US2933386A - Method of sintering and nitriding ferrous bodies - Google Patents

Method of sintering and nitriding ferrous bodies Download PDF

Info

Publication number
US2933386A
US2933386A US601353A US60135356A US2933386A US 2933386 A US2933386 A US 2933386A US 601353 A US601353 A US 601353A US 60135356 A US60135356 A US 60135356A US 2933386 A US2933386 A US 2933386A
Authority
US
United States
Prior art keywords
sintering
nitriding
iron
atmosphere
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US601353A
Inventor
Pessel Leopold
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RCA Corp
Original Assignee
RCA Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RCA Corp filed Critical RCA Corp
Priority to US601353A priority Critical patent/US2933386A/en
Application granted granted Critical
Publication of US2933386A publication Critical patent/US2933386A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0068Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only nitrides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • This invention relates generally .to methods for integrating compressed iron powder -articles while simultaneously rendering them rust-proof; More particularly, the invention relates to the simultaneous sintering and nitriding of compressed soft powdered iron bodies.
  • Another object of the invention isto provide an improved method for integrating a pressed powder body of substantially ferrous material while simultaneously rendering the surface of the body rust-resistant without appreciably altering the magnetic properties ofthe body.
  • Still another object'of the invention is to provide an improved method for simultaneously sintering and nitriding a pressed powder body of ferrous material to integrate the powders while rendering the surface rustproof, without appreciably altering the magnetic properties of the body.
  • cup-shaped magnetic pole piece such. as is useful for loudspeakers and the like. Ithas been found that such articles can be most economically manufactured by pressing soft powdered iron into the desired shape and dimensions and then integrating the pressed iron powder by sintering to produce a strong, continuous body.
  • the invention is applicable generally to the field of ferrous powder metallurgy.
  • an iron body can be nitrided by heating the body to a temperature of about 9001000 F. in an atmosphere of undissociated ammonia (NH for about 40 hours.
  • NH undissociated ammonia
  • a complete description of the nitriding of iron is found on page 699 of the 1948 edition of the Metals Handbook, published by the American Society for Metals. -It is essential to the process that un dissociated ammonia be employedsince the iron will re- 2,933,386 Patented Apr. 19, 1960 and, though the process is reversible, the iron has such a great affinity for the monatomic nitrogen that it reactswith the nitrogen before it is converted to the di atomic state.
  • One of the nitrides thus formed is a hexagonal molecule I of the epsilon (E) phase of the iron' nitride alloy and as such is non-magnetic.
  • E epsilon
  • iron pole pieces can be nitrided according to the invention to the extent necessary to provide a protective rustproof nitride coating for the pole pieces without substantially altering the magnetic properties of the pole pieces.
  • nitriding and sintering the pressed iron powder pole pieces can be accomplished in one operation thus substantially reducing the cost of manufacture of such ferrous bodies.
  • an iron powder body may be nitnded simultaneously during the entire sintering operation.
  • excessive nitriding that is, more than is required for merely providing a ferrous body with a rust-proof coating
  • the ferrous bodies may be simultaneously sintered and nitride'd during the entire 'sintei'ing operation according to the invention.
  • Example I Pressed iron powder bodies each having a cup-shape and Weighing about 1 oz. are placed in a furnace having an atmosphere of undissociated ammonia (NH and maintained at a temperature of 2100 F. for 15 minutes. Thereafter the body is cooled to room temperature in a reducing atmosphere such as hydrogen or nitrogen and hydrogen (dissociated ammonia, for example: N +3 H).
  • a reducing atmosphere such as hydrogen or nitrogen and hydrogen
  • dissociated ammonia for example: N +3 H
  • Example II Pressed iron powder bodies are placed, as in Example I, within a furnace having an atmosphere of dissociated ammonia (N -(6H and heated to a temperature of at least about 1800 F. Preferably the temperature is in the range of 2000 to 2100" F. v The bodies are kept at this temperature for about 15 minutes. Thereafter, while maintaining the temperature as stated, undissociated ammonia (NH is pumped into the furnace and maintained therein for about 5 minutes-at which time the sintering and desired nitriding of the body is completed.
  • dissociated ammonia N -(6H and heated to a temperature of at least about 1800 F.
  • the temperature is in the range of 2000 to 2100" F.
  • the furnace may then be turned-01f and the body allowed to cool to room temperature in an atmosphere of dissociated ammonia (N +3H or any other inert or nonoxidizing atmosphere which may be pumped into the furnace after ceasing to pump the undissociated ammonia (NH through the furnace.
  • This processing technique also resulted in bodies having excellent resistance to rusting and magnetic properties suitable for using the cups in loudspeaker assemblies.
  • Example III A pressed iron powder body is placed in a crucible and drawn through a horizontal tubular furnace heated throughout its length at a temperature of about 2100 F.
  • the first portion of the furnace contains an atmosphere of dissociated ammonia (N +3H H or another re- .ducing or inert atmosphere, and the rate of travel of the pressed iron body is adjusted so that the body will be maintained at this temperature and in this atmosphere for about 15 minutes.
  • the next succeeding portion of the furnace contains an atmosphere of undissociated ammonia (NH the temperature of this portion is substantially the same as in the first portion of the furnace (2100 F.).
  • the rate of travel with respect to the length of this zone is such that the body remains in this nitriding atmosphere for about 5 minutes during which time the sintering of the body is completed and the body is nitrided.
  • the furnace terminates in an unheated portion, preferably cooled as by a water coil. This terminal portion of the furnace contains a non-oxidizing atmosphere such as H dissociated ammonia (N +3H Upon reaching room temperature the body is removed J from the furnace altogether and is finished.
  • the next step after sintering is to complete the sintering operation and to simultaneously nitride the body.
  • This step is accomplished by maintaining the sintering temperature and keeping the body in an atmosphere of undissociated ammonia.
  • the nitriding step is accom: plished in about five minutes; but as in the case of sintering, the many factors already indicated make it impossible to specify the exact nitriding time which will apply in all cases.
  • nitride formed is excessive (more than required for protection), the magnetic properties of the body are deleteriously affected since the nitride formed is non- As previously pointed out, if the p manufacturing efiiciency obtained by carrying out the sintering and nitriding operations in one continuous operation at the same temperature, is significant and highly desirable.
  • the non-reactive, non-oxidizing atmosphere need not be dissociated ammonia (N -MH if desired, hydrogen or nitrogen separately may be employed as well as other known reducing or inert atmospheres.
  • the method of processing a pressed powder body consisting essentially of iron comprising the steps of: partially sintering said body at a temperature of about 1800 F. to about 2100" F. in a non-oxidizing atmosphere; then, while continuing said sintering, nitriding the surface of said body in an atmosphere containing monatomic nitrogen at substantially the same temperature for a brief period.
  • the method of processing a pressed powder body consisting essentially of iron comprising the steps of: partially sintering said body at a temperature of about 2100" F. in a non-oxidizing atmosphere; then, while continuing said sintering, nitriding the surface of said body in an atmosphere of undissociated ammonia at substantially the same temperature for a few minutes.
  • the method of processing a pressed powder body consisting essentially of iron comprising the steps of: partially sintering said body at a temperature of at least 1800 F. in a non-oxidizing atmosphere; then, while continuing said sintering, nitriding the surface of said body in an atmosphere of undissociated ammonia at substantially the same temperature for a few minutes, and thereafter cooling said body in a non-oxidizing atmosphere.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Description

2,933,386 METHOD OF SINTERING AND NITRIDI NG FERROUS BODIES V Leopold Pessel, Wyndmoor, ,Pa., assignor to Radio Corporation of America, a corporation of Delaware No Drawing. Application August 1,; 1956 Serial No.;601,353
3 Claims. (oi. 75-424 This invention relates generally .to methods for integrating compressed iron powder -articles while simultaneously rendering them rust-proof; More particularly, the invention relates to the simultaneous sintering and nitriding of compressed soft powdered iron bodies.
Soft iron powder bodies, even after sintering, are extremely susceptible to rusting, especially in a humid atmosphere. This may bepartly due to the porosity of such iron powder bodies which offers a relatively large area of surface in contact with theair. Previously attempts have been made to protect such sintered iron powder .bodies from oxidation by plating with another metal such as cadmium, zinc, chromium or nickel. Such attempts at plating, however, are not entirely satisfactory. The sintered iron body has a tendency to absorb the plating electrolyte which may later ooze out. This is not only unsightly and conducive to corrosion, but it may also atfect performance of the part where precise clearances are required. In addition, plating is a relatively expensive process.-
'It is, therefore, an object of this invention toprovide. an improved method for integrating a pressed powder body of substantially ferrous material while simultanea ously rendering the surface of the body rust-resistant.
Another object of the invention isto provide an improved method for integrating a pressed powder body of substantially ferrous material while simultaneously rendering the surface of the body rust-resistant without appreciably altering the magnetic properties ofthe body.
Still another object'of the invention is to provide an improved method for simultaneously sintering and nitriding a pressed powder body of ferrous material to integrate the powders while rendering the surface rustproof, without appreciably altering the magnetic properties of the body.
These and other objects and advantages of the invention are accomplished by sintering the pressed iron powder body while simultaneously nitriding the body during at least a part of the time it is being sintered.
The invention will be described in greater detail with particular reference to a cup-shaped magnetic pole piece such. as is useful for loudspeakers and the like. Ithas been found that such articles can be most economically manufactured by pressing soft powdered iron into the desired shape and dimensions and then integrating the pressed iron powder by sintering to produce a strong, continuous body. The invention, however, is applicable generally to the field of ferrous powder metallurgy.
It is known that the nitriding of iron produces an alloy or compound of iron and nitrogen which is highly rustresistant. In general, an iron body can be nitrided by heating the body to a temperature of about 9001000 F. in an atmosphere of undissociated ammonia (NH for about 40 hours. A complete description of the nitriding of iron is found on page 699 of the 1948 edition of the Metals Handbook, published by the American Society for Metals. -It is essential to the process that un dissociated ammonia be employedsince the iron will re- 2,933,386 Patented Apr. 19, 1960 and, though the process is reversible, the iron has such a great affinity for the monatomic nitrogen that it reactswith the nitrogen before it is converted to the di atomic state.
One of the nitrides thus formed is a hexagonal molecule I of the epsilon (E) phase of the iron' nitride alloy and as such is non-magnetic. However, it has been found that iron pole pieces can be nitrided according to the invention to the extent necessary to provide a protective rustproof nitride coating for the pole pieces without substantially altering the magnetic properties of the pole pieces. Furthermore, it has been found that nitriding and sintering the pressed iron powder pole pieces can be accomplished in one operation thus substantially reducing the cost of manufacture of such ferrous bodies. This is a departure from the teachings of the prior art relative to nitriding iron since the nitriding operationis thus carried out at sin'tering temperatures of the order of 2000" F. instead of the conventionally used 950 F. It might be expected that nitriding at temperatures of the order of 2000 F. would result in excessive nitride formation and thus deleteriously affect the magnetic properties and physical dimensions of the ferrous body so treated. Ithas been found, however, in the present invention, that although nitriding does produce expansion of the body (and by expansion is meant a permanent structure growth), the sintering process produces a contraction so as to compensate or balance out the expansion. The contraction is due to coalescence of the iron powder particles upon sintering. Thus an iron powder body may be nitnded simultaneously during the entire sintering operation. However, excessive nitriding (that is, more than is required for merely providing a ferrous body with a rust-proof coating) does affect the magnetic properties of the ferrous body. Where optimum magnetic properties are not required, the ferrous bodies may be simultaneously sintered and nitride'd during the entire 'sintei'ing operation according to the invention.
Example I Pressed iron powder bodies each having a cup-shape and Weighing about 1 oz. are placed in a furnace having an atmosphere of undissociated ammonia (NH and maintained at a temperature of 2100 F. for 15 minutes. Thereafter the body is cooled to room temperature in a reducing atmosphere such as hydrogen or nitrogen and hydrogen (dissociated ammonia, for example: N +3 H The pressed iron cups so treated have excellent rustresistant properties and their magnetic properties are virtually unaffected.
Example II Pressed iron powder bodies are placed, as in Example I, within a furnace having an atmosphere of dissociated ammonia (N -(6H and heated to a temperature of at least about 1800 F. Preferably the temperature is in the range of 2000 to 2100" F. v The bodies are kept at this temperature for about 15 minutes. Thereafter, while maintaining the temperature as stated, undissociated ammonia (NH is pumped into the furnace and maintained therein for about 5 minutes-at which time the sintering and desired nitriding of the body is completed. The furnace may then be turned-01f and the body allowed to cool to room temperature in an atmosphere of dissociated ammonia (N +3H or any other inert or nonoxidizing atmosphere which may be pumped into the furnace after ceasing to pump the undissociated ammonia (NH through the furnace. This processing technique also resulted in bodies having excellent resistance to rusting and magnetic properties suitable for using the cups in loudspeaker assemblies.
Example III A pressed iron powder body is placed in a crucible and drawn through a horizontal tubular furnace heated throughout its length at a temperature of about 2100 F. The first portion of the furnace contains an atmosphere of dissociated ammonia (N +3H H or another re- .ducing or inert atmosphere, and the rate of travel of the pressed iron body is adjusted so that the body will be maintained at this temperature and in this atmosphere for about 15 minutes. The next succeeding portion of the furnace contains an atmosphere of undissociated ammonia (NH the temperature of this portion is substantially the same as in the first portion of the furnace (2100 F.). The rate of travel with respect to the length of this zone is such that the body remains in this nitriding atmosphere for about 5 minutes during which time the sintering of the body is completed and the body is nitrided. The furnace terminates in an unheated portion, preferably cooled as by a water coil. This terminal portion of the furnace contains a non-oxidizing atmosphere such as H dissociated ammonia (N +3H Upon reaching room temperature the body is removed J from the furnace altogether and is finished.
It will be observed that the sequence of steps recited in Examples II and III calls first for sintering in a nonreactive, non-oxidizing atmosphere. The actual batch treated in the examples comprised 15 pounds of oneounce cups. For this batch the sintering time was about 15 minutes and during this period most of the sintering operation is completed. The sintering time will vary, however, with such factors as the furnace capacity, the size of the batch, the shape of the parts, the container carrying the parts,;,etc. Since the time and temperature of sintering depend upon many variables, it is not possible to specify exact sintering times which will be appropriate in all cases. The object of sintering is to give the iron powder body a density, ductility and toughness similar to that of solid iron or low carbon steel. Hence the time of sintering must be long enough to achieve these results. The temperatures necessary to accomplish this are generally above about 1800 F.
In the Examples II and III the next step after sintering is to complete the sintering operation and to simultaneously nitride the body. This step is accomplished by maintaining the sintering temperature and keeping the body in an atmosphere of undissociated ammonia. In the examples referred to, the nitriding step is accom: plished in about five minutes; but as in the case of sintering, the many factors already indicated make it impossible to specify the exact nitriding time which will apply in all cases. nitride formed is excessive (more than required for protection), the magnetic properties of the body are deleteriously affected since the nitride formed is non- As previously pointed out, if the p manufacturing efiiciency obtained by carrying out the sintering and nitriding operations in one continuous operation at the same temperature, is significant and highly desirable.
The non-reactive, non-oxidizing atmosphere need not be dissociated ammonia (N -MH if desired, hydrogen or nitrogen separately may be employed as well as other known reducing or inert atmospheres.
What is claimed is:
1. The method of processing a pressed powder body consisting essentially of iron comprising the steps of: partially sintering said body at a temperature of about 1800 F. to about 2100" F. in a non-oxidizing atmosphere; then, while continuing said sintering, nitriding the surface of said body in an atmosphere containing monatomic nitrogen at substantially the same temperature for a brief period.
2. The method of processing a pressed powder body consisting essentially of iron comprising the steps of: partially sintering said body at a temperature of about 2100" F. in a non-oxidizing atmosphere; then, while continuing said sintering, nitriding the surface of said body in an atmosphere of undissociated ammonia at substantially the same temperature for a few minutes.
3. The method of processing a pressed powder body consisting essentially of iron comprising the steps of: partially sintering said body at a temperature of at least 1800 F. in a non-oxidizing atmosphere; then, while continuing said sintering, nitriding the surface of said body in an atmosphere of undissociated ammonia at substantially the same temperature for a few minutes, and thereafter cooling said body in a non-oxidizing atmosphere.
References Cited in the file of this patent UNITED STATES PATENTS 1,864,567 Walter June 28, 1932 1,989,186 De Bats Jan. 29, 1935 2,051,454 Morris Aug. 18, 1936 2,333,573 Kalischer Nov. 2, 1943 2,666,724 Beller Jan. 19, 1954 FOREIGN PATENTS 1,107,756 France Aug. 10, 1955 OTHER REFERENCES Goetzel: Treatise on Powder Metallurgy, vol. I, pages 697, 698, published 1949.

Claims (1)

1. THE METHOD OR PROCESSING A PRESSED POWDER BODY CONSISTING ESSENTIALLY OF IRON COMPRISING THE STEPS OF: PARTIALLY SINTERING SAID BODY AT A TEMPERATURE OF ABOUT 1800*F. TO ABOUT 2100*F. IN A NON-OXIDIZING ATMOSPHERE, THEN, WHILE CONTINUINMG SAID SINTERING, NITRIDING THE SURFACE OF SAID BODY IN AN ATMOSPHERE CONTAINING MONATOMIC NITROGEN AT SUBSTANTIALLY THE SAME TEMPERATURE FOR A BRIEF PERIOD.
US601353A 1956-08-01 1956-08-01 Method of sintering and nitriding ferrous bodies Expired - Lifetime US2933386A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US601353A US2933386A (en) 1956-08-01 1956-08-01 Method of sintering and nitriding ferrous bodies

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US601353A US2933386A (en) 1956-08-01 1956-08-01 Method of sintering and nitriding ferrous bodies

Publications (1)

Publication Number Publication Date
US2933386A true US2933386A (en) 1960-04-19

Family

ID=24407182

Family Applications (1)

Application Number Title Priority Date Filing Date
US601353A Expired - Lifetime US2933386A (en) 1956-08-01 1956-08-01 Method of sintering and nitriding ferrous bodies

Country Status (1)

Country Link
US (1) US2933386A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3214271A (en) * 1963-03-27 1965-10-26 Borg Warner Method of making friction bodies
US3297439A (en) * 1963-11-18 1967-01-10 Abex Corp Simultaneous sinter bond and nitride for powdered material and backing assembly
US3357827A (en) * 1965-06-02 1967-12-12 Mannesmann Ag Method of producing metal alloys having a high nitrogen content
US3368882A (en) * 1965-04-06 1968-02-13 Chromalloy American Corp Surface hardened composite metal article of manufacture
FR2082749A5 (en) * 1970-03-25 1971-12-10 Allegheny Ludlum Steel Steel powder internally reinforced with a - dispersion of metallic nitride particles
US4101348A (en) * 1970-07-30 1978-07-18 Spin Physics Process for preparing hot-pressed sintered alloys
EP0165732A1 (en) * 1984-06-15 1985-12-27 United Kingdom Atomic Energy Authority Titanium nitride dispersion strengthened bodies
US4614638A (en) * 1980-04-21 1986-09-30 Sumitomo Electric Industries, Ltd. Process for producing sintered ferrous alloys
US4690617A (en) * 1983-08-31 1987-09-01 Ngk Insulators, Ltd. Metal-ceramic composite article and a method of producing the same
US4719074A (en) * 1984-03-29 1988-01-12 Ngk Insulators, Ltd. Metal-ceramic composite article and a method of producing the same
US4719075A (en) * 1984-08-03 1988-01-12 Ngk Insulators, Ltd. Metal-ceramic composite article and a process for manufacturing the same
US4784574A (en) * 1984-10-18 1988-11-15 Ngk Insulators, Ltd. Turbine rotor units and method of producing the same
US4799419A (en) * 1978-03-22 1989-01-24 Linde Aktiengesellschaft Multi-cylinder hydraulic piston device, a cylinder therefor, and its method of making
US4856970A (en) * 1985-03-25 1989-08-15 Ngk Insulators, Ltd. Metal-ceramic combination
US20090081067A1 (en) * 2007-09-21 2009-03-26 Yoshibumi Nakamura Method of fabricating rare-earth sintered magnet and method of fabricating rare-earth bonded magnet

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1864567A (en) * 1929-08-05 1932-06-28 Richard R Walter Alloy of azotized character
US1989186A (en) * 1932-10-05 1935-01-29 Bats Jean Hubert Louis De Method of forming rolls
US2051454A (en) * 1934-09-08 1936-08-18 Morris Albert Wood Metal product and method of making it
US2333573A (en) * 1942-02-12 1943-11-02 Westinghouse Electric & Mfg Co Process of making steel
US2666724A (en) * 1952-12-03 1954-01-19 Gen Aniline & Film Corp Process of preparing iron powder of improved electromagnetic properties
FR1107756A (en) * 1953-06-29 1956-01-05 Mond Nickel Co Ltd Improvements with powdered iron and magnetic cores prepared from it

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1864567A (en) * 1929-08-05 1932-06-28 Richard R Walter Alloy of azotized character
US1989186A (en) * 1932-10-05 1935-01-29 Bats Jean Hubert Louis De Method of forming rolls
US2051454A (en) * 1934-09-08 1936-08-18 Morris Albert Wood Metal product and method of making it
US2333573A (en) * 1942-02-12 1943-11-02 Westinghouse Electric & Mfg Co Process of making steel
US2666724A (en) * 1952-12-03 1954-01-19 Gen Aniline & Film Corp Process of preparing iron powder of improved electromagnetic properties
FR1107756A (en) * 1953-06-29 1956-01-05 Mond Nickel Co Ltd Improvements with powdered iron and magnetic cores prepared from it

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3214271A (en) * 1963-03-27 1965-10-26 Borg Warner Method of making friction bodies
US3297439A (en) * 1963-11-18 1967-01-10 Abex Corp Simultaneous sinter bond and nitride for powdered material and backing assembly
US3368882A (en) * 1965-04-06 1968-02-13 Chromalloy American Corp Surface hardened composite metal article of manufacture
US3357827A (en) * 1965-06-02 1967-12-12 Mannesmann Ag Method of producing metal alloys having a high nitrogen content
FR2082749A5 (en) * 1970-03-25 1971-12-10 Allegheny Ludlum Steel Steel powder internally reinforced with a - dispersion of metallic nitride particles
US4101348A (en) * 1970-07-30 1978-07-18 Spin Physics Process for preparing hot-pressed sintered alloys
US4799419A (en) * 1978-03-22 1989-01-24 Linde Aktiengesellschaft Multi-cylinder hydraulic piston device, a cylinder therefor, and its method of making
US4614638A (en) * 1980-04-21 1986-09-30 Sumitomo Electric Industries, Ltd. Process for producing sintered ferrous alloys
US4690617A (en) * 1983-08-31 1987-09-01 Ngk Insulators, Ltd. Metal-ceramic composite article and a method of producing the same
US4719074A (en) * 1984-03-29 1988-01-12 Ngk Insulators, Ltd. Metal-ceramic composite article and a method of producing the same
EP0165732A1 (en) * 1984-06-15 1985-12-27 United Kingdom Atomic Energy Authority Titanium nitride dispersion strengthened bodies
US4719075A (en) * 1984-08-03 1988-01-12 Ngk Insulators, Ltd. Metal-ceramic composite article and a process for manufacturing the same
US4784574A (en) * 1984-10-18 1988-11-15 Ngk Insulators, Ltd. Turbine rotor units and method of producing the same
US4856970A (en) * 1985-03-25 1989-08-15 Ngk Insulators, Ltd. Metal-ceramic combination
US20090081067A1 (en) * 2007-09-21 2009-03-26 Yoshibumi Nakamura Method of fabricating rare-earth sintered magnet and method of fabricating rare-earth bonded magnet

Similar Documents

Publication Publication Date Title
US2933386A (en) Method of sintering and nitriding ferrous bodies
US2401221A (en) Method of impregnating porous metal parts
US2206395A (en) Process for obtaining pure chromium, titanium, and certain other metals and alloys thereof
US2167240A (en) Magnet material
US2226520A (en) Iron article and method of making same
US3979209A (en) Ductile tungsten-nickel alloy and method for making same
US4047983A (en) Process for producing soft magnetic material
KR900006702B1 (en) Copper-nickel-tin-cobalt spinodal alloy and the making process a the articles
US2656595A (en) Chromium-alloyed corrosion-resist
US3708282A (en) Production of sintered metal products
US2999777A (en) Antimonide coated magnetic materials
US3769100A (en) Method for manufacturing semi-hard magnetic material
US2881511A (en) Highly wear-resistant sintered powdered metal
US2228600A (en) Powder metallurgy
US4465526A (en) High-coercive-force permanent magnet with a large maximum energy product and a method of producing the same
US3142894A (en) Sintered metal article and method of making same
US2329698A (en) Preparation of manganese alloys
US4152179A (en) Process for producing phosphorous-bearing soft magnetic material
US3853537A (en) Sintering alloy
US2830922A (en) Method of making cast magnetic aluminum-iron alloys and product thereof
US3853551A (en) Method of sintering iron, copper tin alloys followed by slow cooling
US4820354A (en) Method for producing a workpiece from a corrosion- and oxidation-resistant Ni/Al/Si/B alloy
US2979810A (en) Rotating bands for projectiles and methods for making the same
US2944893A (en) Method for producing tool steels containing titanium carbide
JP2002516925A (en) Method for producing magnetic material and magnetic powder by forging