JPH09137201A - Production of metallic porous body - Google Patents

Production of metallic porous body

Info

Publication number
JPH09137201A
JPH09137201A JP29396495A JP29396495A JPH09137201A JP H09137201 A JPH09137201 A JP H09137201A JP 29396495 A JP29396495 A JP 29396495A JP 29396495 A JP29396495 A JP 29396495A JP H09137201 A JPH09137201 A JP H09137201A
Authority
JP
Japan
Prior art keywords
capsule
metal
metal powder
treatment
filled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29396495A
Other languages
Japanese (ja)
Inventor
Akira Kosaka
晃 小阪
Takashi Nishi
隆 西
Atsushi Funakoshi
淳 船越
Ryutaro Motoki
龍太郎 元木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP29396495A priority Critical patent/JPH09137201A/en
Publication of JPH09137201A publication Critical patent/JPH09137201A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a metallic porous body useful for plane burner, filter, catalyst carrier, insulating material, sound insulating material, high damping material, and forming die member, etc. SOLUTION: A capsule is filled with metal powder and an opening for introducing a hydrostatic pressure medium into the capsule is provided at a part of the capsule. Then, hot isostatic pressing treatment is carried out and the metal powder is sintered under the action of the controlled pressurizing force of the hydrostatic pressure medium infiltrating into the spacing among the metal powder grains in the capsule. It is desirable that sintering treatment is performed under a pressure of 0.5-150MPa at 0.5-0.99mpK [where mpK is the melting point of the metal powder and also is the melting point (absolute temp.) of a low-melting metal powder when the capsule is filled with metal powders of dissimilar materials in a laminated state]. If necessary, heat treatment for strengthening the intergranular bonding of a sintered compact is applied at a temp. of 0.5-0.99mpK.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、熱間等方加圧処理
により、気孔分布特性等の改良された金属質の多孔体を
製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a metallic porous body having improved pore distribution characteristics and the like by hot isostatic pressing.

【0002】[0002]

【従来の技術】金属粉末を焼結することにより製造され
る金属多孔体は、樹脂の熱成形用金型,非鉄金属の鋳造
用金型などの成形型材として、またフィルタ,触媒担
体,断熱材,防音材,制振材等として有用である。その
製造方法としては、金属粉末、または金属粉末と金属繊
維の混合物を原料とし、所要形状に加圧成形した後、そ
の粉末成形体を真空ないし還元性雰囲気中で加熱焼結処
理する方法、あるいは原料粉末に適量のバインダや溶剤
等を添加してスラリーを調製した上、予備焼成に付して
バインダや溶剤を蒸散させ、ついで焼結処理する方法等
が行われている。
2. Description of the Related Art A porous metal body produced by sintering metal powder is used as a molding die for a resin thermoforming die, a non-ferrous metal casting die, a filter, a catalyst carrier, and a heat insulating material. It is useful as a soundproofing material, a vibration damping material, etc. As its manufacturing method, a method in which metal powder or a mixture of metal powder and metal fibers is used as a raw material, and after pressure molding into a required shape, the powder compact is heat-sintered in a vacuum or a reducing atmosphere, or A method is used in which an appropriate amount of a binder, a solvent or the like is added to a raw material powder to prepare a slurry, which is then subjected to preliminary firing to evaporate the binder or the solvent and then a sintering treatment.

【0003】[0003]

【発明が解決しようとする課題】従来の製造方法では、
得られる金属多孔体の気孔径や気孔率等を制御すること
が困難であり、気孔分布の均一性も乏しい。製品形状が
大型・複雑化する程、これらの難点は顕著となる。原料
粉末が難焼結性である場合は、機械強度の確保も困難で
ある。また、原料粉末の加圧成形には、一軸プレスや冷
間等方加圧成形法(CIP法)等が適用されるが、原料
粉末として、粒径の大きいものや、球形状に近いものを
使用する場合、気孔径や気孔率の大きい金属多孔体を製
造することは極めて困難である。本発明は金属多孔体の
製造に関する上記問題を解消し、金属多孔体の工学的応
用の拡大・多様化を可能とする改良された金属多孔体の
製造方法を提供するものである。
SUMMARY OF THE INVENTION In the conventional manufacturing method,
It is difficult to control the pore size, porosity, etc. of the obtained porous metal body, and the uniformity of pore distribution is poor. These problems become more significant as the product shape becomes larger and more complex. When the raw material powder is difficult to sinter, it is difficult to secure mechanical strength. A uniaxial press, a cold isostatic pressing method (CIP method) or the like is applied to the pressure molding of the raw material powder, but as the raw material powder, one having a large particle size or a shape close to a sphere is used. When used, it is extremely difficult to produce a metal porous body having a large pore diameter and a high porosity. The present invention provides an improved method for producing a porous metal body, which solves the above-mentioned problems relating to the production of a porous metal body, and enables expansion and diversification of engineering applications of the porous metal body.

【0004】[0004]

【課題を解決するための手段】本発明の金属多孔体の製
造方法は、焼結処理に熱間等方加圧処理を適用するもの
であり、金属粉末をカプセルに充填し、カプセル内に静
水圧媒体を導入するための開口をカプセルの一部に設け
て熱間等方加圧処理に付し、カプセル内の金属粉末の粒
子間隙に侵入する静水圧媒体の制御された加圧力の作用
下に、金属粉末の焼結を行わせることを特徴としてい
る。
The method for producing a porous metal body of the present invention is one in which hot isostatic pressing treatment is applied to the sintering treatment. An opening for introducing a hydraulic medium is provided in a part of the capsule and subjected to hot isotropic pressure treatment, and under the action of a controlled pressurizing force of the hydrostatic medium that enters the particle gap of the metal powder in the capsule. It is characterized in that the metal powder is sintered.

【0005】[0005]

【発明の実施の形態】静水圧媒体を導入する開口を設け
たカプセル内の金属粉末の熱間等方加圧処理(以下「H
IP処理」)において、静水圧媒体(アルゴン,窒素ガ
ス等の不活性流体)の加圧力はカプセルの外表面に作用
すると同時に、粉末充填層内の粒子表面に作用する。金
属粉末の粒子同士が単に接触しているだけの充填状態に
対する静水圧媒体の加圧力は、粒子同士の結合を強化す
る圧縮力として実質的な寄与をなすわけではないが、加
熱による拡散反応に伴って粒子同士の接触界面が結合す
ると、その粒子同士の結合を助長する圧縮力として作用
する。また、粒子間隙に侵入した静水圧媒体の圧力作用
は、気孔径や開気孔の減少を抑制防止する。このような
静水圧媒体の圧力作用下に焼結反応が進行することによ
り、改良された気孔分布と機械性質を備えた金属多孔体
が形成される。
BEST MODE FOR CARRYING OUT THE INVENTION The hot isostatic pressing treatment of metal powder in a capsule provided with an opening for introducing a hydrostatic medium (hereinafter referred to as "H
In the “IP treatment”), the pressing force of the hydrostatic medium (inert fluid such as argon and nitrogen gas) acts on the outer surface of the capsule and at the same time, on the particle surface in the powder packed bed. The pressing force of the hydrostatic medium against the packed state in which the particles of the metal powder are simply in contact with each other does not substantially contribute as a compressive force that strengthens the bond between the particles, but it does not contribute to the diffusion reaction by heating. When the contact interfaces between the particles are bound together, they act as a compressive force that promotes the binding between the particles. Further, the pressure action of the hydrostatic medium that has entered the particle gap prevents and prevents the reduction of the pore diameter and open pores. The sintering reaction proceeds under the pressure action of such a hydrostatic medium to form a porous metal body having improved pore distribution and mechanical properties.

【0006】なお、カプセルに金属粉末を充填して行う
HIP処理は、焼結合金製品の工業的製造法として知ら
れているが、それは真密度に近い高緻密質の製品を目的
とするものであり、そのHIP処理では、原料粉末を高
度に圧縮緻密化させるべく、カプセル内への粉末充填は
真空密封とされる。本発明は、このような従来のHIP
処理と異なり、カプセルに開口を設けて内部と外部とを
連通状態とし、粉末充填層の粒子間隙に静水圧媒体の加
圧力が作用した状態で焼結反応を行わせるという、従来
のHIP処理とは全く異なる処理形態を採用し、その効
果として各種の構造用部材・機能部材として望まれる改
良された気孔分布と機械性質を具備させることを可能に
している。
[0006] The HIP treatment performed by filling capsules with metal powder is known as an industrial production method for sintered alloy products, but it is intended for highly dense products close to true density. In the HIP process, powder filling into the capsule is vacuum-sealed in order to highly compress and densify the raw material powder. The present invention is such a conventional HIP.
Different from the treatment, the conventional HIP treatment in which an opening is provided in the capsule so that the inside and the outside are in communication with each other and the sintering reaction is performed in the state where the pressure force of the hydrostatic medium acts on the particle gap of the powder filling layer Adopts a completely different processing form, and as a result, it is possible to provide the improved pore distribution and mechanical properties desired for various structural members and functional members.

【0007】金属粉末は、単一材種の粉末がカプセル
(例えば軟鋼製)に一様に充填され、また所望により、
積層構造を有する金属多孔体の製造を目的として、材種
および/または粒度の異なる複数種の粉末が積層充填さ
れる。複数種の金属粉末の積層充填態様は任意であり、
上下方向の積層形態や同心円状の積層形態等が与えられ
る。積層充填操作は、必要に応じ、セパレータとしてシ
ート材(紙,プラスチックシート,金属薄板等)を使用
し、例えば円筒状カプセルに2種の金属粉末を同心円状
に積層充填する場合は、セパレータでカプセル本体の内
部を同心円状に分画し、それぞれの空間部分に所定の金
属粉末を充填した上、セパレータを抜き取るようにすれ
ばよい。カプセル内に静水圧媒体を導入するための開口
は、例えばカプセル本体に被せられる蓋材に設けておけ
ば、粉末の充填操作に支障はなく、充填状態を損なわれ
ることもない。
The metal powder is obtained by uniformly filling a capsule (for example, made of mild steel) with a single-grade powder, and if desired,
For the purpose of producing a metal porous body having a laminated structure, a plurality of types of powders having different material types and / or particle sizes are laminated and filled. A stacked filling mode of a plurality of kinds of metal powders is optional,
A vertically stacked structure, a concentric stacked structure, and the like are provided. The layer-filling operation uses a sheet material (paper, plastic sheet, thin metal plate, etc.) as a separator as needed. For example, when two types of metal powder are concentrically layered and packed in a cylindrical capsule, the capsule is filled with the separator. The inside of the main body may be divided into concentric circles, each space portion may be filled with a predetermined metal powder, and then the separator may be removed. If the opening for introducing the hydrostatic medium into the capsule is provided, for example, in the lid member that covers the capsule body, the filling operation of the powder is not hindered and the filling state is not impaired.

【0008】カプセルに充填した金属粉末のHIP処理
における処理温度は、0.5〜0.99mpKの範囲に設
定するのがよい〔例えば、金属粉末の融点が1700Kの場
合は、0.5 ×1700〜0.99×1700K(=850 〜1683K)
〕。0.5mpKより低温度では焼結反応に長時間を要
する。好ましくは、0.70mpK以上である。また、処
理温度を0.99mpK以下に制限することにより、粒子
の溶融・過度の凝着が回避され、焼結体の多孔性を保持
することができる。原料粉末として、複数種の金属粉末
をカプセル内に積層充填した場合のHIP処理温度は、
それらのうちの最も低い融点を基準として設定すればよ
い。HIP処理の静水圧媒体の加圧力は、0.5〜15
0MPaの範囲が適当である。0.5MPaより低い加
圧力では、粒子間結合力の増強効果が少ない。好ましく
は、80MPa以上である。加圧力を高める程、効果は
増すが、150MPaまでで十分であり、それ以上の高
圧力を適用する利益はない。上記温度および加圧力の作
用下に適当時間(例えば、1〜5Hr)保持することに
より、HIP処理を達成する。
The treatment temperature of the HIP treatment of the metal powder filled in the capsule is preferably set in the range of 0.5 to 0.99 mpK [for example, when the melting point of the metal powder is 1700K, 0.5 × 1700 to 0.99]. × 1700K (= 850 to 1683K)
]. If the temperature is lower than 0.5 mpK, it takes a long time for the sintering reaction. It is preferably 0.70 mpK or more. Further, by limiting the treatment temperature to 0.99 mpK or less, melting and excessive adhesion of particles can be avoided, and the porosity of the sintered body can be maintained. As a raw material powder, the HIP treatment temperature when a plurality of kinds of metal powders are stacked and filled in a capsule is
The lowest melting point among them may be set as a reference. The pressure of the hydrostatic medium for HIP treatment is 0.5 to 15
A range of 0 MPa is suitable. When the applied pressure is lower than 0.5 MPa, the effect of enhancing the interparticle bonding force is small. It is preferably 80 MPa or more. The higher the pressurizing force, the more the effect increases, but up to 150 MPa is sufficient, and there is no advantage in applying a higher pressure. The HIP treatment is achieved by maintaining the temperature and pressure for a suitable time (for example, 1 to 5 hours).

【0009】上記HIP処理により得られる焼結体(金
属多孔体)は、所望により、その気孔分布に実質的な変
化を生じさせずに、粒子間結合を強化するための熱処理
(強化熱処理)が施される。その熱処理は、温度: 0.
5〜0.99mpKの温度域に適当時間(例えば、1〜1
0Hr)保持することにより行われる。処理温度を約
0.5mpK以上とすることにより、粒子間の拡散接合に
よる結合強化を効率よく行うことができ、0.99mpK
を上限とすることにより、粒子の溶融・凝着とそれに伴
う気孔分布特性の低下が回避される。金属多孔体が複数
種の金属からなる積層構造を有する場合の熱処理温度
は、前記HIP処理における温度設定と同様に、それら
の金属材種のうちの最も低い融点を基準として設定すれ
ばよい。
If desired, the sintered body (metal porous body) obtained by the HIP treatment may be subjected to a heat treatment (strengthening heat treatment) for strengthening the interparticle bond without substantially changing the pore distribution. Is given. The heat treatment is performed at a temperature of 0.
Appropriate time (for example, 1-1 in the temperature range of 5-0.99mpK)
0 Hr) is held. By setting the treatment temperature to about 0.5 mpK or more, it is possible to efficiently perform the bond strengthening by diffusion bonding between particles.
By setting the upper limit to, melting / adhesion of particles and accompanying deterioration of pore distribution characteristics can be avoided. When the metal porous body has a laminated structure composed of a plurality of kinds of metals, the heat treatment temperature may be set on the basis of the lowest melting point of those metal material types, similarly to the temperature setting in the HIP treatment.

【0010】上記熱処理は、HIP装置内で、HIP処
理につづく一連の工程として実施することができ、また
はHIP装置からカプセルを取り出し、そのまま(焼結
体をカプセルに被包したままの状態)もしくはカプセル
を機械加工により除去したうえ、熱処理炉に装入して実
施するようにしてもよい。原料粉末が難焼結性の材種で
あって、焼結体(多孔質体)が脆弱なためにカプセルか
ら取り出す際の機械加工や取り出した後のハンドリング
過程で焼結体に欠損・崩壊等の不具合を生じるおそれが
あるような場合には、カプセルに被包された状態で熱処
理を行うようにすればよい。なお、HIP装置内で実施
する場合の熱処理は、静水圧媒体の加圧力が作用する状
態であってよく、その加圧作用を解除(常態に戻すのに
通常数時間を要する)しながら行うようにしてもよい。
The above heat treatment can be carried out in the HIP device as a series of steps subsequent to the HIP process, or the capsule is taken out from the HIP device and left as it is (in a state where the sintered body is still encapsulated in the capsule) or The capsules may be removed by machining and then placed in a heat treatment furnace for execution. Since the raw material powder is a material that is difficult to sinter, and the sintered body (porous body) is fragile, the sintered body may be missing or collapsed during the machining process when taking it out from the capsule or the handling process after taking it out. When there is a possibility that the above problem may occur, the heat treatment may be performed in a state of being encapsulated in a capsule. The heat treatment when carried out in the HIP device may be carried out under the pressure of the hydrostatic medium, and is performed while releasing the pressurizing action (it usually takes several hours to restore the normal state). You may

【0011】本発明の金属多孔体の製造に使用される金
属粉末の材種は任意であり、ステンレス鋼(例えば,S
US304,SUS630),工具鋼(例えば,SKD
61,SKD11),マルエージング鋼(例えば,18
Ni系,20Ni系),高速度鋼(例えば,SKH5
1,SKH55),非鉄金属(例えば,チタンないしそ
の合金,ニッケルないしその合金,アルミニウムないし
その合金,銅ないしその合金)等が、目的とする金属多
孔体の用途や要求される材料特性等に応じて選択使用さ
れる。
The grade of the metal powder used in the production of the porous metal body of the present invention is arbitrary, and stainless steel (for example, S
US304, SUS630), tool steel (for example, SKD
61, SKD11), maraging steel (for example, 18
Ni-based, 20Ni-based, high speed steel (eg SKH5
1, SKH55), non-ferrous metals (for example, titanium or its alloys, nickel or its alloys, aluminum or its alloys, copper or its alloys), etc., depending on the intended use of the porous metal body and the required material properties. Used by choice.

【0012】原料粉末の粒度は特に限定されず、例えば
250〜500μmのものが使用される。製品多孔体と
して、気孔径や気孔率の特に大きい金属多孔体を望む場
合は、比較的粗粒の粉末を使用し、機械強度の高い金属
多孔体の場合は、比較的細粒の粉末を使用するとよい。
後記実施例に示すように、原料粉末の粒度により、また
HIP処理の温度,加圧力等により、得られる金属多孔
体の気孔分布および機械性質を広範囲に制御することが
できる。
The grain size of the raw material powder is not particularly limited and, for example, a grain size of 250 to 500 μm is used. If a porous metal product with a particularly large pore size or porosity is desired as the product porous body, use a relatively coarse powder, and if the metal porous body has high mechanical strength, use a relatively fine powder. Good to do.
As shown in Examples below, the pore distribution and mechanical properties of the obtained metal porous body can be controlled in a wide range by the particle size of the raw material powder, the temperature of the HIP treatment, the pressure applied, and the like.

【0013】[0013]

【実施例】【Example】

〔原料粉末〕 A: ステンレス鋼(JIS G4303 SUS316L 相当材) のアト
マイズ粉末 B: ステンレス鋼(JIS G4303 SUS630 相当材) のアト
マイズ粉末 C: インコネル 625(Ni-Cr-Fe系合金)のアトマイズ粉
末 〔焼結処理および熱処理〕 (実施例1〜8)原料粉末を軟鋼製カプセル(円筒状容
器)に充填し、蓋材(板面に孔径10mmの貫通孔を分散形
成)を被せてHIP処理し、HIP処理後、熱処理しま
たは熱処理することなく、多孔質焼結体(直径70×長さ
150,mm)を得る。実施例1〜6は1種の原料粉末を使用
し、実施例7および8は2種の原料粉末を上下の2層に
積層充填(焼結体の各層厚は75mm)とした。また、実施
例2は、HIP処理の後、焼結体をカプセルから取り出
し、真空熱処理炉による強化熱処理に付し、実施例8で
は、HIP処理後、HIP装置内で、静水圧媒体の加圧
力を5Hrを要して解除しながら熱処理を実施した。 (比較例)原料粉末を一軸プレス(加圧力: 2000kgf/cm
2)に付して円筒形状の粉末成形体を得、常圧焼結処理
(温度: 1200℃, 時間: 4 Hr, 雰囲気圧:1×10-3Torr)
を施して円筒形状の焼結体を得る。
[Raw material powder] A: Atomized powder of stainless steel (JIS G4303 SUS316L equivalent material) B: Atomized powder of stainless steel (JIS G4303 SUS630 equivalent material) C: Atomized powder of Inconel 625 (Ni-Cr-Fe alloy) Binding and Heat Treatment] (Examples 1 to 8) Raw material powder is filled in a mild steel capsule (cylindrical container), covered with a lid material (through holes having a hole diameter of 10 mm are dispersedly formed on the plate surface), HIP-treated, and HIPed. After treatment, heat-treated or not heat-treated, porous sintered body (diameter 70 x length
150, mm). In Examples 1 to 6, one kind of raw material powder was used, and in Examples 7 and 8, two kinds of raw material powder were stacked and packed into upper and lower two layers (the thickness of each sintered body was 75 mm). Further, in Example 2, after the HIP treatment, the sintered body was taken out from the capsule and subjected to the strengthening heat treatment in the vacuum heat treatment furnace. In Example 8, after the HIP treatment, the hydrostatic pressure medium was applied in the HIP device. The heat treatment was carried out while releasing the heat treatment for 5 hours. (Comparative example) Uniaxial pressing of raw material powder (pressing force: 2000 kgf / cm
2 ) to obtain a cylindrical powder compact, which is then sintered under normal pressure (temperature: 1200 ℃, time: 4 Hr, atmospheric pressure: 1 × 10 -3 Torr)
To obtain a cylindrical sintered body.

【0014】表1に、各実施例の製造条件および得られ
た金属多孔体の諸特性を示す。表中、「ガス抜き性」欄
の数値は、金属多孔体から切り出した試験片(厚さ3m
m)のエアーの透過に要するエア加圧力(kgf/cm2 )、
「引張強度」欄は、JIS Z2241の規定に準拠する引張試
験結果を示している。なお、実施例7,8(2層積層構
造)の金属多孔体のガス透過試験片は、積層界面がガス
透過方向と直交する向きに調製し、引張試験片は、積層
界面が引張応力の作用方向と直交する向きに調製した。
Table 1 shows the production conditions of each example and various characteristics of the obtained porous metal body. In the table, the numerical value in the "gas release property" column indicates the test piece cut out from the porous metal body (thickness: 3 m
m) Air pressure required for permeation of air (kgf / cm 2 ),
The “Tensile strength” column shows the results of tensile tests in accordance with JIS Z2241. The gas permeation test pieces of the metal porous bodies of Examples 7 and 8 (two-layer lamination structure) were prepared so that the lamination interface was orthogonal to the gas permeation direction. It was prepared in the direction orthogonal to the direction.

【0015】上記にように、本発明により焼結体として
得られる金属多孔体は、原料粉末粒度やHIP処理条
件,および強化熱処理等により、その気孔分布特性,機
械強度等を広範囲に制御できることがわかる。実施例1,
2,4,5 等の焼結体の高多孔性およびと高透過性は、従来
の製造法では到底得ることのできないものである。ま
た、HIP処理後の熱処理により、比較的良好な高多孔
性を維持しながら、その機械強度を高めることができ
る。実施例1,5の金属多孔体は上記のように顕著な多
孔性を有している反面、機械強度に乏しいが、これを他
部材(鋳造材,鍛造材等)と組合せたクラッド材とする
ことにより、高多孔性とより高い機械強度を要求される
用途に適用することが可能となる。
As described above, the porous metal body obtained as a sintered body according to the present invention can control the pore distribution characteristics, mechanical strength and the like in a wide range by the raw material powder particle size, HIP treatment conditions, strengthening heat treatment and the like. Recognize. Example 1,
The high porosity and high permeability of sintered bodies such as 2,4,5 and the like cannot be obtained by conventional manufacturing methods. Moreover, the heat treatment after the HIP treatment makes it possible to increase the mechanical strength while maintaining relatively high porosity. Although the porous metal bodies of Examples 1 and 5 have remarkable porosity as described above, they have poor mechanical strength, but they are used as clad materials in combination with other members (casting materials, forging materials, etc.). As a result, it becomes possible to apply to applications requiring high porosity and higher mechanical strength.

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【発明の効果】本発明によれば、気孔径や気孔率を高低
任意に制御された金属多孔体を得ることができる。この
ことは、金属多孔体によるフィルタ材,触媒担体,断熱
材,防音材,制振材,成形用金型材の機能を高め、また
平面バーナ等として金属多孔体の適用が可能となる等、
金属多孔体の工業的用途を拡大・多様化すると共に、そ
の実用価値を大きく高めるものである。
According to the present invention, it is possible to obtain a porous metal body in which the pore diameter and the porosity are arbitrarily controlled to be high or low. This enhances the functions of the filter material, the catalyst carrier, the heat insulating material, the soundproofing material, the vibration damping material, and the molding die material by the porous metal body, and the application of the porous metal body as the flat burner becomes possible.
It is intended to expand and diversify the industrial use of porous metal and to greatly enhance its practical value.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 元木 龍太郎 大阪府枚方市中宮大池1丁目1番1号 株 式会社クボタ枚方製造所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Ryutaro Motoki 1-1-1, Nakamiya Oike, Hirakata City, Osaka Prefecture Kubota Hirakata Factory

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 金属粉末をカプセルに充填し、カプセル
内に静水圧媒体を導入するための開口をカプセルの一部
に設けて熱間等方加圧処理に付し、カプセル内の金属粉
末の粒子間隙に侵入する静水圧媒体の制御された加圧力
の作用下に、金属粉末の焼結を行わせることを特徴とす
る金属多孔体の製造方法。
1. A capsule is filled with metal powder, and an opening for introducing a hydrostatic medium into the capsule is provided in a part of the capsule and subjected to hot isostatic press treatment. A method for producing a metal porous body, comprising: sintering a metal powder under the action of a controlled pressurizing force of a hydrostatic medium penetrating into a particle gap.
【請求項2】 粒度または/および材種の異なる複数種
の金属粉末をカプセルに積層充填することを特徴とする
請求項1に記載の金属多孔体の製造方法。
2. The method for producing a metal porous body according to claim 1, wherein a plurality of kinds of metal powders having different particle sizes and / or grades are stacked and filled in a capsule.
【請求項3】 熱間等方加圧処理を、加圧力: 0.5〜
150MPa、温度: 0.5〜0.99mpK〔但し,mp
Kは金属粉末の融点、異材種の金属粉末が積層充填され
ている場合は、低融点金属粉末の融点(絶対温度)〕で
行うことを特徴とする請求項1または請求項2に記載の
金属多孔体の製造方法。
3. The hot isotropic pressure treatment is applied at a pressure of 0.5 to
150 MPa, temperature: 0.5-0.99 mpK [however, mp
K is the melting point of the metal powder, or the melting point (absolute temperature) of the low-melting metal powder when the metal powders of different materials are stacked and filled]. The metal according to claim 1 or claim 2. Method for manufacturing porous body.
【請求項4】 熱間等方加圧処理の後、焼結体をカプセ
ルに被包したまま、またはカプセルから取り出し、焼結
体の粒子間結合を強化するための熱処理を行うことを特
徴とする請求項1ないし請求項3のいずれか1つに記載
の金属多孔体の製造方法。
4. After the hot isostatic pressing treatment, a heat treatment for strengthening the interparticle bond of the sintered body is performed while the sintered body is encapsulated in the capsule or taken out from the capsule. The method for producing a porous metal body according to any one of claims 1 to 3.
【請求項5】 熱処理を、温度: 0.5〜0.99mpK
で行うことを特徴とする請求項4に記載の金属多孔体の
製造方法。
5. Heat treatment, temperature: 0.5-0.99mpK
The method for producing a porous metal body according to claim 4, wherein
JP29396495A 1995-11-13 1995-11-13 Production of metallic porous body Pending JPH09137201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29396495A JPH09137201A (en) 1995-11-13 1995-11-13 Production of metallic porous body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29396495A JPH09137201A (en) 1995-11-13 1995-11-13 Production of metallic porous body

Publications (1)

Publication Number Publication Date
JPH09137201A true JPH09137201A (en) 1997-05-27

Family

ID=17801477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29396495A Pending JPH09137201A (en) 1995-11-13 1995-11-13 Production of metallic porous body

Country Status (1)

Country Link
JP (1) JPH09137201A (en)

Similar Documents

Publication Publication Date Title
US5846664A (en) Porous metal structures and processes for their production
US6048432A (en) Method for producing complex-shaped objects from laminae
US6852273B2 (en) High-strength metal aluminide-containing matrix composites and methods of manufacture the same
US20050036899A1 (en) Method for producing sintered components from a sinterable material
WO1997005083A1 (en) Method for manufacturing intermetallic/ceramic/metal composites
US20100310407A1 (en) Method for producing semi-finished products from niti shape memory alloys
WO2015014190A1 (en) Sintered fe-al based porous alloy material with high-temperature oxidization resistance and filtering elements
EP1694875B1 (en) Processes for sintering aluminum and aluminum alloy components
WO2019205830A1 (en) Method for promoting densification of metal body by utilizing metal hydrogen absorption expansion
JP2849710B2 (en) Powder forming method of titanium alloy
KR101658381B1 (en) Method of manufacturing powder molded product and mixed powder for manufacturing powder molded product
JPH09137201A (en) Production of metallic porous body
US20050019199A1 (en) Double-layer metal sheet and method of fabricating the same
JPH09287004A (en) Metal porous body and its production
JPH08302404A (en) Composite layer metallic porous body and its manufacture
JPH08170107A (en) Metallic porous body
JP3895292B2 (en) Method for producing metal foam
JPS613865A (en) Titanium nitride dispersed enhancement body
CN107838427B (en) Porous sintered metal composite film and preparation method thereof
JPH1046209A (en) Production of porous aluminum green compact
JPH01194914A (en) Metallic filter and manufacture thereof
JP3600350B2 (en) Functionally graded material and method for producing the same
US20030223903A1 (en) Reduced temperature and pressure powder metallurgy process for consolidating rhenium alloys
JP2005320581A (en) Method for manufacturing porous metal body
CN210908112U (en) Porous sintered metal composite film