat treatment As shown in FIG. 2, the space inside the capsule 1 1 is divided into two parts by the partition plate 3 1 and the above. The powder is laminated and packed into two layers, an L21 layer (powder M1) and an L22 layer (powder M3), and a partition plate 3 1
Pull out. After degassing and sealing (1 × 10 -2 Torr), HIP treatment is performed to obtain a thick plate block-shaped multilayer porous sintered body. The capsule is removed, and the sintered body is subjected to a strengthening heat treatment. Sintered body size: 100 × 100 × 100 (mm) [L21 layer thickness 50, L22 layer thickness 50, mm].

【0015】〔実施例4〕 −粉末積層充填→HIP処理→強化熱処理− (1)層材料粉末 M1 :SUS 316Lステンレス鋼粉末(粒度 100メッシュ・
アンダ) M2 :SUS 316Lステンレス鋼粉末(粒度 40メッシュ・
アンダ) (2)積層充填・焼結処理および熱処理 図3に示すように、円筒状カプセル12 (内側円筒壁W1
と外側円筒壁W2で形成されたドーナツ型環状空間を有す
る)の環状空間を、仕切り板32 で同心円状に2つの空
間に分け、上記粉末をL31層(粉末M1 )とL32層(粉
末M2 )の2層に積層充填したうえ、仕切り板32 を抜
き取る。脱気密封(1 ×10-2Torr)の後、HIP処理に
付して中空筒状の複層多孔質焼結体を得、カプセルを除
去して強化熱処理を施す。 焼結体サイズ:外径150×内径50×長さ150(m
m)〔内側L31層厚25,外側L32層厚25,mm〕
[Example 4] -Powder layer stack filling-> HIP treatment-> Reinforcement heat treatment- (1) Layer material powder M1: SUS 316L stainless steel powder (particle size 100 mesh
Under) M2: SUS 316L stainless steel powder (grain size 40 mesh,
(2) Layer-filling, sintering process and heat treatment As shown in FIG. 3, the cylindrical capsule 1 2 (inner cylindrical wall W1)
And an outer cylindrical wall having a toroidal annular space formed by W2) annular space, divided into two spaces concentrically with the partition plate 3 2, the powder L31 layer and (powder M1) L32 layer (powder M2 2) is stacked and filled, and then the partition plate 3 2 is removed. After degassing and sealing (1 × 10 -2 Torr), the sample is subjected to HIP treatment to obtain a hollow cylindrical multilayer porous sintered body, the capsule is removed, and a strengthening heat treatment is performed. Sintered body size: outer diameter 150 x inner diameter 50 x length 150 (m
m) [Inner L31 layer thickness 25, Outer L32 layer thickness 25, mm]

【0016】〔実施例5〕 −粉末成形体と粉末の積層充填→HIP処理 (1)層材料粉末 M1 :SUS 316Lステンレス鋼粉末(粒度 100メッシュ・
アンダ) M3 :インコンネル 625 Ni 基合金粉末(80Ni-14Cr-6F
e )(粒度 60 メッシュ・アンダ) (2)粉末成形体の加圧成形 粉末M1 をゴム型に充填し、CIP成形(加圧力:1200
気圧)により、粉末成形体(直方体ブロック)を形成す
る。 (3)粉末成形体と粉末の積層充填および焼結処理 上記粉末成形体(M1)と、粉末M3 とを、図4に示すよ
うに、カプセル11 内に、L41層(粉末成形体M1 )
と、これを包囲するL42層(粉末M3 )の2層積層状態
に充填し、脱気密封(1×10-2Torr)したうえ、HI
P処理に付し、厚板ブロック状の複層多孔質焼結体を
得、カプセル除去後、強化熱処理を施す。 焼結体サイズ:100×100×100(mm)〔L41層
厚50×50,L42層厚25,mm〕。
[Example 5] -Layer filling of powder compact and powder → HIP treatment (1) Layer material powder M1: SUS 316L stainless steel powder (particle size 100 mesh
Under) M3: Inconnel 625 Ni-based alloy powder (80Ni-14Cr-6F)
e) (Particle size 60 mesh / under) (2) Pressure molding of powder compacts Powder M1 is filled in a rubber mold and CIP molded (pressing force: 1200)
Atmospheric pressure) forms a powder compact (rectangular block). (3) the powder compact and powder layering filling and sintering process the powder compact with (M1), and a powder M3, as shown in FIG. 4, the capsule 1 in 1, L41 layer (powder compact M1)
And L42 layer (powder M3) surrounding the same were filled in a two-layer laminated state, degassed and sealed (1 × 10 -2 Torr), and then HI
Subjected to P treatment to obtain a thick plate block-shaped multi-layer porous sintered body, and after removing the capsules, strengthening heat treatment is performed. Sintered body size: 100 × 100 × 100 (mm) [L41 layer thickness 50 × 50, L42 layer thickness 25, mm].

【0017】〔実施例6〕 −粉末積層充填→冷間加圧成形→HIP処理− (1)層材料粉末 M1 :SUS 316Lステンレス鋼粉末(粒度 100メッシュ・
アンダ) M2 :SUS 316Lステンレス鋼粉末(粒度 40メッシュ・
アンダ) (2)粉末の積層充填および加圧成形 図5に示すように、円柱状芯金4と組み合せたゴム型2
1 の環状空間内に、上記2種の粉末を、L51層(粉末M
1)とL52層(粉末M2)の上下2段に積層充填し、CI
P成形(加圧力:1200気圧) により、複層粉末成形体を
得る。 (3)焼結処理 上記複層粉末成形体をHIP処理(カプセルフリー)
し、中空筒形状の複層多孔質焼結体を得る。 焼結体サイズ:外径60×内径30×長さ150(mm)
〔L51層厚75,L52層厚75,mm〕
[Example 6] -Powder layer-filling-> Cold pressure molding-> HIP treatment- (1) Layer material powder M1: SUS 316L stainless steel powder (particle size 100 mesh
Under) M2: SUS 316L stainless steel powder (grain size 40 mesh,
(Under) (2) Laminate filling of powder and pressure molding As shown in FIG. 5, a rubber mold 2 combined with a cylindrical core metal 4
In the annular space of 1 , the above-mentioned two kinds of powder, L51 layer (powder M
1) and L52 layer (powder M2) are stacked and filled in two layers above and below, and CI
A multi-layered powder compact is obtained by P compacting (pressing force: 1200 atm). (3) Sintering treatment The above multi-layered powder compact is HIP-treated (capsule-free)
Then, a hollow cylindrical multi-layer porous sintered body is obtained. Sintered body size: outer diameter 60 x inner diameter 30 x length 150 (mm)
[L51 layer thickness 75, L52 layer thickness 75, mm]

【0018】〔実施例7〕 −粉末成形体の積層装填→冷間加圧成形→HIP処理− (1)層材料粉末 M1 :SUS 316Lステンレス鋼粉末(粒度 100メッシュ・
アンダ) M2 :SUS 316Lステンレス鋼粉末(粒度 40メッシュ・
アンダ) (2)粉末形成体の形成 粉末M1 およびM2 のそれぞれをゴム型に充填してCI
P処理(加圧力:1200気圧)を施し、2つの粉末成形体
(M1 )(M2 )を形成する。 (3)粉末成形体の冷間加圧処理 上記2つの粉末成形体(M1 )(M2)を、図6に示すよ
うに、ゴム型21 に積層充填し、CIP処理(加圧力:
1500気圧)を施して両者を加圧一体化して複層粉末成形
体とする。 (4)焼結処理 上記複合粉末成形体をHIP処理(カプセルフリー)
し、厚板状ブロックの複層多孔質焼結体を得る。 焼結体サイズ:100×100×100(mm)〔L61層
厚50,L62層厚50,mm〕。
[Example 7] -Layer loading of powder compacts-> Cold pressure compaction-> HIP treatment- (1) Layer material powder M1: SUS 316L stainless steel powder (particle size 100 mesh
Under) M2: SUS 316L stainless steel powder (grain size 40 mesh,
(2) Formation of Powder Forming Body Each of the powders M1 and M2 is filled in a rubber mold and CI.
P treatment (pressurizing force: 1200 atm) is performed to form two powder compacts (M1) (M2). (3) cold pressure treatment the two powder compacts of the powder compacts (M1) (M2), as shown in FIG. 6, stacked filled in a rubber mold 2 1, CIP treatment (pressure:
1500 atm) is applied to integrate the two into a multilayer powder compact. (4) Sintering treatment The above composite powder compact is HIP treated (capsule free)
Then, a multilayer porous sintered body having a thick plate block is obtained. Sintered body size: 100 × 100 × 100 (mm) [L61 layer thickness 50, L62 layer thickness 50, mm].

【0019】〔実施例8〕 −粉末成形体と粉末の積層充填→冷間加圧成形→HIP
処理− (1)層材料粉末 M1 :SUS 316Lステンレス鋼粉末(粒度 100メッシュ・
アンダ) M3 :インコンネル 625Ni基合金粉末(80Ni-14Cr-6F
e )(粒度 60 メッシュ・アンダ) (2)粉末成形体の加圧成形 円柱状芯金と組み合せたゴム型を使用し、CIP処理
(加圧力:1200気圧)により、粉末M1 からなる中空円
筒形状の粉末成形体を形成する。 (3)粉末成形体と粉末の積層充填および冷間加圧成形 上記円筒状粉末成形体(M1 )と粉末(M2 )を、図7
に示すように、ドーナツ型環状空間を有するゴム型22
内に、L71層(粉末成形体M1 )とL72層(粉末M2 )
の同心円をなす2層に積層充填し、CIP処理(加圧
力:1500気圧)を行い、複層粉末成形体を形成する。 (4)焼結処理 上記複層粉末成形体をHIP処理(カプセルフリー)
し、同心円状2層積層構造を有する複層多孔質焼結体を
得る。 焼結体サイズ:外径150×内径50×長さ100,
(mm)〔L71層厚25,L72層厚25,mm〕。
[Embodiment 8] -Layer filling of powder compact and powder-> cold pressure compaction-> HIP
Treatment- (1) Layer material powder M1: SUS 316L stainless steel powder (grain size 100 mesh /
Under) M3: Inconnel 625Ni-based alloy powder (80Ni-14Cr-6F)
e) (Particle size 60 mesh / under) (2) Pressure molding of powder compacts Hollow cylindrical shape consisting of powder M1 by CIP treatment (pressing force: 1200 atm) using a rubber mold combined with a cylindrical core metal To form a powder compact. (3) Layer-filling and cold press molding of powder compact and powder The above cylindrical powder compact (M1) and powder (M2) are shown in FIG.
As shown in Fig. 2, a rubber mold 2 2 having a donut-shaped annular space
L71 layer (powder compact M1) and L72 layer (powder M2)
Are stacked and filled in two layers forming concentric circles, and CIP treatment (pressing pressure: 1500 atm) is performed to form a multilayer powder compact. (4) Sintering treatment The above multi-layered powder compact is HIP treated (capsule free)
Then, a multilayer porous sintered body having a concentric two-layer laminated structure is obtained. Sintered body size: outer diameter 150 x inner diameter 50 x length 100,
(Mm) [L71 layer thickness 25, L72 layer thickness 25, mm].

【0020】〔比較例〕 −粉末の積層充填→加圧成形→常圧焼結処理− (1)層材料粉末 M1 :SUS 316Lステンレス鋼粉末(粒度 100メッシュ・
アンダ) M2 :SUS 316Lステンレス鋼粉末(粒度 40メッシュ・
アンダ) (2)粉末成形体の成形および焼結処理 上記2種の粉末を、ゴム型内に、上下2段の層(L01層
とL02層)をなす積層状態(図1と同様の積層態様)に
充填し、CIP処理(加圧力:100MPa )して2層の
複層粉末成形体を形成する。ついで、常圧焼結処理(雰
囲気:大気)に付して複層多孔質焼結体を得る。 焼結体サイズ:100×100×100(mm)〔L01層
厚50,L02層厚50,mm〕。
[Comparative Example] -Layer filling of powder->Pressure-molding-> Normal pressure sintering- (1) Layer material powder M1: SUS 316L stainless steel powder (particle size 100 mesh
Under) M2: SUS 316L stainless steel powder (grain size 40 mesh,
(2) Molding and Sintering Treatment of Powder Molded Body The above-mentioned two kinds of powders are laminated in a rubber mold to form two upper and lower layers (L01 layer and L02 layer) (a lamination mode similar to FIG. 1). ) And CIP treatment (pressurizing force: 100 MPa) to form a two-layered multilayer powder compact. Then, it is subjected to atmospheric pressure sintering treatment (atmosphere: air) to obtain a multilayer porous sintered body. Sintered body size: 100 × 100 × 100 (mm) [L01 layer thickness 50, L02 layer thickness 50, mm].

【0021】各実施例および比較例の複層多孔質焼結体
の製造条件を表1に、得られた製品焼結体の諸特性の測
定結果を表2にそれぞれ示す。表中の「ガス抜き性」
は、積層された2つの層を貫通する方向におけるエアの
透過圧力であり、「引張強度」および「伸び」は、焼結
体から2つの層の境界面が中央に位置するように試験片
を採取し、JIS Z2241 の規定に準拠して行った引張試験
による測定結果を示している。本発明の複層多孔質体
は、各多孔質層の気孔率・開気孔率、および平均気孔径
の異なる気孔分布を有し、また従来法により製造される
複層多孔質体と同等以上のガス抜き性等の多孔特性を有
し、かつ強度や伸び等の改良された機械性質を備えてい
る。
Table 1 shows the manufacturing conditions of the multi-layered porous sintered bodies of the respective examples and comparative examples, and Table 2 shows the results of measurement of various characteristics of the obtained product sintered bodies. "Degassing" in the table
Is the permeation pressure of air in the direction of penetrating the two laminated layers, and “tensile strength” and “elongation” are the test pieces so that the interface between the two layers is located at the center from the sintered body. The measurement results of a tensile test that was taken and conformed to JIS Z2241 are shown. The multi-layer porous body of the present invention has a porosity / open porosity of each porous layer, and a different pore distribution of the average pore diameter, and is equal to or more than the multi-layer porous body produced by the conventional method. It has porosity characteristics such as degassing and has improved mechanical properties such as strength and elongation.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【表2】 [Table 2]

【0024】[0024]

【発明の効果】本発明の熱間等方加圧焼結体として得ら
れる複層多孔質体は、気孔特性の異なる複数の多孔質層
からなる積層構造を有し、各層内の粒子同士および層間
の接合強度も高い。各層を形成する層材料の材種は幅広
く選択でき、層材料や粒度、および熱間等方加圧処理の
焼結条件等により、用途・使用態様に応じて要求される
気孔特性および材料特性等を経済的に有利に充足するこ
とができる。また、形状・サイズの如何に拘らず、良好
な均質性を保証することができ、用途・使用態様等に応
じた合理的な複層構造の設計と多様なバリエーションの
採択が可能である。本発明複層多孔質体の形態,機能,
経済性等に関するこれらの特長は、金属多孔質体の用途
の拡大・多様化を可能とするものであり、その工業的価
値は極めて大である。
The multi-layer porous body obtained as the hot isostatically pressed sintered body of the present invention has a laminated structure composed of a plurality of porous layers having different pore characteristics, and the particles in each layer are The bonding strength between layers is also high. The type of layer material that forms each layer can be widely selected, and the pore characteristics and material characteristics required depending on the application and use mode, etc., depending on the layer material, particle size, and sintering conditions of hot isostatic pressing. Can be economically satisfied. Further, regardless of the shape and size, good homogeneity can be guaranteed, and rational multilayer structure design and various variations can be adopted according to the application and usage. Form, function,
These features related to economy and the like enable expansion and diversification of uses of the porous metal body, and its industrial value is extremely large.

【図面の簡単な説明】[Brief description of drawings]

【図1】原料粉末の積層充填態様の例を示す断面説明図
である。
FIG. 1 is a cross-sectional explanatory view showing an example of a stack filling method of raw material powders.

【図2】原料粉末の積層充填態様の例を示す断面説明図
である。
FIG. 2 is an explanatory cross-sectional view showing an example of a stacking and filling manner of raw material powders.

【図3】原料粉末の積層充填態様の例を示す斜視説明図
である。
FIG. 3 is a perspective explanatory view showing an example of stacking and filling of raw material powders.

【図4】原料粉末と粉末成形体の積層充填態様の例を示
す断面説明図である。
FIG. 4 is a cross-sectional explanatory view showing an example of a layered filling state of a raw material powder and a powder compact.

【図5】粉末成形体の積層充填態様の例を示す斜視説明
図である。
FIG. 5 is a perspective explanatory view showing an example of a stack filling mode of a powder compact.

【図6】原料粉末の積層充填態様の例を示す断面説明図
である。
FIG. 6 is an explanatory cross-sectional view showing an example of stacking and filling of raw material powder.

【図7】原料粉末と粉末成形体等の積層充填態様の例を
示す斜視説明図である。
FIG. 7 is a perspective explanatory view showing an example of stacking and filling of raw material powder and powder compact.

【符号の説明】[Explanation of symbols]

1,2 :熱間等方加圧焼結用カプセル 21,2 :冷間加圧処理用ゴム型 31,2 :仕切り板 4 :芯金1 1, 1 2 : Capsule for hot isostatic pressing 2 1, 2 2 : Rubber mold for cold pressing 3 1, 3 2 : Partition plate 4: Core metal

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田中 徹 大阪府枚方市中宮大池1丁目1番1号 株 式会社クボタ枚方製造所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toru Tanaka 1-1-1, Nakanomiya Oike, Hirakata-shi, Osaka Prefecture Kubota Hirakata Factory

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 気孔分布の異なる複数の多孔質金属層か
らなる積層構造を有する熱間等方加圧焼結体であること
を特徴とする複層金属多孔質体。
1. A multi-layer metal porous body, which is a hot isotropically pressurized sintered body having a laminated structure composed of a plurality of porous metal layers having different pore distributions.
【請求項2】 粒度または/および材種の異なる、複数
種の金属粉末、金属粉末と金属粉末成形体、または複数
個の金属粉末成形体を、積層充填し、熱間等方加圧処理
により焼結することを特徴とする請求項1に記載の複層
多孔質体の製造方法。
2. A plurality of types of metal powders having different grain sizes and / or grades, a metal powder and a metal powder compact, or a plurality of metal powder compacts are stacked and filled, and hot isostatic pressing is performed. Sintering, The manufacturing method of the multilayer porous body of Claim 1 characterized by the above-mentioned.
【請求項3】 熱間等方加圧処理を、温度:0.2〜
0.85mp K〔但し、mp Kは粉末の融点(絶対温
度)、異材種の粉末が積層充填された場合は、低融点粉
末の融点〕、および加圧力:0.5〜150MPaの条
件下に行うことを特徴とする請求項2に記載の複層金属
多孔質体の製造方法。
3. The hot isotropic pressure treatment is performed at a temperature of 0.2 to.
0.85 mp K (where mp K is the melting point (absolute temperature) of the powder, the melting point of the low melting point powder when the powders of different materials are stacked and filled), and the pressure: 0.5 to 150 MPa It carries out, The manufacturing method of the multilayer metal porous body of Claim 2 characterized by the above-mentioned.
【請求項4】 熱間等方加圧処理の後、焼結体の粒子間
結合を強化するための熱処理を行うことを特徴とする請
求項2または請求項3に記載の複層多孔質体の製造方
法。
4. The multilayer porous body according to claim 2 or 3, wherein after the hot isostatic pressing treatment, a heat treatment for strengthening the interparticle bond of the sintered body is performed. Manufacturing method.
【請求項5】 熱処理を、温度:0.5〜0.98mp
Kで行うことを特徴とする請求項4に記載の複層金属多
孔質体の製造方法。
5. The heat treatment is performed at a temperature of 0.5 to 0.98 mp.
The method for producing a multilayer metal porous body according to claim 4, wherein K is performed.
【請求項6】 粒度または/および材種の異なる、複数
種の金属粉末、金属粉末と金属粉末成形体、または複数
個の金属粉末成形体を、積層充填し、冷間加圧処理した
後、熱間等方加圧処理により焼結することを特徴とする
請求項1に記載の複層金属多孔質体の製造方法。
6. A plurality of types of metal powders having different particle sizes and / or grades, metal powders and metal powder compacts, or a plurality of metal powder compacts are laminated and filled, and after cold press treatment, The method for producing a multilayer metal porous body according to claim 1, wherein the sintering is performed by hot isostatic pressing.
【請求項7】 熱間等方加圧処理を、温度:0.5〜
0.98mp K〔但し、mp Kは粉末の融点(絶対温
度)、異種粉末を積層充填している場合は、低融点粉末
の融点(絶対温度)〕、および加圧力:0.5〜150
MPaの条件下に行うことを特徴とする請求項6に記載
の複層金属多孔質体の製造方法。
7. The hot isostatic pressing treatment is performed at a temperature of 0.5 to 0.5.
0.98 mp K (where mp K is the melting point of powder (absolute temperature), the melting point of low melting point powder (absolute temperature) when different types of powder are stacked and filled), and pressure: 0.5 to 150
The method for producing a multilayer metal porous body according to claim 6, wherein the method is performed under a condition of MPa.
JP7111593A 1995-05-10 1995-05-10 Composite layer metallic porous body and its manufacture Pending JPH08302404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7111593A JPH08302404A (en) 1995-05-10 1995-05-10 Composite layer metallic porous body and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7111593A JPH08302404A (en) 1995-05-10 1995-05-10 Composite layer metallic porous body and its manufacture

Publications (1)

Publication Number Publication Date
JPH08302404A true JPH08302404A (en) 1996-11-19

Family

ID=14565303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7111593A Pending JPH08302404A (en) 1995-05-10 1995-05-10 Composite layer metallic porous body and its manufacture

Country Status (1)

Country Link
JP (1) JPH08302404A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013189666A (en) * 2012-03-13 2013-09-26 Toho Titanium Co Ltd Sheet-like porous body and method for producing the same
JP2015520660A (en) * 2012-04-18 2015-07-23 ディーエスエム アイピー アセッツ ビー.ブイ. Equipment useful for hydrogenation reaction (II)
US9701584B2 (en) 2013-02-20 2017-07-11 Rolls-Royce Plc Method of manufacturing an article from powder material and an apparatus for manufacturing an article from powder material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013189666A (en) * 2012-03-13 2013-09-26 Toho Titanium Co Ltd Sheet-like porous body and method for producing the same
JP2015520660A (en) * 2012-04-18 2015-07-23 ディーエスエム アイピー アセッツ ビー.ブイ. Equipment useful for hydrogenation reaction (II)
US9701584B2 (en) 2013-02-20 2017-07-11 Rolls-Royce Plc Method of manufacturing an article from powder material and an apparatus for manufacturing an article from powder material
US10632536B2 (en) 2013-02-20 2020-04-28 Rolls-Royce Plc Apparatus for manufacturing an article from powder material

Similar Documents

Publication Publication Date Title
US5564064A (en) Integral porous-core metal bodies and in situ method of manufacture thereof
EP0215941B1 (en) Titanium carbide/titanium alloy composite and process for powder metal cladding
EP2900404A1 (en) Methods of forming a metallic or ceramic article having a novel composition of functionally graded material and articles containing the same
CN107838427B (en) Porous sintered metal composite film and preparation method thereof
EP3450160B1 (en) Methods for manufacturing components having spatially graded properties
JPH08302404A (en) Composite layer metallic porous body and its manufacture
US20080112833A1 (en) Component produced or processed by powder metallurgy, and process for producing it
US6372165B1 (en) Cold isopressing method
US9199308B2 (en) Method of producing composite articles and articles made thereby
JPH09194906A (en) Production of porous sintered compact of metal
WO1990011855A1 (en) Manufacture of dimensionally precise pieces by sintering
JP3042879B2 (en) Method of manufacturing a shaped object
CN210908112U (en) Porous sintered metal composite film
JPH08170107A (en) Metallic porous body
JPH0892607A (en) Production of composite hard material
JPH09137201A (en) Production of metallic porous body
JPS6230804A (en) Multi-layer sintering method for sintered hard material powder and ferrous metallic powder by powder hot press method
JPH06293015A (en) Multilayer sintered structure using powder of ceramic or metal and manufacture thereof
JPH05156319A (en) Cylindrical or columnar ceramic-metal composite with functionally gradient layer radially formed and its production
JPH09143512A (en) Production of multilayer sintered compact
RU2232070C1 (en) Process for making porous compact cermet articles
EP0533745B1 (en) Method of manufacturing compound products
JPH06279808A (en) Metallic powder sintered compact having high strength and high void volume and production thereof
JPS6333504A (en) Production of columnar laminate
JPH08218103A (en) Production of metallic porous body

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees