JPH10292397A - Method for constructing retaining wall - Google Patents

Method for constructing retaining wall

Info

Publication number
JPH10292397A
JPH10292397A JP9909497A JP9909497A JPH10292397A JP H10292397 A JPH10292397 A JP H10292397A JP 9909497 A JP9909497 A JP 9909497A JP 9909497 A JP9909497 A JP 9909497A JP H10292397 A JPH10292397 A JP H10292397A
Authority
JP
Japan
Prior art keywords
blocks
retaining wall
concrete
stage
filled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9909497A
Other languages
Japanese (ja)
Other versions
JP3723320B2 (en
Inventor
Takayuki Otsuki
隆行 大月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Landes Co Ltd
Original Assignee
Landes Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Landes Co Ltd filed Critical Landes Co Ltd
Priority to JP09909497A priority Critical patent/JP3723320B2/en
Publication of JPH10292397A publication Critical patent/JPH10292397A/en
Application granted granted Critical
Publication of JP3723320B2 publication Critical patent/JP3723320B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Retaining Walls (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a stability without making the size of a block excessively large near the lowermost blocks by a method wherein a concrete block having a larger weight per unit volume than that of a block on an upper stage is used on a lower stage, or filling materials to be filled into blocks whose specific gravity increases as the blocks are located on higher stages are filled into the blocks and the blocks are stacked from a lower stage to a higher stage. SOLUTION: Concrete is filled into blocks 1a, 1b of lower two stages. Next, crushed stones are filled into blocks 1c, 1d stacked on the lower two stages. Further earth and sands are filled into blocks 1e-1j stacked on the lower four blocks. In that manner, when a retaining wall is constructed by stacking blocks, blocks on a lower stage have larger weight per unit volume than that of blocks on a higher stage, or filling materials having a smaller specific gravity are filled into blocks as the blocks are stacked from a lower stage to a higher stage so that the blocks are stacked from a lower stage to a higher stage. Thus the strength, durability, and stability against falling down can be improved as compared to a conventional retaining wall.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、土圧等に対する安
定性大な擁壁の構築方法に関する。
The present invention relates to a method for constructing a retaining wall having high stability against earth pressure and the like.

【0002】[0002]

【従来の技術】擁壁は法面等の保護機能や安全保持機能
を発揮させるために高強度,耐久性,転倒に対する安定
性等が要求される。これらを満足させるために従来の擁
壁は下部を厚くしたり、法面方向へ擁壁の荷重が分散し
て掛かるように、もたせ(傾斜)構造にしている。プレキ
ャストコンクリートブロック(以下ブロックと略記)を用
いて施工する、いわゆる積みブロック擁壁の構築の場合
には、下部が大容積で上部に至るにつれて小容積のもの
を用いるとか(例えば特公平5-46412号、特開平6-71538
号、特開平6-207417号、特開平7-18687号)、下部も上部
も同じ容積のものを傾斜状態に組付ける(例えば特開昭6
4-24919号、特開平7-331674号)といった施工法がとられ
ている。また、現場打ちコンクリート擁壁を構築する場
合では、水平断面積が下部が大、上部が小となるように
型枠組みしてコンクリートを打設したり、水平断面積が
ほぼ同一で傾斜枠組みされた型枠内へコンクリートを打
設してもたせ構造としている例が多い。
2. Description of the Related Art Retaining walls are required to have high strength, durability, stability against overturning, etc. in order to exhibit a function of protecting slopes and the like and a function of maintaining safety. In order to satisfy these requirements, the conventional retaining wall has a thickened lower portion or a raised (inclined) structure so that the load of the retaining wall is distributed and applied in the direction of the slope. In the case of the construction of a so-called retaining block, which is constructed using a precast concrete block (hereinafter abbreviated as a block), the lower part has a large volume and a small volume is used as it reaches the upper part (for example, Japanese Patent Publication No. 5-46412). No., JP-A-6-71538
No., JP-A-6-207417, JP-A-7-18687), lower and upper parts having the same volume are assembled in an inclined state (for example, JP-A-6-207417).
4-24919, JP-A-7-331674). In addition, when constructing a cast-in-place concrete retaining wall, concrete was cast by setting the horizontal cross-sectional area so that the lower part was large and the upper part was small, or the horizontal cross-sectional area was almost the same and the inclined frame was formed. There are many cases where concrete is cast into a formwork and has a lean structure.

【0003】[0003]

【発明が解決しようとする課題】上記のような施工にお
いて、積みブロック擁壁の構築では、下部が大容積で上
部に至るにつれて小容積のものを用いる垂直擁壁例で
は、最下部付近のブロックを上部のものに比べて非常に
大きなものにした例が多い。したがって、製造時、施工
時において、取扱いが大変であるし、コストもかかる。
また、もたせ構造の例では下部も上部も単位体積当りの
重量(以下単位体積重量と略記)がほぼ等しいので、背面
からの土圧に対して転倒のおそれがある。この点は現場
打ちコンクリート擁壁を構築する場合でも同じである。
そこで、本発明は従来と同程度かそれ以上の強度,耐久
性,転倒に対する安定性等を備え、しかも、下部の容積
をいたずらに大きくする必要のない擁壁の施工法につい
て、積みブロック擁壁と現場打ちコンクリート擁壁の両
者について検討した。
In the construction as described above, in the construction of the retaining wall of the building block, in the vertical retaining wall example in which the lower part has a large volume and a small volume as it reaches the upper part, the block near the lowermost part is used. There are many cases in which the size is much larger than the upper one. Therefore, handling is difficult and costly during manufacturing and construction.
In addition, in the example of the mounting structure, since the lower part and the upper part have substantially the same weight per unit volume (hereinafter abbreviated as unit volume weight), there is a possibility of falling over due to earth pressure from the back. This point is the same even when constructing a cast-in-place concrete retaining wall.
Therefore, the present invention relates to a method for constructing a retaining wall having the same or higher strength, durability, stability against overturning, and the like, and requiring no unnecessarily large lower volume. And both cast-in-place concrete retaining walls.

【0004】[0004]

【課題を解決するための手段】上記課題を検討した結
果、下段が上段よりも単位体積重量が大なコンクリート
ブロックを用いるか、又はコンクリートブロック内部に
下部が高比重で上部に至るほど低比重の中詰め材を充填
して下部から上部へ構築することを特徴とする擁壁の構
築方法を開発した。プレキャストコンクリートブロック
の単位体積重量を大から小へと変化させる手段として
は、骨材の比重を変化させるとか、圧密程度を変えると
か、上部に至るにつれて中空軽量骨材の配合度合を増す
等である。
As a result of studying the above-mentioned problems, a concrete block having a larger unit volume weight in the lower stage than in the upper stage is used, or a lower specific gravity is used in the concrete block so that the lower portion has a higher specific gravity and the upper portion has a higher specific gravity. We developed a method for constructing a retaining wall, which is characterized by filling the filling material and constructing from the bottom to the top. Means for changing the unit volume weight of the precast concrete block from large to small include changing the specific gravity of the aggregate, changing the degree of compaction, and increasing the degree of compounding of the hollow lightweight aggregate toward the top. .

【0005】また、現場打ちコンクリート擁壁を構築す
るに際し、コンクリート内部に下部が高比重で上部に至
るほど低比重の骨材を用いるか、又は中詰め材を充填す
ることを特徴とする擁壁の構築方法とした。骨材又は中
詰め材の高比重のものとして石材、コンクリートなどを
挙げることができ、それらよりも低比重のものとして
は、砕石、砂、土、更に、低比重のものとしては軽石、
シラスバルーン等をそれぞれ必要な部位へ必要量使用す
る。中詰め材の最適な充填は、現場打ちコンクリートの
打設を複数段に分けて行い、下段のコンクリート打設固
化後、形成されている中詰め材充填空間へ中詰め材の充
填を行い、その後に上段のコンクリート打設固化後、中
詰め材の充填を行うといった一連の作業の繰返しを行う
際に、上へいくに従って充填する中詰め材の比重が高い
ものから低いものへと変化させながら充填するのであ
る。
[0005] In constructing a cast-in-place concrete retaining wall, the retaining wall is characterized by using an aggregate having a lower specific gravity and a lower specific gravity so as to reach an upper portion inside the concrete, or filling the concrete with a filling material. Construction method. Stones, concrete, etc. can be mentioned as those having a high specific gravity of the aggregate or the filling material, and those having a lower specific gravity are crushed stone, sand, soil, and further, pumice has a lower specific gravity.
Use the required amount of shirasu balloon and the like for each required site. Optimum filling of the filling material is performed by dividing the cast-in-place concrete into multiple stages, placing the solid concrete in the lower stage, filling the filling material space that has been formed, and then filling the filling material. When the series of operations such as filling the middle filling material after solidifying the concrete in the upper stage is repeated, filling is performed while changing the specific gravity of the filling material from high to low as going upward You do it.

【0006】高比重から低比重のものへと変化した骨材
又は中詰め材には下記のようなものが使用できる。 重量(高比重)骨材(中詰め材):鉄鉱石,磁鉄鉱,褐鉄鉱,
重晶石,砂鉄 普通骨材(中詰め材):砕石,海砂,河砂 軽量(低比重)骨材(中詰め材):人工軽量骨材(膨張頁岩,
膨張粘土,膨張スレート,焼成フライアッシュ) 天然軽量骨材(火山礫),土砂 副産軽量骨材(膨張スラブ)
[0006] The following materials can be used as the aggregate or filling material changed from a high specific gravity to a low specific gravity. Weight (high specific gravity) aggregate (filling material): iron ore, magnetite, limonite,
Barite, iron sand Ordinary aggregate (medium stuffing): crushed stone, sea sand, river sand Lightweight (low specific gravity) aggregate (medium stuffing): artificial lightweight aggregate (expanded shale,
Expanded clay, expanded slate, fired fly ash) Natural lightweight aggregate (volcanic rubble), earth and sand By-product lightweight aggregate (expanded slab)

【0007】[0007]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

実施例1(積ブロック擁壁) 積みブロック擁壁の様子を図1に示す。使用ブロックの
諸条件は次の通りである。高さ(h)=1.0m,底版幅(B)=
3.3m,奥行(L)=1.0m,勾配1:0.40,体積(S)=3.0m3,
重心x座標(x)=1.5m,重心y座標(y)=0.5m 下2段のブロック1a,1bは内部へコンクリートを中詰め
している。この単位体積重量は2.35tf/m3である。次に
積まれた2段のブロック1c,1dは内部へ砕石を充填し
た。単位体積重量は2.00tf/m3である。更に、それ以上
の5段のブロック1e〜1jには土砂を中詰めしている。単
位体積重量は1.80tf/m3である。
Example 1 (Retaining wall of a building block) A state of a retaining wall of a building block is shown in FIG. The conditions of the used block are as follows. Height (h) = 1.0m, slab width (B) =
3.3 m, depth (L) = 1.0 m, gradient 1: 0.40, volume (S) = 3.0 m 3 ,
Center of gravity x coordinate (x) = 1.5 m, center of gravity y coordinate (y) = 0.5 m The lower two blocks 1a and 1b are filled with concrete inside. The unit volume weight is 2.35 tf / m 3 . Next, the two stacked blocks 1c and 1d were filled with crushed stone. Unit weight is 2.00tf / m 3. Further, the further five blocks 1e to 1j are filled with earth and sand. Unit weight is 1.80tf / m 3.

【0008】以上の積みブロック擁壁について、滑動
に対する安定性、転倒に対する安定性、基礎地盤の
支持力に対する安定性の各安定性について検討した。
With respect to the above-mentioned retaining wall of the pile block, the stability against sliding, the stability against falling, and the stability against the supporting force of the foundation ground were examined.

【0009】滑動に対する安定性は次式により求め
る。
The stability against sliding is determined by the following equation.

【0010】[0010]

【数1】 (Equation 1)

【0011】転倒に対する安定性は次式により求め
る。
The stability against overturning is determined by the following equation.

【0012】[0012]

【数2】 (Equation 2)

【0013】基礎地盤の支持力に対する安定性は次式
により求める。
The stability of the foundation against the supporting force is determined by the following equation.

【0014】[0014]

【数3】 (Equation 3)

【0015】〜式による計算結果は、以下の通りで
あった。
The calculation results by the formulas are as follows.

【0016】滑動に対する安定性[0016] Stability against sliding

【0017】[0017]

【数4】 (Equation 4)

【0018】転倒に対する安定性Stability against falling

【0019】[0019]

【数5】 (Equation 5)

【0020】基礎地盤の支持力に対する安定性Stability of foundation ground against bearing capacity

【0021】[0021]

【数6】 (Equation 6)

【0022】よって、滑動に対する安定性も、転倒に対
する安定性も、更に基礎地盤の支持力に対する安定性の
いずれについても、安全である。
Therefore, the stability against sliding, the stability against falling, and the stability against the supporting force of the foundation ground are all safe.

【0023】実施例2(積ブロック擁壁) 実施例1に示したと同様な積みブロック擁壁において、
各使用ブロックの諸条件は次の通りとした。高さ(h)=
1.0m,底版幅(B)=3.3m,奥行(L)=1.0m,勾配1:0.40,
体積(S)=3.0m3,重心x座標(x)=1.5m,重心y座標(y)
=0.5m このような積みブロック擁壁において、下段のものほど
上段よりも単位体積重量が大なものを用いて施工した。
すなわち、下2段のブロックは単位体積重量が2.4tf/m3
となるように成形したものである。次に積まれた2段の
ブロック1c,1dは単位体積重量が2.0tf/m3、更に、それ
以上の5段のブロック1e〜1jは単位体積重量は1.80tf/m
3となるよう、セメントと骨材および水の配合に配慮し
て調製し、プレス成形した。この例でも滑動に対する安
定性、転倒に対する安定性、更に基礎地盤の支持力に対
する安定性のいずれについても良好な結果が得られた。
Example 2 (Retaining wall of a building block) In a retaining wall of a building block similar to that shown in the first embodiment,
The conditions of each used block were as follows. Height (h) =
1.0m, stencil width (B) = 3.3m, depth (L) = 1.0m, gradient 1: 0.40,
Volume (S) = 3.0 m 3 , x-coordinate of barycenter (x) = 1.5 m, y-coordinate of barycenter (y)
= 0.5 m In such a retaining wall of the building block, the lower block having a larger unit volume weight than the upper block was used for construction.
In other words, the lower two blocks have a unit volume weight of 2.4 tf / m 3
It was molded so that Next, the stacked two-stage blocks 1c and 1d have a unit volume weight of 2.0 tf / m 3 , and the further five-stage blocks 1e to 1j have a unit volume weight of 1.80 tf / m.
In order to obtain 3, it was prepared in consideration of the mixing of cement, aggregate and water, and pressed. Also in this example, good results were obtained in all of the stability against sliding, the stability against falling, and the stability against the supporting force of the foundation ground.

【0024】実施例3(積ブロック擁壁) 実施例1,2と同じサイズの積みブロック擁壁におい
て、下段のものほど上段よりも単位体積重量が大なもの
を用いると共に、下2段のブロック1a,1bは内部へコン
クリートを中詰めしている。この単位体積重量はほぼ2.
4tf/m3である。次に積まれた2段のブロック1c,1dは内
部へ砕石を充填した。単位体積重量は2.1tf/m3である。
さらに、それ以上の5段のブロック1e〜1jには土砂を中
詰めしている。単位体積重量は1.90tf/m3である。
Example 3 (Retaining wall of a stacking block) In the retaining wall of the same size as that of the first and second embodiments, a lower-level block having a larger unit volume weight than an upper-level block and a lower-level block are used. 1a and 1b are filled with concrete inside. This unit volume weight is almost 2.
It is a 4tf / m 3. Next, the two stacked blocks 1c and 1d were filled with crushed stone. Unit weight is 2.1tf / m 3.
Further, the further five blocks 1e to 1j are filled with earth and sand. Unit weight is 1.90tf / m 3.

【0025】この例でも滑動に対する安定性、転倒に対
する安定性、更に基礎地盤の支持力に対する安定性のい
ずれについても良好な結果が得られた。
Also in this example, good results were obtained with respect to stability against sliding, stability against falling, and stability against the supporting force of the foundation ground.

【0026】実施例4(現場打ちコンクリート擁壁) 図2に示すように、現場打ちコンクリート擁壁を3回に
分けて現場打ち施工を行った。3回に分けて行った現場
打ちの諸条件は表1の通りである。基部のNo.1は砕石
を骨材に使用したコンクリートを型枠内へ打設したの
で、単位体積重量が2.35tf/m3である。No.2は砕石と天
然軽量骨材の火山礫とを混合した骨材をコンクリートに
配合したので、単位体積重量がNo.1よりも小な2.00tf/
m3である。No.3は天然軽量骨材の火山礫を骨材に使用
したので、単位体積重量が更に小さい1.80tf/m3であ
る。
Example 4 (cast-in-place concrete retaining wall) As shown in FIG. 2, cast-in-place concrete retaining wall was divided into three times and cast-in-place. Table 1 shows the conditions of the casting in place performed in three times. The base No. 1 had a unit volume weight of 2.35 tf / m 3 because concrete using crushed stone as an aggregate was poured into the formwork. No.2 blended concrete with a mixture of crushed stone and natural lightweight aggregate lapilli, so the unit volume weight was 2.00tf / smaller than No.1.
m is 3. In No. 3, the unit volume weight is 1.80 tf / m 3 , because the natural lightweight aggregate lapilli was used for the aggregate.

【0027】[0027]

【表1】 [Table 1]

【0028】以上の現場打ちコンクリート擁壁につい
て、前記実施例同様、滑動に対する安定性、転倒に
対する安定性、基礎地盤の支持力に対する安定性のそ
れぞれについて検討した。求めた式は前記実施例と同じ
である。その結果は下記の通りである。
With respect to the above-mentioned cast-in-place concrete retaining wall, the stability against sliding, the stability against overturning, and the stability against the supporting force of the foundation ground were examined in the same manner as in the above embodiment. The equation obtained is the same as in the above embodiment. The results are as follows.

【0029】滑動に対する安定性Stability against sliding

【0030】[0030]

【数7】 (Equation 7)

【0031】転倒に対する安定性Stability against falling

【0032】[0032]

【数8】 (Equation 8)

【0033】基礎地盤の支持力に対する安定性Stability of base ground against bearing capacity

【0034】[0034]

【数9】 (Equation 9)

【0035】よって、滑動に対する安定性も、転倒に対
する安定性も、更に基礎地盤の支持力に対する安定性の
いずれについても、安全である。
Therefore, the stability against sliding, the stability against falling, and the stability against the supporting force of the foundation ground are all safe.

【0036】実施例5(現場打ちコンクリート擁壁) 現場打ちコンクリート擁壁を3回に分けて現場打ち施工
を行った。3回に分けて行った現場打ちの諸条件は実施
例5の通りである。基部のNo.1は鉄鉱石をサンドイッ
チ状に中詰め材に使用してコンクリートを型枠内へ打設
したので、単位体積重量が2.5tf/m3である。No.2は砕
石と火山礫を中詰め材に同様に使用したので、単位体積
重量がNo.1よりも小な2.00tf/m3である。No.3は膨張
スラブを中詰め材に使用したので、単位体積重量が更に
小さい1.80tf/m3である。
Example 5 (cast-in-place concrete retaining wall) Cast-in-place concrete retaining wall was divided into three times and cast-in-place construction was performed. The conditions of the in-situ casting performed three times are as in the fifth embodiment. Base No. 1 has a unit volume weight of 2.5 tf / m 3 because iron ore is used as a filling material in a sandwich shape and concrete is poured into the formwork. No. 2 uses crushed stone and lapilli as the filling material in the same way, so the unit volume weight is 2.00 tf / m 3 smaller than No. 1. No. 3 has an even smaller unit volume weight of 1.80 tf / m 3 because the expanded slab is used as the filling material.

【0037】実施例6(現場打ちコンクリート擁壁) 現場打ちコンクリート擁壁を3回に分けて現場打ち施工
を行った。3回に分けて行った現場打ちの諸条件は実施
例5の通りである。基部のNo.1は鉄鉱石を骨材とし鉄
鉱石を中詰め材に使用し、重量コンクリートとして型枠
内へ打設したので、単位体積重量が2.5tf/m3である。N
o.2は砕石と火山礫を骨材とし砕石と火山礫を混ぜて中
詰め材に使用し、軽量コンクリートとしたので、単位体
積重量がNo.1よりも小な2.00tf/m3である。No.3は焼
成フライアッシュを骨材とし火山礫を中詰め材に使用
し、軽量コンクリートとしたので、単位体積重量が更に
小さい1.80tf/m3である。
Example 6 (cast-in-place concrete retaining wall) The cast-in-place concrete retaining wall was divided into three times and cast-in-place. The conditions of the in-situ casting performed three times are as in the fifth embodiment. The base No. 1 uses iron ore as aggregate and uses iron ore as filling material, and is cast as heavy concrete into a formwork, so that the unit volume weight is 2.5 tf / m 3 . N
o.2 the crushed stone and lapilli using a medium packed material mix crushed stone and lapilli and aggregate, since the lightweight concrete, specific weight is small as 2.00tf / m 3 than No.1 . No. 3 uses fire fly ash as aggregate and uses lapilli as a filling material and is made of lightweight concrete, so the unit volume weight is even smaller, 1.80 tf / m 3 .

【0038】比較例 従来のもたれ式コンクリート擁壁による比較例 図2に示した複数段に分けて現場打ち施工を行ったもの
と同容積で、もたれ角も同じもたれ式コンクリート擁壁
について滑動に対する安定性、転倒に対する安定
性、基礎地盤の支持力に対する安定性の各安定性につ
いて検討した。
Comparative Example A comparative example using a conventional leaning concrete retaining wall The stability of a leaning concrete retaining wall having the same volume and the same leaning angle as that of the concrete concrete retaining wall divided into a plurality of stages shown in FIG. The stability, stability against falling, and stability against the bearing capacity of the foundation ground were examined.

【0039】滑動に対する安定性は次式により求め
る。
The stability against sliding is determined by the following equation.

【0040】[0040]

【数10】 (Equation 10)

【0041】転倒に対する安定性は次式により求め
る。
The stability against overturning is determined by the following equation.

【0042】[0042]

【数11】 [Equation 11]

【0043】基礎地盤の支持力に対する安定性は次式
により求める。
The stability of the foundation against the supporting force is obtained by the following equation.

【0044】[0044]

【数12】 (Equation 12)

【0045】〜式による計算結果は、以下の通りで
あった。 滑動に対する安定性
The calculation results by the formulas are as follows. Stability against sliding

【0046】[0046]

【数13】 (Equation 13)

【0047】転倒に対する安定性Stability against falling

【0048】[0048]

【数14】 [Equation 14]

【0049】基礎地盤の支持力に対する安定性Stability of foundation ground against bearing capacity

【0050】[0050]

【数15】 (Equation 15)

【0051】よって、滑動に対する安定性、基礎地盤の
支持力に対する安定性のいずれも安全範囲にあるが、転
倒に対する安定性が問題がある。
Therefore, both the stability against sliding and the stability against the supporting force of the foundation ground are within the safe range, but there is a problem with stability against falling.

【0052】[0052]

【発明の効果】本発明の擁壁の構築方法は最下部付近の
ブロックを上部のものに比べていたずらに大きくするこ
となく安定性を確保することができる。このことを従来
と同程度かそれ以上の強度,耐久性,転倒に対する安定
性等を備えた上で可能にした有意義なものとなってい
る。
According to the method for constructing a retaining wall of the present invention, the stability can be secured without unnecessarily increasing the size of the block near the lowermost portion compared with that of the upper portion. This is significant because it has the same strength or durability as the conventional one or more, and has stability against falling down.

【図面の簡単な説明】[Brief description of the drawings]

【図1】複数回に分けて現場打ち施工を行った現場打ち
コンクリート擁壁の模式的側面図である。
FIG. 1 is a schematic side view of a cast-in-place concrete retaining wall in which cast-in-place construction is performed a plurality of times.

【図2】現場打ちコンクリート擁壁を複数回に分けて現
場打ち施工を行った場合の擁壁の側面図である。
FIG. 2 is a side view of the retaining wall in the case where the in-place concrete retaining wall is divided into a plurality of times and the in-place construction is performed.

【図3】従来のもたれ式コンクリート擁壁の側面図であ
る。
FIG. 3 is a side view of a conventional leaning concrete retaining wall.

【符号の説明】[Explanation of symbols]

1a〜1j 積みブロック 1a-1j stacking block

Claims (2)

【特許請求の範囲】 中込め[Claims] 【請求項1】 積みブロック擁壁を構築するに際し、下
段が上段よりも単位体積重量が大なコンクリートブロッ
クを用いるか、又はコンクリートブロック内部に下部が
高比重で上部に至るほど低比重の中詰め材を充填して下
部から上部へ構築することを特徴とする擁壁の構築方
法。
When constructing a retaining wall for a building block, use a concrete block in which the lower unit has a larger unit volume weight than the upper unit, or fill the lower part of the concrete block with a higher specific gravity and a lower specific gravity so as to reach the upper part. A method for constructing a retaining wall, characterized by filling a material and constructing from a lower portion to an upper portion.
【請求項2】 現場打ちコンクリート擁壁を構築するに
際し、コンクリート内部に下部が高比重で上部に至るほ
ど低比重の骨材を用いるか、又は中詰め材を充填するこ
とを特徴とする擁壁の構築方法。
2. A retaining wall characterized in that when constructing a cast-in-place concrete retaining wall, an aggregate having a lower specific gravity and a lower specific gravity toward the upper portion is used inside the concrete, or a filling material is filled therein. How to build.
JP09909497A 1997-04-16 1997-04-16 Retaining wall construction method Expired - Lifetime JP3723320B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09909497A JP3723320B2 (en) 1997-04-16 1997-04-16 Retaining wall construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09909497A JP3723320B2 (en) 1997-04-16 1997-04-16 Retaining wall construction method

Publications (2)

Publication Number Publication Date
JPH10292397A true JPH10292397A (en) 1998-11-04
JP3723320B2 JP3723320B2 (en) 2005-12-07

Family

ID=14238300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09909497A Expired - Lifetime JP3723320B2 (en) 1997-04-16 1997-04-16 Retaining wall construction method

Country Status (1)

Country Link
JP (1) JP3723320B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001090093A (en) * 1999-09-21 2001-04-03 Re Search Core Inc Retaining wall designing support apparatus
JP2005083066A (en) * 2003-09-09 2005-03-31 Godai Kaihatsu Kk Construction method for variable-weight retaining wall, variable-weight retaining wall, and computing equipment and program for retaining wall
US7470092B2 (en) 2005-01-19 2008-12-30 Bonasso Samuel G System and method for reinforcing aggregate particles, and structures resulting therefrom

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001090093A (en) * 1999-09-21 2001-04-03 Re Search Core Inc Retaining wall designing support apparatus
JP4584383B2 (en) * 1999-09-21 2010-11-17 有限会社リ・サーチ・コア Retaining wall design support device
JP2005083066A (en) * 2003-09-09 2005-03-31 Godai Kaihatsu Kk Construction method for variable-weight retaining wall, variable-weight retaining wall, and computing equipment and program for retaining wall
US7470092B2 (en) 2005-01-19 2008-12-30 Bonasso Samuel G System and method for reinforcing aggregate particles, and structures resulting therefrom

Also Published As

Publication number Publication date
JP3723320B2 (en) 2005-12-07

Similar Documents

Publication Publication Date Title
WO2010052806A1 (en) Retaining wall block and retaining wall
CN111441206B (en) Composite reinforced lightweight soil retaining wall roadbed integrated structure and construction method
JPH10292397A (en) Method for constructing retaining wall
JP2001064986A (en) Ecology stabilization block
JP2006348531A (en) Building foundation construction method and building foundation structure
US5189855A (en) Foundation raft for supporting a structure
CN207419517U (en) Composite foundation reinforcement rockfill barrier wall structure
JPH03247801A (en) Method for road construction
JPH0960012A (en) Water-permeable temporary earth retaining member and method for constructing concrete wall using the same
KR20060134651A (en) Landscape facilities and constuction method thereof
JPH01142117A (en) Light-weight banking work
JPH0739666B2 (en) Permeable temporary earth retaining material, permeable frame structure and concrete wall construction method
CN209066921U (en) A kind of existing masonry kiln bracing kiln face ruggedized construction
JP2002250043A (en) Wall face protective block
JP2802815B2 (en) Embankment structure
SU1693180A1 (en) Earth dam
SU1694779A1 (en) Method for consolidating subsiding soil
JPS63226405A (en) Artificial ground structure for soft ground
KR100346947B1 (en) The SEN Retaining Wall
JPH09268542A (en) Dam bank structure using cement mixing material and dam bank construction method
JPH077385Y2 (en) Civil engineering and building foundation blocks
JPH0647818B2 (en) Construction method of continuous underground wall of crushed stone
JP2003096797A (en) Structure of slope retaining wall piling concrete block
KR200167837Y1 (en) The sen retaining wall
SU727767A1 (en) Three-dimensional member of retaining walls

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050915

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term