JPS613865A - Titanium nitride dispersed enhancement body - Google Patents

Titanium nitride dispersed enhancement body

Info

Publication number
JPS613865A
JPS613865A JP12595485A JP12595485A JPS613865A JP S613865 A JPS613865 A JP S613865A JP 12595485 A JP12595485 A JP 12595485A JP 12595485 A JP12595485 A JP 12595485A JP S613865 A JPS613865 A JP S613865A
Authority
JP
Japan
Prior art keywords
titanium
alloy
powder
nitriding
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12595485A
Other languages
Japanese (ja)
Inventor
ライオネル フーストン フオード
エリツク ジヨージ ウイルソン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UK Atomic Energy Authority
Original Assignee
UK Atomic Energy Authority
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UK Atomic Energy Authority filed Critical UK Atomic Energy Authority
Publication of JPS613865A publication Critical patent/JPS613865A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0068Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only nitrides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 洟)」41u助友昨 本発明は窒化チタン分散強化合金体の製造に関する。[Detailed description of the invention] 41u Suketomo yesterday The present invention relates to the production of titanium nitride dispersion strengthened alloy bodies.

31Fと1絢 本発明の強化体を製造するにはチタン含有合金粉末の多
孔体を先ず水素含有雰囲気中で加熱して該粉末を焼結さ
せると共に焼結物を多孔化し、次に窒素/水素雰囲気中
で加熱して該粉末を窒化する。
31F and 1 Ayan To produce the reinforced body of the present invention, a porous body of titanium-containing alloy powder is first heated in a hydrogen-containing atmosphere to sinter the powder and make the sintered material porous, and then heated with nitrogen/hydrogen. The powder is nitrided by heating in an atmosphere.

従来の技術 び問題点 チタン含有合金を気相窒化によって強化して窒化チタン
分散物を生成させることは現在公知の技法であるけれど
も厚味ある切片の窒化はその反応が著しく緩慢であるの
で依然として問題である。
PRIOR ART AND PROBLEMSAlthough it is currently a known technique to strengthen titanium-containing alloys by vapor phase nitriding to produce titanium nitride dispersions, nitriding thick sections remains problematic because the reaction is extremely slow. It is.

4題点を解゛するための手 一 本発明に従う窒化チタン分散強化体の製造方法はチタン
含有合金粉末から多孔体を形成させ、次いでかように形
成された粉末粒子群の浸透性の素地(マトリクス)に対
し窒素と水素との流動混合物を通気しオチタンを窒化す
る各工程を包含する。。
Measures for solving the four problems: 1. The method for producing a titanium nitride dispersion reinforced body according to the present invention involves forming a porous body from a titanium-containing alloy powder, and then forming a permeable matrix ( nitriding the titanium by bubbling a flowing mixture of nitrogen and hydrogen through the matrix. .

好ましくは該粉末を水素含有雰囲気中で加熱して部分焼
結を果すことにより多孔体を形成ぎせる。
Preferably, the porous body is formed by heating the powder in a hydrogen-containing atmosphere to effect partial sintering.

即ち粒子群の部分焼結の程度は合金体或いはマトリクス
が窒素/水素のガス流によって浸透されると共に該ガス
流の圧力に抵抗し゛て充分な自己支持性を保つ程度であ
り、この程度にまで粒子群の焼結を達成することにより
多孔体を形成させる。この部分焼結の際の好適温度は9
00〜1250℃の範囲内にある。
That is, the degree of partial sintering of the particles is such that the alloy body or matrix remains sufficiently self-supporting to resist the pressure of the nitrogen/hydrogen gas flow while being permeated by the gas flow; A porous body is formed by achieving sintering of the particles. The preferred temperature for this partial sintering is 9
It is within the range of 00 to 1250°C.

最初の多孔体は平円板(ディスク)状であることが好ま
しく、窒化が行われる容器の中で、又は類似形状の別の
容器の中で、粉末を加熱することにより生成され得る。
The initial porous body is preferably disk-shaped and can be produced by heating the powder in the vessel in which the nitriding is carried out, or in another vessel of similar shape.

多孔性焼結物を生成させる他の方法は半融状微粒型の粉
末を衝突(is+pjnge>させてから収集板上に集
積させる。かようにして生成された合金体は不規則な形
状を呈する傾向をもつので窒化用容器に適合させるため
に機械仕上げを要するかもしれない。
Another method of producing a porous sinter is to collide semi-molten, fine-grained powder and then collect it on a collection plate. The alloy body thus produced exhibits an irregular shape. may require machining to fit into the nitriding vessel.

既述の通り多孔性焼結物は窒化工程の際に崩壊しないだ
めの充分な強度及び窒化用ガスを進入させ、るための相
互連絡する充分な多孔を具えなげればならない。
As mentioned above, the porous sinter must have sufficient strength to avoid collapsing during the nitriding process and sufficient interconnecting pores to allow the entry and passage of the nitriding gas.

適切な窒化温度は1000〜1150℃の範囲内にある
。窒化後に合金体を水素気中で脱ガスして固溶体内の過
剰量の窒素を減ずることが好ましい。
Suitable nitriding temperatures are within the range of 1000-1150°C. After nitriding, the alloy body is preferably degassed in a hydrogen atmosphere to reduce excess nitrogen in the solid solution.

本例において円形断面を有するつなぎ(tiebar)
の製造のために窒化合金を使用した。この場合に合金粉
末は複数のディスク状の生型成形体と  。
Tiebar with circular cross section in this example
Nitrided alloys were used for the production of. In this case, the alloy powder is formed into a plurality of disc-shaped green compacts.

して始め番こ製造され得る。この生型成形体を既述の通
りに部分焼結工程及び窒化工程に供した。これらの工程
の後に生成されたディスク群の一定量を押出用容器の中
に送入し、押出摸作によって合体させて円形断面をもつ
線材(ロンド)又は棒(バー)を製造した。
It can be manufactured first. This green molded body was subjected to a partial sintering process and a nitriding process as described above. After these steps, a certain amount of the discs produced was fed into an extrusion container and combined by extrusion simulation to produce a wire or bar with a circular cross section.

例2 本例において既述の一定量の多孔体群を圧延操作によっ
て合体させてシート状に成形した6成る一定量の多孔体
群を合体させて所望の形状とするその他の諸方法を使用
し得ることが理解されよう。
Example 2 In this example, other methods are used to combine a certain amount of porous bodies described above into a sheet by rolling and forming a certain amount of porous bodies into a desired shape. You will understand what you get.

所望により窒化工程後の多孔体群を例えば粉砕によって
再び粉末に還元さセこれを慣用の粉末や金成形法に使用
し得る。
If desired, the porous bodies after the nitriding step can be reduced to powder again, for example by pulverization, and used in conventional powder or gold molding methods.

又里p四呆 酸化チタン分散7強化粉末群は室温下の酸化を防止する
ために例えば不活性雰囲気中での特別な取扱を要するも
のであるのに比し、窒化粉末群は室温下の酸化に対する
感受性が低いことが推測される。
While the reinforced powder group requires special handling, e.g. in an inert atmosphere, to prevent oxidation at room temperature, the nitride powder group requires special handling to prevent oxidation at room temperature. It is assumed that the susceptibility to

本発明はチタン含有の真正な及びフェライト系の鋼の粉
末、特に20%Cr/25%Ni/Ti粉末を窒化する
ための特殊な用途を有する。即ち本発明の他の態様によ
れば本発明方法に従って製造されるチタン含有鋼粉末−
形成合金体が提供される。
The present invention has particular application for nitriding titanium-containing genuine and ferritic steel powders, especially 20% Cr/25% Ni/Ti powders. That is, according to another aspect of the invention, titanium-containing steel powder produced according to the method of the invention -
A formed alloy body is provided.

本発明は更に該合金体群の合体による諸成分を提供する
と共に該合金体群の粉砕により住成される粉末を提供す
るものである。
The present invention further provides various components obtained by combining the alloys, and also provides powders formed by crushing the alloys.

Claims (12)

【特許請求の範囲】[Claims] (1)窒化チタン分散強化体の製造方法において、チタ
ン含有合金粉末から多孔体を形成させ、次いでかように
形成された粉末粒子群の浸透性のマトリクスに対し窒素
と水素との流動混合物を通気してチタンを窒化する各工
程を包含することを特徴とする前記の方法。
(1) A method for producing a titanium nitride dispersion reinforced body, in which a porous body is formed from a titanium-containing alloy powder, and then a fluid mixture of nitrogen and hydrogen is aerated through the permeable matrix of powder particles thus formed. The method as described above, characterized in that it includes the steps of nitriding titanium.
(2)粉末を水素含有雰囲気中で加熱して部分焼結を果
すことにより多孔体を形成させ、該部分焼結の程度はマ
トリクスが窒素/水素の混合流によって浸透されるよう
になると共に該ガス流の圧力に抵抗して充分な自己支持
性を保つようになる程度である特許請求の範囲第1項記
載の方法。
(2) forming a porous body by heating the powder in a hydrogen-containing atmosphere to effect partial sintering; the degree of partial sintering is such that the matrix is penetrated by a nitrogen/hydrogen mixture flow; 2. The method of claim 1, wherein the material is sufficiently self-supporting to resist the pressure of the gas flow.
(3)部分焼結が900〜1250℃の範囲内の温度で
行われる特許請求の範囲第2項記載の方法。
(3) The method according to claim 2, wherein the partial sintering is carried out at a temperature within the range of 900 to 1250°C.
(4)窒化が1000〜1150℃の範囲内の温度で行
われる特許請求の範囲第2項記載の方法。
(4) The method according to claim 2, wherein the nitriding is carried out at a temperature within the range of 1000 to 1150°C.
(5)窒化工程の後に合金体を水素気中で脱ガスするこ
とにより固溶体内の過剰量の窒素を減ずる特許請求の範
囲第1項記載の方法。
(5) The method according to claim 1, wherein the excess amount of nitrogen in the solid solution is reduced by degassing the alloy body in hydrogen gas after the nitriding step.
(6)ディスク状の複数の該合金体を合体させ、押出し
処理することにより円形断面をもつ構造物品を製造する
工程を更に包含する特許請求の範囲第1項記載の方法。
The method according to claim 1, further comprising the step of: (6) manufacturing a structural article having a circular cross section by combining a plurality of disc-shaped alloy bodies and extruding them.
(7)複数の該合金体を合体させ、圧延処理することに
よりシート状の構造物品を製造する工程を更に包含する
特許請求の範囲第1項記載の方法。
(7) The method according to claim 1, further comprising the step of manufacturing a sheet-like structural article by combining and rolling a plurality of the alloy bodies.
(8)複数の該合金体を粉砕し慣用の粉末や金成形法に
より所望の形状の構造物品を製造する工程を更に包含す
る特許請求の範囲第1項記載の方法。
8. The method according to claim 1, further comprising the step of pulverizing a plurality of said alloy bodies and manufacturing a structural article of a desired shape by a conventional powder or metal molding method.
(9)特許請求の範囲第1項記載の方法によって製造さ
れた窒化チタン分散強化体。
(9) A titanium nitride dispersion-strengthened body produced by the method according to claim 1.
(10)特許請求の範囲第1項記載の方法によって製造
されたチタン含有鋼粉末−形成合金体。
(10) A titanium-containing steel powder-formed alloy body produced by the method according to claim 1.
(11)特許請求の範囲第9項記載の窒化チタン分散強
化体から成るか又はそれを添加された構造的構成要素。
(11) A structural component consisting of or added with the titanium nitride dispersion reinforcement according to claim 9.
(12)特許請求の範囲第10項記載の合金体から成る
か又はそれを添加されたチタン含有鋼の構造的構成要素
(12) A structural component of titanium-containing steel consisting of or to which the alloy body according to claim 10 is added.
JP12595485A 1984-06-15 1985-06-10 Titanium nitride dispersed enhancement body Pending JPS613865A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB8415289 1984-06-15
GB8415289 1984-06-15

Publications (1)

Publication Number Publication Date
JPS613865A true JPS613865A (en) 1986-01-09

Family

ID=10562490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12595485A Pending JPS613865A (en) 1984-06-15 1985-06-10 Titanium nitride dispersed enhancement body

Country Status (3)

Country Link
EP (1) EP0165732B1 (en)
JP (1) JPS613865A (en)
DE (1) DE3567227D1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3624622A1 (en) * 1986-07-21 1988-02-25 Feichtinger Heinrich K METHOD AND DEVICE FOR PRODUCING METALLIC MATERIALS BY HOT ISOSTATIC PRESSING OF METAL POWDER
SE520561C2 (en) 1998-02-04 2003-07-22 Sandvik Ab Process for preparing a dispersion curing alloy
ES2163344B1 (en) * 1998-07-31 2003-05-01 Univ Catalunya Politecnica NEW NITRURATION TREATMENT IN NI-TI ALLOYS FOR APPLICATION IN MEDICINE.
BR0010976A (en) 1999-05-27 2002-03-26 Sandvik Ab Surface modification of high temperature alloys
GB2492054A (en) * 2011-06-13 2012-12-26 Charles Malcolm Ward-Close Adding or removing solute from a metal workpiece and then further processing
CN102560175B (en) * 2011-12-28 2014-09-03 成都易态科技有限公司 Method for adjusting pore diameter of metal porous material and pore structure of metal porous material

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2933386A (en) * 1956-08-01 1960-04-19 Rca Corp Method of sintering and nitriding ferrous bodies
GB1434729A (en) * 1972-11-01 1976-05-05 Gkn Group Services Ltd Method of making an austenitic steel artifact

Also Published As

Publication number Publication date
DE3567227D1 (en) 1989-02-09
EP0165732B1 (en) 1989-01-04
EP0165732A1 (en) 1985-12-27

Similar Documents

Publication Publication Date Title
US3888663A (en) Metal powder sintering process
US4699849A (en) Metal matrix composites and method of manufacture
US3620690A (en) Sintered austenitic-ferritic chromium-nickel steel alloy
US4435483A (en) Loose sintering of spherical ferritic-austenitic stainless steel powder and porous body
US4365996A (en) Method of producing a memory alloy
US4797155A (en) Method for making metal matrix composites
JPS62156240A (en) Powder metallurgical production of copper-nickel-tin spinodal alloy
US3940269A (en) Sintered austenitic-ferritic chromium-nickel steel alloy
JPS613865A (en) Titanium nitride dispersed enhancement body
US5284615A (en) Method for making injection molded soft magnetic material
US3650729A (en) Internally nitrided steel powder and method of making
US2721378A (en) Process for manufacture of porous structure
JPS596353A (en) Manufacture of high pressure thermal molding powder iron alloy with machinability
US2315302A (en) Process of manufacturing shaped bodies from iron powders
US3361599A (en) Method of producing high temperature alloys
CN112941391B (en) NbC-containing high-density composite metal ceramic material and preparation method thereof
JPS62287028A (en) High-strength titanium alloy and its production
EP1965940B1 (en) Enhancement of thermal stability of porous bodies comprised of stainless steel or an alloy
CN113652594A (en) Refractory metal-based alloy and preparation method thereof
JPS62224602A (en) Production of sintered aluminum alloy forging
JPH0273952A (en) Production of alloy phase from prowdery ductile component
US2188873A (en) Making articles from powdered components
JPS61295302A (en) Low-alloy iron powder for sintering
JPS62263940A (en) Heat treatment of ti-fe sintered alloy
JPH02259029A (en) Manufacture of aluminide