JP3723320B2 - Retaining wall construction method - Google Patents

Retaining wall construction method Download PDF

Info

Publication number
JP3723320B2
JP3723320B2 JP09909497A JP9909497A JP3723320B2 JP 3723320 B2 JP3723320 B2 JP 3723320B2 JP 09909497 A JP09909497 A JP 09909497A JP 9909497 A JP9909497 A JP 9909497A JP 3723320 B2 JP3723320 B2 JP 3723320B2
Authority
JP
Japan
Prior art keywords
retaining wall
concrete
block
cast
stability against
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP09909497A
Other languages
Japanese (ja)
Other versions
JPH10292397A (en
Inventor
隆行 大月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Landes Co Ltd
Original Assignee
Landes Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Landes Co Ltd filed Critical Landes Co Ltd
Priority to JP09909497A priority Critical patent/JP3723320B2/en
Publication of JPH10292397A publication Critical patent/JPH10292397A/en
Application granted granted Critical
Publication of JP3723320B2 publication Critical patent/JP3723320B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Retaining Walls (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、土圧等に対する安定性大な擁壁の構築方法に関する。
【0002】
【従来の技術】
擁壁は法面等の保護機能や安全保持機能を発揮させるために高強度,耐久性,転倒に対する安定性等が要求される。これらを満足させるために従来の擁壁は下部を厚くしたり、法面方向へ擁壁の荷重が分散して掛かるように、もたせ(傾斜)構造にしている。プレキャストコンクリートブロック(以下ブロックと略記)を用いて施工する、いわゆる積みブロック擁壁の構築の場合には、下部が大容積で上部に至るにつれて小容積のものを用いるとか(例えば特公平5-46412号、特開平6-71538号、特開平6-207417号、特開平7-18687号)、下部も上部も同じ容積のものを傾斜状態に組付ける(例えば特開昭64-24919号、特開平7-331674号)といった施工法がとられている。また、現場打ちコンクリート擁壁を構築する場合では、水平断面積が下部が大、上部が小となるように型枠組みしてコンクリートを打設したり、水平断面積がほぼ同一で傾斜枠組みされた型枠内へコンクリートを打設してもたせ構造としている例が多い。
【0003】
【発明が解決しようとする課題】
上記のような施工において、積みブロック擁壁の構築では、下部が大容積で上部に至るにつれて小容積のものを用いる垂直擁壁例では、最下部付近のブロックを上部のものに比べて非常に大きなものにした例が多い。したがって、製造時、施工時において、取扱いが大変であるし、コストもかかる。また、もたせ構造の例では下部も上部も単位体積当りの重量(以下単位体積重量と略記)がほぼ等しいので、背面からの土圧に対して転倒のおそれがある。この点は現場打ちコンクリート擁壁を構築する場合でも同じである。そこで、本発明は従来と同程度かそれ以上の強度,耐久性,転倒に対する安定性等を備え、しかも、下部の容積をいたずらに大きくする必要のない擁壁の施工法について、積みブロック擁壁と現場打ちコンクリート擁壁の両者について検討した。
【0004】
【課題を解決するための手段】
上記課題を検討した結果、下段が上段よりも単位体積重量が大なコンクリートブロックを用いるか、又はコンクリートブロック内部に下部が高比重で上部に至るほど低比重の中詰め材を充填して下部から上部へ構築することを特徴とする擁壁の構築方法を開発した。プレキャストコンクリートブロックの単位体積重量を大から小へと変化させる手段としては、骨材の比重を変化させるとか、圧密程度を変えるとか、上部に至るにつれて中空軽量骨材の配合度合を増す等である。
【0005】
また、現場打ちコンクリート擁壁を構築するに際し、コンクリート内部に下部が高比重で上部に至るほど低比重の骨材を用いるか、又は中詰め材を充填することを特徴とする擁壁の構築方法とした。骨材又は中詰め材の高比重のものとして石材、コンクリートなどを挙げることができ、それらよりも低比重のものとしては、砕石、砂、土、更に、低比重のものとしては軽石、シラスバルーン等をそれぞれ必要な部位へ必要量使用する。中詰め材の最適な充填は、現場打ちコンクリートの打設を複数段に分けて行い、下段のコンクリート打設固化後、形成されている中詰め材充填空間へ中詰め材の充填を行い、その後に上段のコンクリート打設固化後、中詰め材の充填を行うといった一連の作業の繰返しを行う際に、上へいくに従って充填する中詰め材の比重が高いものから低いものへと変化させながら充填するのである。
【0006】
高比重から低比重のものへと変化した骨材又は中詰め材には下記のようなものが使用できる。

Figure 0003723320
【0007】
【発明の実施の形態】
実施例1(積ブロック擁壁)
積みブロック擁壁の様子を図1に示す。使用ブロックの諸条件は次の通りである。高さ(h)=1.0m,底版幅(B)=3.3m,奥行(L)=1.0m,勾配1:0.40,体積(S)=3.0m3,重心x座標(x)=1.5m,重心y座標(y)=0.5m
下2段のブロック1a,1bは内部へコンクリートを中詰めしている。この単位体積重量は2.35tf/m3である。次に積まれた2段のブロック1c,1dは内部へ砕石を充填した。単位体積重量は2.00tf/m3である。更に、それ以上の5段のブロック1e〜1jには土砂を中詰めしている。単位体積重量は1.80tf/m3である。
【0008】
以上の積みブロック擁壁について、▲1▼滑動に対する安定性、▲2▼転倒に対する安定性、▲3▼基礎地盤の支持力に対する安定性の各安定性について検討した。
【0009】
▲1▼滑動に対する安定性は次式により求める。
【0010】
【数1】
Figure 0003723320
【0011】
▲2▼転倒に対する安定性は次式により求める。
【0012】
【数2】
Figure 0003723320
【0013】
▲3▼基礎地盤の支持力に対する安定性は次式により求める。
【0014】
【数3】
Figure 0003723320
【0015】
▲1▼〜▲3▼式による計算結果は、以下の通りであった。
【0016】
▲1▼滑動に対する安定性
【0017】
【数4】
Figure 0003723320
【0018】
▲2▼転倒に対する安定性
【0019】
【数5】
Figure 0003723320
【0020】
▲3▼基礎地盤の支持力に対する安定性
【0021】
【数6】
Figure 0003723320
【0022】
よって、滑動に対する安定性も、転倒に対する安定性も、更に基礎地盤の支持力に対する安定性のいずれについても、安全である。
【0023】
実施例2(積ブロック擁壁)
実施例1に示したと同様な積みブロック擁壁において、各使用ブロックの諸条件は次の通りとした。高さ(h)=1.0m,底版幅(B)=3.3m,奥行(L)=1.0m,勾配1:0.40,体積(S)=3.0m3,重心x座標(x)=1.5m,重心y座標(y)=0.5m
このような積みブロック擁壁において、下段のものほど上段よりも単位体積重量が大なものを用いて施工した。すなわち、下2段のブロックは単位体積重量が2.4tf/m3となるように成形したものである。次に積まれた2段のブロック1c,1dは単位体積重量が2.0tf/m3、更に、それ以上の5段のブロック1e〜1jは単位体積重量は1.80tf/m3となるよう、セメントと骨材および水の配合に配慮して調製し、プレス成形した。
この例でも滑動に対する安定性、転倒に対する安定性、更に基礎地盤の支持力に対する安定性のいずれについても良好な結果が得られた。
【0024】
実施例3(積ブロック擁壁)
実施例1,2と同じサイズの積みブロック擁壁において、下段のものほど上段よりも単位体積重量が大なものを用いると共に、下2段のブロック1a,1bは内部へコンクリートを中詰めしている。この単位体積重量はほぼ2.4tf/m3である。次に積まれた2段のブロック1c,1dは内部へ砕石を充填した。単位体積重量は2.1tf/m3である。さらに、それ以上の5段のブロック1e〜1jには土砂を中詰めしている。単位体積重量は1.90tf/m3である。
【0025】
この例でも滑動に対する安定性、転倒に対する安定性、更に基礎地盤の支持力に対する安定性のいずれについても良好な結果が得られた。
【0026】
実施例4(現場打ちコンクリート擁壁)
図2に示すように、現場打ちコンクリート擁壁を3回に分けて現場打ち施工を行った。3回に分けて行った現場打ちの諸条件は表1の通りである。基部のNo.1は砕石を骨材に使用したコンクリートを型枠内へ打設したので、単位体積重量が2.35tf/m3である。No.2は砕石と天然軽量骨材の火山礫とを混合した骨材をコンクリートに配合したので、単位体積重量がNo.1よりも小な2.00tf/m3である。No.3は天然軽量骨材の火山礫を骨材に使用したので、単位体積重量が更に小さい1.80tf/m3である。
【0027】
【表1】
Figure 0003723320
【0028】
以上の現場打ちコンクリート擁壁について、前記実施例同様、▲1▼滑動に対する安定性、▲2▼転倒に対する安定性、▲3▼基礎地盤の支持力に対する安定性のそれぞれについて検討した。求めた式は前記実施例と同じである。その結果は下記の通りである。
【0029】
▲1▼滑動に対する安定性
【0030】
【数7】
Figure 0003723320
【0031】
▲2▼転倒に対する安定性
【0032】
【数8】
Figure 0003723320
【0033】
▲3▼基礎地盤の支持力に対する安定性
【0034】
【数9】
Figure 0003723320
【0035】
よって、滑動に対する安定性も、転倒に対する安定性も、更に基礎地盤の支持力に対する安定性のいずれについても、安全である。
【0036】
実施例5(現場打ちコンクリート擁壁)
現場打ちコンクリート擁壁を3回に分けて現場打ち施工を行った。3回に分けて行った現場打ちの諸条件は実施例5の通りである。基部のNo.1は鉄鉱石をサンドイッチ状に中詰め材に使用してコンクリートを型枠内へ打設したので、単位体積重量が2.5tf/m3である。No.2は砕石と火山礫を中詰め材に同様に使用したので、単位体積重量がNo.1よりも小な2.00tf/m3である。No.3は膨張スラブを中詰め材に使用したので、単位体積重量が更に小さい1.80tf/m3である。
【0037】
実施例6(現場打ちコンクリート擁壁)
現場打ちコンクリート擁壁を3回に分けて現場打ち施工を行った。3回に分けて行った現場打ちの諸条件は実施例5の通りである。基部のNo.1は鉄鉱石を骨材とし鉄鉱石を中詰め材に使用し、重量コンクリートとして型枠内へ打設したので、単位体積重量が2.5tf/m3である。No.2は砕石と火山礫を骨材とし砕石と火山礫を混ぜて中詰め材に使用し、軽量コンクリートとしたので、単位体積重量がNo.1よりも小な2.00tf/m3である。No.3は焼成フライアッシュを骨材とし火山礫を中詰め材に使用し、軽量コンクリートとしたので、単位体積重量が更に小さい1.80tf/m3である。
【0038】
比較例
従来のもたれ式コンクリート擁壁による比較例
図2に示した複数段に分けて現場打ち施工を行ったものと同容積で、もたれ角も同じもたれ式コンクリート擁壁について▲1▼滑動に対する安定性、▲2▼転倒に対する安定性、▲3▼基礎地盤の支持力に対する安定性の各安定性について検討した。
【0039】
▲1▼滑動に対する安定性は次式により求める。
【0040】
【数10】
Figure 0003723320
【0041】
▲2▼転倒に対する安定性は次式により求める。
【0042】
【数11】
Figure 0003723320
【0043】
▲3▼基礎地盤の支持力に対する安定性は次式により求める。
【0044】
【数12】
Figure 0003723320
【0045】
▲1▼〜▲3▼式による計算結果は、以下の通りであった。
▲1▼滑動に対する安定性
【0046】
【数13】
Figure 0003723320
【0047】
▲2▼転倒に対する安定性
【0048】
【数14】
Figure 0003723320
【0049】
▲3▼基礎地盤の支持力に対する安定性
【0050】
【数15】
Figure 0003723320
【0051】
よって、滑動に対する安定性、基礎地盤の支持力に対する安定性のいずれも安全範囲にあるが、転倒に対する安定性が問題がある。
【0052】
【発明の効果】
本発明の擁壁の構築方法は最下部付近のブロックを上部のものに比べていたずらに大きくすることなく安定性を確保することができる。このことを従来と同程度かそれ以上の強度,耐久性,転倒に対する安定性等を備えた上で可能にした有意義なものとなっている。
【図面の簡単な説明】
【図1】複数回に分けて現場打ち施工を行った現場打ちコンクリート擁壁の模式的側面図である。
【図2】現場打ちコンクリート擁壁を複数回に分けて現場打ち施工を行った場合の擁壁の側面図である。
【図3】従来のもたれ式コンクリート擁壁の側面図である。
【符号の説明】
1a〜1j 積みブロック[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for constructing a retaining wall having high stability against earth pressure or the like.
[0002]
[Prior art]
Retaining walls are required to have high strength, durability, and stability against falling in order to exhibit protective functions such as slopes and safety retention functions. In order to satisfy these requirements, the conventional retaining wall has a thick (lower) structure so that the load on the retaining wall is dispersed and applied in the direction of the slope. In the case of construction of so-called stacking block retaining walls that are constructed using precast concrete blocks (hereinafter abbreviated as blocks), the lower part has a larger volume and the lower part is used (for example, Japanese Patent Publication No. 5-46412). No. 6, JP-A-6-71538, JP-A-6-207417, JP-A-7-18687), and the lower part and the upper part of the same volume are assembled in an inclined state (for example, JP-A-64-24919, JP-A No. 7-331674). In addition, when constructing a cast-in-place concrete retaining wall, the concrete was placed by placing the mold so that the horizontal cross-sectional area was large at the bottom and small at the top, or the horizontal cross-sectional area was almost the same and was tilted. There are many examples in which the concrete is placed even if it is placed in the formwork.
[0003]
[Problems to be solved by the invention]
In the construction as described above, in the construction of the building block retaining wall, in the vertical retaining wall example where the lower part has a larger volume and the smaller one is used as it reaches the upper part, the block near the lowermost part is much larger than the upper part. There are many examples that make it big. Therefore, handling is difficult and expensive at the time of manufacturing and construction. In addition, in the case of the lean structure, since the weight per unit volume (hereinafter abbreviated as unit volume weight) is almost equal in both the lower part and the upper part, there is a risk of falling over the earth pressure from the back. This point is the same even when constructing a cast-in-place concrete retaining wall. Therefore, the present invention provides a stacking block retaining wall for a retaining wall construction method that has strength, durability, and stability against overturning that is comparable to or higher than conventional ones, and that does not require an unnecessarily large lower volume. And both the cast-in-place concrete retaining walls were examined.
[0004]
[Means for Solving the Problems]
As a result of examining the above problems, the lower block uses a concrete block having a larger unit volume weight than the upper row, or the concrete block is filled with filling material with a low specific gravity as the lower part reaches the upper part and the lower part reaches the upper part. We have developed a method for constructing a retaining wall, which is characterized by being constructed at the top. Means to change the unit volume weight of the precast concrete block from large to small include changing the specific gravity of the aggregate, changing the degree of compaction, increasing the blending degree of the hollow lightweight aggregate toward the top, etc. .
[0005]
In addition, when constructing a cast-in-place concrete retaining wall, a method for constructing a retaining wall is characterized in that the lower part of the concrete has a higher specific gravity and the lower specific gravity is used as it reaches the upper part, or the filling material is filled. It was. Examples of the high specific gravity of the aggregate or filling material include stone and concrete, and those having a lower specific gravity include crushed stone, sand and earth, and those having a lower specific gravity include pumice and shirasu balloon. Use the required amount of each etc. to the required site. Optimum filling with filling material is performed by placing the cast-in-place concrete in multiple stages, and after the concrete placement in the lower stage is solidified, the filling material is filled into the filling material filling space that has been formed. When repeating a series of operations, such as filling the filling material after the upper concrete is placed and solidifying, filling the filling material while changing the specific gravity of the filling material from high to low as it goes up To do.
[0006]
The following can be used for the aggregate or filling material that has changed from a high specific gravity to a low specific gravity.
Figure 0003723320
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Example 1 (product block retaining wall)
The state of the stacking block retaining wall is shown in FIG. The conditions of the use block are as follows. Height (h) = 1.0 m, Bottom plate width (B) = 3.3 m, Depth (L) = 1.0 m, Gradient 1: 0.40, Volume (S) = 3.0 m 3 , Center of gravity x coordinate (x) = 1.5 m, Center of gravity y coordinate (y) = 0.5m
The bottom two blocks 1a and 1b are filled with concrete inside. This unit volume weight is 2.35 tf / m 3 . The next two stacked blocks 1c and 1d were filled with crushed stone. The unit volume weight is 2.00 tf / m 3 . Furthermore, earth and sand are stuffed in the five-stage blocks 1e to 1j beyond that. The unit volume weight is 1.80 tf / m 3 .
[0008]
Regarding the above retaining block retaining walls, (1) stability against sliding, (2) stability against falling, and (3) stability against the bearing capacity of the foundation ground were examined.
[0009]
(1) The stability against sliding is obtained by the following equation.
[0010]
[Expression 1]
Figure 0003723320
[0011]
(2) The stability against falling is obtained by the following equation.
[0012]
[Expression 2]
Figure 0003723320
[0013]
(3) The stability with respect to the bearing capacity of the foundation ground is obtained by the following formula.
[0014]
[Equation 3]
Figure 0003723320
[0015]
The calculation results by the formulas (1) to (3) were as follows.
[0016]
(1) Stability against sliding [0017]
[Expression 4]
Figure 0003723320
[0018]
(2) Stability against falls [0019]
[Equation 5]
Figure 0003723320
[0020]
(3) Stability against the bearing capacity of the foundation ground [0021]
[Formula 6]
Figure 0003723320
[0022]
Therefore, both the stability against sliding, the stability against falling, and the stability against the supporting force of the foundation ground are safe.
[0023]
Example 2 (product block retaining wall)
In the same stacked block retaining wall as shown in Example 1, the conditions of each used block were as follows. Height (h) = 1.0 m, Bottom plate width (B) = 3.3 m, Depth (L) = 1.0 m, Gradient 1: 0.40, Volume (S) = 3.0 m 3 , Center of gravity x coordinate (x) = 1.5 m, Center of gravity y coordinate (y) = 0.5m
In such a stacking block retaining wall, the lower one was constructed using a unit volume weight larger than the upper one. That is, the lower two blocks are formed so that the unit volume weight is 2.4 tf / m 3 . Next, the two-stage blocks 1c and 1d that are stacked are unit volume weight 2.0tf / m 3 , and the five-stage blocks 1e to 1j that are higher than that are cemented so that the unit volume weight is 1.80tf / m 3. The mixture was prepared in consideration of the composition of aggregate and water, and was press-molded.
Also in this example, good results were obtained with respect to sliding stability, falling stability, and stability with respect to the supporting force of the foundation ground.
[0024]
Example 3 (product block retaining wall)
In the stacked block retaining wall of the same size as in Examples 1 and 2, the lower one uses a larger unit volume weight than the upper one, and the lower two blocks 1a and 1b are filled with concrete inside. Yes. This unit volume weight is approximately 2.4 tf / m 3 . The next two stacked blocks 1c and 1d were filled with crushed stone. The unit volume weight is 2.1 tf / m 3 . Further, the five blocks 1e to 1j beyond that are filled with earth and sand. The unit volume weight is 1.90 tf / m 3 .
[0025]
Also in this example, good results were obtained with respect to sliding stability, falling stability, and stability with respect to the supporting force of the foundation ground.
[0026]
Example 4 (on-site concrete retaining wall)
As shown in FIG. 2, the in-situ concrete retaining wall was divided into three times to perform in-situ construction. Table 1 shows the on-site conditions performed in three steps. No. 1 at the base has a unit volume weight of 2.35 tf / m 3 because concrete using crushed stone as an aggregate is cast into the formwork. No. 2 is 2.00 tf / m 3, which is smaller than No. 1 in unit volume weight, because it is a mixture of crushed stone and natural light aggregate volcanic gravel mixed with concrete. No. 3 uses natural light aggregate volcanic gravel as aggregate, so the unit volume weight is 1.80tf / m 3 which is even smaller.
[0027]
[Table 1]
Figure 0003723320
[0028]
Regarding the above-mentioned cast-in-place concrete retaining wall, as in the previous example, (1) stability against sliding, (2) stability against falling, and (3) stability against bearing capacity of the foundation ground were examined. The obtained formula is the same as in the previous embodiment. The results are as follows.
[0029]
(1) Stability against sliding [0030]
[Expression 7]
Figure 0003723320
[0031]
(2) Stability against falls [0032]
[Equation 8]
Figure 0003723320
[0033]
(3) Stability of foundation ground for bearing capacity
[Equation 9]
Figure 0003723320
[0035]
Therefore, both the stability against sliding, the stability against falling, and the stability against the supporting force of the foundation ground are safe.
[0036]
Example 5 (on-site concrete retaining wall)
The cast-in-place concrete retaining wall was divided into three times to perform the cast-in-place construction. Various conditions of on-site strikes performed in three steps are as in Example 5. No. 1 at the base has a unit volume weight of 2.5 tf / m 3 because concrete is cast into the formwork using iron ore as a filling material in a sandwich form. No. 2 uses crushed stone and volcanic gravel as filling material, so the unit volume weight is 2.00 tf / m 3 smaller than No. 1. No. 3 uses an expanded slab as the filling material, so the unit volume weight is 1.80 tf / m 3 which is even smaller.
[0037]
Example 6 (on-site concrete retaining wall)
The cast-in-place concrete retaining wall was divided into three times to perform the cast-in-place construction. Various conditions of on-site strikes performed in three steps are as in Example 5. The base No. 1 uses iron ore as an aggregate and iron ore as a filling material and is cast into a formwork as heavy concrete, so the unit volume weight is 2.5 tf / m 3 . No.2 uses crushed stone and volcanic pebbles as an aggregate, crushed stone and volcanic pebbles are mixed and used as filling material, and it is made of lightweight concrete, so the unit volume weight is 2.00tf / m 3 smaller than No.1 . No. 3 uses light-weight concrete using calcined fly ash as aggregate and volcanic gravel as filling material, so the unit volume weight is 1.80 tf / m 3 which is even smaller.
[0038]
Comparison example Comparison example with a conventional leaning concrete retaining wall A leaning concrete retaining wall with the same volume and the same leaning angle as that of the multi-stage construction shown in Fig. 2 (1) Stability against sliding (2) Stability against falling, (3) Stability against the bearing capacity of the foundation ground were examined.
[0039]
(1) The stability against sliding is obtained by the following equation.
[0040]
[Expression 10]
Figure 0003723320
[0041]
(2) The stability against falling is obtained by the following equation.
[0042]
[Expression 11]
Figure 0003723320
[0043]
(3) The stability with respect to the bearing capacity of the foundation ground is obtained by the following formula.
[0044]
[Expression 12]
Figure 0003723320
[0045]
The calculation results by the formulas (1) to (3) were as follows.
(1) Stability against sliding [0046]
[Formula 13]
Figure 0003723320
[0047]
(2) Stability against falls [0048]
[Expression 14]
Figure 0003723320
[0049]
(3) Stability of foundation ground for bearing capacity
[Expression 15]
Figure 0003723320
[0051]
Therefore, although both the stability with respect to sliding and the stability with respect to the supporting force of the foundation ground are within the safe range, there is a problem with stability against falling.
[0052]
【The invention's effect】
The retaining wall construction method of the present invention can ensure stability without enlarging the block near the lowermost part as compared with the upper part. This is a meaningful thing that is made possible by having strength, durability, and stability against falling, etc., comparable to or higher than conventional ones.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a schematic side view of a cast-in-place concrete retaining wall subjected to a cast-in-place operation divided into a plurality of times.
FIG. 2 is a side view of the retaining wall when the on-site concrete retaining wall is divided into a plurality of times and the on-site construction is performed.
FIG. 3 is a side view of a conventional leaning concrete retaining wall.
[Explanation of symbols]
1a ~ 1j stacking blocks

Claims (4)

積みブロック擁壁を構築するに際し、下段が上段よりも単位体積重量が大なコンクリートブロックを用いて、下部から上部へ構築することを特徴とする擁壁の構築方法。A construction method of a retaining wall, characterized in that, in constructing a stacked block retaining wall, a lower block is constructed from a lower part to an upper part using a concrete block having a larger unit volume weight than an upper part. 積みブロック擁壁を構築するに際し、同じサイズのコンクリートブロックを用いて、コンクリートブロック内部に下部が高比重で上部に至るほど低比重の中詰め材を充填して下部から上部へ構築することを特徴とする擁壁の構築方法。When building a retaining block retaining wall, use a concrete block of the same size, and fill the inside of the concrete block with a low specific gravity filling material from the lower part to the upper part. Retaining wall construction method. 現場打ちコンクリート擁壁を構築するに際し、コンクリートの打設を複数段に分けて行い、下段のコンクリート打設固化後、上段のコンクリート打設を行うといった一連の作業の繰返しを行う際に、コンクリート内部に下部が高比重で上部に至るほど低比重の骨材を用いることを特徴とする擁壁の構築方法。When building a cast-in-place concrete retaining wall , the concrete interior is divided into multiple stages, the concrete in the lower stage is cast and solidified, and then the upper stage is placed in a series of operations. retaining wall construction method of, wherein the benzalkonium used as the lower reaches the top at a high density low density aggregate to. 現場打ちコンクリート擁壁を構築するに際し、コンクリートの打設を複数段に分けて行い、下段のコンクリート打設固化後、上段のコンクリート打設を行うといった一連の作業の繰返しを行う際に、コンクリート内部に中詰め材充填空間を形成し、下部が高比重で上部に至るほど低比重の中詰め材を充填することを特徴とする擁壁の構築方法。When building a cast-in-place concrete retaining wall, the concrete interior is divided into multiple stages, and after repeating a series of operations such as placing the concrete in the lower stage and then placing the upper stage in the concrete, A method for constructing a retaining wall, characterized in that a filling space is formed in the inner space, and filling material with a lower specific gravity is filled as the lower portion reaches a higher specific gravity.
JP09909497A 1997-04-16 1997-04-16 Retaining wall construction method Expired - Lifetime JP3723320B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09909497A JP3723320B2 (en) 1997-04-16 1997-04-16 Retaining wall construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09909497A JP3723320B2 (en) 1997-04-16 1997-04-16 Retaining wall construction method

Publications (2)

Publication Number Publication Date
JPH10292397A JPH10292397A (en) 1998-11-04
JP3723320B2 true JP3723320B2 (en) 2005-12-07

Family

ID=14238300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09909497A Expired - Lifetime JP3723320B2 (en) 1997-04-16 1997-04-16 Retaining wall construction method

Country Status (1)

Country Link
JP (1) JP3723320B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4584383B2 (en) * 1999-09-21 2010-11-17 有限会社リ・サーチ・コア Retaining wall design support device
JP2005083066A (en) * 2003-09-09 2005-03-31 Godai Kaihatsu Kk Construction method for variable-weight retaining wall, variable-weight retaining wall, and computing equipment and program for retaining wall
US7470092B2 (en) 2005-01-19 2008-12-30 Bonasso Samuel G System and method for reinforcing aggregate particles, and structures resulting therefrom

Also Published As

Publication number Publication date
JPH10292397A (en) 1998-11-04

Similar Documents

Publication Publication Date Title
CN107121252B (en) It is a kind of suitable for rock, the shaketalle test method and model casing of native side slope
CN111441206B (en) Composite reinforced lightweight soil retaining wall roadbed integrated structure and construction method
JP3723320B2 (en) Retaining wall construction method
JP4112790B2 (en) Forming means for forming futon ridges and construction method using the same
CN204919602U (en) Compound anchored retaining wall by tie rods
KR101129678B1 (en) Mesh foundation construction method using hollow blocks
JP2006348531A (en) Building foundation construction method and building foundation structure
CN215052842U (en) Column hammer ramming method pore-forming reinforcement pile composite foundation structure
CN211256532U (en) Foam concrete embankment
US7431536B2 (en) Method of making a flat foundation for a floor without substantial excavation and foundation made by said method
CN107558490A (en) Composite foundation reinforcement rockfill barrier wall structure and construction method
JP3794020B2 (en) Dust concrete and its construction method
CN207419517U (en) Composite foundation reinforcement rockfill barrier wall structure
MX2012010360A (en) Block for construction and method to build walls with said block.
JP4170955B2 (en) Construction method of concrete structure using residual formwork and soil concrete
CN218522673U (en) Roadway concrete supporting mold
CN209066921U (en) A kind of existing masonry kiln bracing kiln face ruggedized construction
JPH0513777Y2 (en)
CN211523093U (en) Inverted T-shaped reinforced concrete retaining wall revetment structure
CN110499775B (en) Bearing platform foundation backfill structure and construction method
RU2320818C1 (en) Shallow foundation for buildings to be overbuilt
JPS63226405A (en) Artificial ground structure for soft ground
JPH01142117A (en) Light-weight banking work
JPH0771038A (en) Civil engineering earth retaining unit and construction method using unit concerned
RU149998U1 (en) COMBINED PILED FOUNDATION

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050915

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term