JPH1029142A - Mirror chamfering and machining method for disk semiconductor wafer chamfered section - Google Patents

Mirror chamfering and machining method for disk semiconductor wafer chamfered section

Info

Publication number
JPH1029142A
JPH1029142A JP18471496A JP18471496A JPH1029142A JP H1029142 A JPH1029142 A JP H1029142A JP 18471496 A JP18471496 A JP 18471496A JP 18471496 A JP18471496 A JP 18471496A JP H1029142 A JPH1029142 A JP H1029142A
Authority
JP
Japan
Prior art keywords
semiconductor wafer
shaped semiconductor
disc
chamfered portion
mirror chamfering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18471496A
Other languages
Japanese (ja)
Other versions
JP3389014B2 (en
Inventor
Shuzo Takahashi
修三 高橋
Arimoto Aono
有元 青野
Yasuo Hirabayashi
安雄 平林
Keiji Honda
恵治 本多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KIYOKUEI KENMA KAKO KK
NITOMATSUKU II R KK
Original Assignee
KIYOKUEI KENMA KAKO KK
NITOMATSUKU II R KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16158087&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH1029142(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by KIYOKUEI KENMA KAKO KK, NITOMATSUKU II R KK filed Critical KIYOKUEI KENMA KAKO KK
Priority to JP18471496A priority Critical patent/JP3389014B2/en
Publication of JPH1029142A publication Critical patent/JPH1029142A/en
Application granted granted Critical
Publication of JP3389014B2 publication Critical patent/JP3389014B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

PROBLEM TO BE SOLVED: To perform mirror chamfering within a very short time while reducing the possibility of outer peripheral fractures by providing relative rotation while roughly the full periphery of the chamfered section of a disk semiconductor wafer is pressed to a recessed grinding surface and then performing the mirror chamfering of the chamfered section of the outer periphery. SOLUTION: First, a disk wafer 23 is fixed in a chuck 22. Then, after a moving base 16 is moved in a horizontal direction, and stopped a vertical moving shaft 18 is sent out and the disk wafer 23 is brought into contact with a grinding pad 5. Then, when the wafer 23 is further pressed by a specified pressure force, the full periphery of the chamfered section of the disk semiconductor wafer 23 is brought into contact with the grinding pad 5. In this state, grinding agents are supplied from a supply passage 7 to the upper surface of the grinding pad 5 and, by rotating a motor 11, a grinding base 4 is rotated via a rotary shaft 3. Thus, the chambered section of the disk semiconductor wafer 23 repeats relative movement while being pressed to the grinding pad 5, and uniform mirror grinding is performed for the chamfered section.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、硬脆材である半導
体ウェーハをミラー面取加工する方法に関し、より詳細
には円盤状半導体ウェーハの外周面取部または必要に応
じてその外周端についてミラー面取研磨加工を行うため
の加工方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for chamfering a semiconductor wafer which is a hard and brittle material, and more particularly to a method for chamfering an outer peripheral chamfer of a disc-shaped semiconductor wafer or, if necessary, an outer peripheral end thereof. The present invention relates to a processing method for performing chamfering polishing.

【0002】[0002]

【従来の技術】円盤状半導体シリコンウェーハはそのプ
ロセスにおいて歩留まりの向上に関して、パーチクルが
直接影響を及ぼすレベルにまで達している。さらに同様
に大径化への移行が急速に進んでおり、このためのウェ
ーハ基盤の外周や上下面取部についても表面同様のミラ
ー面取化が望まれ、そのミラー面取化処理は現在以下の
ような方法で行われている。
2. Description of the Related Art Disc-shaped semiconductor silicon wafers have reached a level at which particles directly affect the improvement of the yield in the process. Similarly, the shift to larger diameters is progressing rapidly, and for this reason, it is desired that the outer periphery of the wafer substrate and the upper and lower chamfers be mirrored as well as the surface. It is done in such a way.

【0003】すなわち、図13、図14、図15でその
概略を示す特開昭64−71657号、または特開昭6
4−71656号公報に見られるように、表面に研磨布
06を付した研磨ドラム01を所定速度で回転させつ
つ、吸着チャック02で固定した円盤状の半導体ウェー
ハ03をこの研磨ドラム01に加圧用ウェート04等を
利用して押し付け、半導体ウェーハ03の面取部07を
ミラー面取加工している。
That is, Japanese Patent Application Laid-Open No. 64-71657 or Japanese Patent Application Laid-Open No.
As shown in Japanese Patent Application Laid-Open No. 4-71656, a disc-shaped semiconductor wafer 03 fixed with a suction chuck 02 is pressed onto the polishing drum 01 while rotating the polishing drum 01 having a polishing cloth 06 on the surface at a predetermined speed. The chamfered portion 07 of the semiconductor wafer 03 is subjected to mirror chamfering by pressing using a weight 04 or the like.

【0004】この場合、半導体ウェーハ03にはその外
周に例えば約22゜の面取部07が表裏両面に形成さ
れ、さらにこれら面取部07はその先端部が軽いラウン
ドで交わるような外周端に形成されている。したがって
面取部07をミラー面取加工するには図13、図15に
示されるように円盤状の半導体ウェーハ03は、研磨ド
ラム01に対して例えば22゜傾けた状態で押し付けら
れ、研磨剤05を流しつつ、加工されることになる。
[0004] In this case, for example, a chamfered part 07 of about 22 mm is formed on the outer periphery of the semiconductor wafer 03 on both the front and back surfaces. Is formed. Therefore, in order to mirror-chamfer the chamfered portion 07, as shown in FIGS. 13 and 15, the disc-shaped semiconductor wafer 03 is pressed against the polishing drum 01 at an angle of, for example, 22 °, and the abrasive 05 While flowing.

【0005】[0005]

【発明が解決しようとする課題】このため、図14、図
15に示されるように回転ドラム01の研磨布06に対
して円盤状の半導体ウェーハ03の面取部07が上下に
線接触(厳密には研磨布06の弾力で所定の面積で接
触)状態でミラー面取加工が行われるため、円盤状の半
導体ウェーハ03の片面の面取部07をミラー面取加工
するには時間がかかってしまう。そこで例えば加圧用ウ
ェイト04を重くし半導体ウェーハ03を回転ドラム0
1に強く押し付けることにより、加圧時間は短縮できる
のであるが、半導体ウェーハ03は薄い肉厚でかつ脆性
が高いため、吸着チャック02の外周に位置する半導体
ウェーハ03端部に過度な集中荷重が加わると、一部が
欠損することになるため、ミラー面取加工速度を高める
ことには限界がある。
Therefore, as shown in FIGS. 14 and 15, the chamfered portion 07 of the disc-shaped semiconductor wafer 03 comes into line contact with the polishing pad 06 of the rotating drum 01 vertically (strictly). The mirror chamfering process is performed in a state of contact with a predetermined area by the elasticity of the polishing pad 06), so it takes time to perform the mirror chamfering process on the chamfered portion 07 on one side of the disc-shaped semiconductor wafer 03. I will. Therefore, for example, the pressing weight 04 is made heavy, and the semiconductor wafer 03 is moved to the rotating drum 0.
By strongly pressing the wafer, the pressurizing time can be reduced. However, since the semiconductor wafer 03 is thin and highly brittle, an excessive concentrated load is applied to the end of the semiconductor wafer 03 located on the outer periphery of the suction chuck 02. If it is added, a part will be lost, and there is a limit in increasing the mirror chamfering speed.

【0006】本発明は、上記問題点に着目してなされた
もので、硬脆材である円盤状の半導体ウェーハの外周欠
損の可能性を低減させつつ、この面取部を極めて短時間
にミラー面取加工できる方法を提供することを目的とし
ている。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and reduces the possibility of outer peripheral defects of a disk-shaped semiconductor wafer, which is a hard and brittle material, while mirroring the chamfered portion in an extremely short time. It is intended to provide a method capable of chamfering.

【0007】[0007]

【課題を解決するための手段】上記問題を解決するため
に、本発明の円盤状半導体ウェーハ面取部のミラー面取
加工方法は、凹形状をなす研磨面に対して、円盤状半導
体ウェーハの外周の面取部をほぼ全周において押し当て
た状態で、この研磨面と円盤状半導体ウェーハとの相対
的回転を与えることにより、円盤状半導体ウェーハの外
周の面取部のミラー面取加工を行うようにしたことを特
徴としている。この発明の特徴とするところは、研磨面
に円盤状半導体ウェーハを押し当てようとする力を円盤
状半導体ウェーハの外周部に位置する面取部のほぼ全域
を使用して支えるようにしたもので、ミラー面取加工の
速度に最も必要な押し付け力を高めても、円盤状半導体
ウェーハに局部的な荷重が加わらず、加工時の局部欠損
を防止でき、延いては円盤状半導体ウェーハの面取部の
ミラー面取加工速度を飛躍的に高めるものである。この
場合、ほぼ全周とは、円盤状半導体ウェーハや研磨面に
一部の切欠きが存在していたり、それらの一部形状の変
化により100%全て当接しなければならないものでは
ないことを意味している。また面取部ほぼ全周とは、研
磨面に対して周線的にまたは周面的にの両方を含んでお
り、これは研磨面の弾性力によって決まる。
SUMMARY OF THE INVENTION In order to solve the above problems, a method for chamfering a mirror of a disk-shaped semiconductor wafer according to the present invention comprises the steps of: By giving a relative rotation between the polished surface and the disc-shaped semiconductor wafer in a state where the outer chamfer is pressed almost all around, the mirror chamfering of the outer chamfered portion of the disc-shaped semiconductor wafer is performed. It is characterized in that it is performed. The feature of the present invention is that the force for pressing the disc-shaped semiconductor wafer against the polished surface is supported using substantially the entire area of the chamfered portion located on the outer peripheral portion of the disc-shaped semiconductor wafer. Even if the pressing force, which is the most necessary for the mirror chamfering speed, is increased, a local load is not applied to the disk-shaped semiconductor wafer, thereby preventing local defects during the processing, and consequently chamfering the disk-shaped semiconductor wafer. This dramatically increases the mirror chamfering speed of the part. In this case, substantially the entire circumference means that notches are partially present in the disc-shaped semiconductor wafer or the polished surface, or that not all of the cuts have to be completely abutted due to a change in a part of the shape. doing. Further, the substantially entire circumference of the chamfered portion includes both circumferentially and circumferentially with respect to the polishing surface, which is determined by the elastic force of the polishing surface.

【0008】本発明の円盤状半導体ウェーハ面取部のミ
ラー面取加工方法は、凹形状をなす研磨面として、円盤
状半導体ウェーハの外周面取部をほぼ全周において押し
当て可能な曲率半径の球内面形状を用いたことが好まし
い。これは、円盤状半導体ウェーハの直径に基づき、研
磨面としての球内面形状の曲率半径を算出することによ
り、容易に球内面形状が決まり、このようにすることに
より円盤状半導体ウェーハを凹状の研磨面に当接するの
みで、理論的に常時円盤状半導体ウェーハの全周が研磨
面に当ることになり、両者の位置設定が極めて簡素化さ
れる。
In the mirror chamfering method for a chamfered portion of a disc-shaped semiconductor wafer according to the present invention, the outer peripheral chamfered portion of the disc-shaped semiconductor wafer has a radius of curvature which can be pressed over almost the entire circumference as a concave polished surface. It is preferable to use a spherical inner surface shape. This is because the spherical inner surface shape is easily determined by calculating the radius of curvature of the spherical inner surface shape as a polishing surface based on the diameter of the disk-shaped semiconductor wafer, and in this way, the disk-shaped semiconductor wafer is polished into a concave shape. By simply contacting the surface, theoretically the entire circumference of the disc-shaped semiconductor wafer always hits the polished surface, and the setting of the positions of the two is extremely simplified.

【0009】本発明の円盤状半導体ウェーハ面取部のミ
ラー面取加工方法は、研磨面である球内面の中心点に円
盤状半導体ウェーハの回転軸を一致させ、かつ研磨面と
回転軸と前記円盤状半導体ウェーハの回転軸とを不一致
とさせ、少なくとも前記研磨面をその回転軸で強制的に
回転させるようにしたことが好ましい。このようにする
ことにより、円盤状半導体ウェーハの面取部が球内面形
状の研磨面に広い面積で平均化して当接するため、研磨
面の寿命が延びる。
According to the method for chamfering a mirror of a disk-shaped semiconductor wafer according to the present invention, the rotation axis of the disk-shaped semiconductor wafer is made coincident with the center point of the inner surface of the sphere which is the polishing surface, and It is preferable that the rotation axis of the disc-shaped semiconductor wafer is made not to coincide with each other, and at least the polished surface is forcibly rotated by the rotation axis. By doing so, the chamfered portion of the disc-shaped semiconductor wafer comes into contact with the polished surface having a spherical inner surface over a wide area, so that the life of the polished surface is extended.

【0010】本発明の円盤状半導体ウェーハ面取部のミ
ラー面取加工方法は、凹状をなす研磨面として、円盤状
ウェーハの外周の面取部をほぼ全周において押し当て可
能な円錐内面形状の一部を用いたことが好ましい。この
ようにすることにより、円盤状半導体ウェーハの表裏に
形成された傾斜角度(例えば22゜)の面取部に対し
て、同角度の開き角を有する円錐面を確実に当てること
が可能となり、面取部のミラー面取加工処理を高精度に
行える。
In the method for chamfering a mirror of a disc-shaped semiconductor wafer according to the present invention, the concave-shaped polishing surface has a conical inner surface shape capable of pressing the chamfer on the outer periphery of the disc-shaped wafer substantially all around. It is preferable to use a part. By doing so, it becomes possible to reliably apply a conical surface having an opening angle of the same angle to a chamfered portion having an inclination angle (for example, 22 °) formed on the front and back surfaces of the disc-shaped semiconductor wafer, Mirror chamfering processing of the chamfer can be performed with high accuracy.

【0011】本発明の円盤状半導体ウェーハ面取部のミ
ラー面取加工方法は、円盤状半導体ウェーハの一面を加
圧プレートに固定し、他面の面取部を加圧プレートによ
って研磨面に押し当て、前記他面の面取部のミラー面取
加工を所定時間行い、その後、円盤状半導体ウェーハの
一面から加工プレートを取外し、次に円盤状半導体ウェ
ーハの他面を加圧プレートに固定し、一面の面取部を加
圧プレートに押し当て、前記一面の面取部のミラー面取
加工を前記他面のミラー面取加工時間とほぼ同時間行う
ようにしたことが好ましい。本発明の場合は、基本的に
片面の全ての面取部がミラー面取加工中に研磨面と接し
ており、仕上り精度を確認できないが、加工時間の設定
によって表裏同精度の面取部のミラー面取加工が可能と
なる。
In the method for chamfering a mirror of a disc-shaped semiconductor wafer according to the present invention, one surface of a disc-shaped semiconductor wafer is fixed to a pressure plate, and the other chamfer is pressed against a polishing surface by the pressure plate. Contact, perform the mirror chamfering of the chamfered portion of the other surface for a predetermined time, then remove the processing plate from one surface of the disk-shaped semiconductor wafer, and then fix the other surface of the disk-shaped semiconductor wafer to the pressure plate, Preferably, one chamfered portion is pressed against a pressure plate, and the mirror chamfering of the one chamfered portion is performed for approximately the same time as the mirror chamfering time of the other surface. In the case of the present invention, basically all the chamfered portions on one side are in contact with the polished surface during the mirror chamfering process, and the finishing accuracy cannot be confirmed. Mirror chamfering becomes possible.

【0012】[0012]

【発明の実施の形態】本発明の実施の形態を図面に基づ
いて説明すると、図1〜図3が第1の実施態様、図4〜
図11がそれぞれ第2〜第9の実施の態様であり、さら
に図12は第10の実施の態様である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described with reference to the drawings. FIGS. 1 to 3 show a first embodiment, and FIGS.
FIG. 11 shows the second to ninth embodiments, and FIG. 12 shows the tenth embodiment.

【0013】図1〜図3において第1の実施の態様を説
明すると、1はベッド台であり、このベッド台1の下方
から延びる軸受2から軸受を介して回転軸3が上方に延
設され、この回転軸3の上端には凹状をなす研磨面を構
成するボウル状の研磨台4が固定されている。さらにこ
の研磨台4の凹部内面は所定高さの点Pを中心とした球
面であり、その凹部内面には例えば不織布等の研磨パッ
ド5が固定されている。詳しくは図2に示されるように
所定間隔で溝6が上方に延びており、これは後述する研
磨剤の流通通路となるが、この溝6によらずとも研磨剤
はウェーハ23の研磨に用いられながら研磨台4の回転
による遠心力により研磨台4の縁から排出されるように
してもよい。
A first embodiment will be described with reference to FIGS. 1 to 3. Reference numeral 1 denotes a bed, and a rotary shaft 3 extends upward from a bearing 2 extending from below the bed 1 via a bearing. A bowl-shaped polishing table 4 constituting a concave polishing surface is fixed to the upper end of the rotating shaft 3. Further, the inner surface of the concave portion of the polishing table 4 is a spherical surface centered on a point P having a predetermined height, and a polishing pad 5 such as a nonwoven fabric is fixed to the inner surface of the concave portion. Specifically, as shown in FIG. 2, grooves 6 extend upward at predetermined intervals, and serve as a flow path of an abrasive, which will be described later. Alternatively, the polishing table 4 may be discharged from the edge of the polishing table 4 by centrifugal force generated by the rotation of the polishing table 4.

【0014】また回転軸3の中心には、下方から供給さ
れる研磨剤の供給通路7が形成され、これは研磨台4及
び研磨パッド5を貫通し、研磨剤を研磨パッド5の上面
に供給できるようになっている。
In the center of the rotating shaft 3, a supply passage 7 for abrasive supplied from below is formed, which penetrates through the polishing table 4 and the polishing pad 5, and supplies the abrasive to the upper surface of the polishing pad 5. I can do it.

【0015】前述した回転軸3の下端にはプーリ8が固
定され、モータプーリ10そしてベルト9を介してモー
タ11からの回転駆動力で回転軸3そして研磨台4が回
転できるようになっている。
A pulley 8 is fixed to the lower end of the rotating shaft 3 so that the rotating shaft 3 and the polishing table 4 can be rotated by a rotational driving force from a motor 11 via a motor pulley 10 and a belt 9.

【0016】ベッド台1からはコラム12が上方に延び
ており、このコラム12にはモータ14で回転する送り
ネジ15が設けられ、この送りネジ15には摺動レール
13を介して左右に摺動する移動台16が設けられてい
る。この移動台16の上部には加圧シリンダー17が設
けられ、加圧シリンダーからは昇降軸18が軸受19を
介して吊持されている。またこの昇降軸18の先端部に
は自在継手20、そして回転軸受21を介してチャック
22が設けられている。このチャック22は広い平板状
をなし、加圧用のプレートとして機能するとともに、回
転軸受21で支持され自在継手20に対して回転できる
ようになっている。なおチャック22の下面には、この
チャック22が有する吸着、貼着等の手段で円盤状半導
体ウェーハ23が固定されている。
A column 12 extends upward from the bed table 1. The column 12 is provided with a feed screw 15 which is rotated by a motor 14. The feed screw 15 slides left and right through a slide rail 13. A moving table 16 that moves is provided. A pressurizing cylinder 17 is provided above the moving table 16, and an elevating shaft 18 is suspended from the pressurizing cylinder via a bearing 19. A chuck 22 is provided at the end of the elevating shaft 18 via a universal joint 20 and a rotary bearing 21. The chuck 22 has a wide flat plate shape, functions as a pressurizing plate, and is supported by a rotary bearing 21 so as to be rotatable with respect to the universal joint 20. Note that a disc-shaped semiconductor wafer 23 is fixed to the lower surface of the chuck 22 by means such as suction and sticking of the chuck 22.

【0017】この実施の態様についての円盤状半導体ウ
ェーハのミラー面取研磨加工についてその操作、作用を
説明する。
The operation and operation of the mirror chamfering polishing process for a disc-shaped semiconductor wafer according to this embodiment will be described.

【0018】始めにチャック22は2点鎖線で示される
ごとく、上方部に位置し、ここでチャック22に円盤状
半導体ウェーハ23が固定される。次にモータ14を駆
動させて送りネジ15を回転させ、移動台16を横移動
させて停止させた後、加圧シリンダー17を駆動させて
図1のような状態になるまで昇降軸18を送り出し、円
盤状半導体ウェーハ23を研磨面である研磨パッド5に
当接させ、さらに所定の加圧力で押し当てる。この押圧
力で不織布等の研磨パッド5は若干の弾性力を有してい
るため、研磨パッド5には円盤状半導体ウェーハ23の
面取部がほぼ全周にわたって接触することになる。この
場合、面取部の面と、球内面である研磨パッド5の球の
接線方向とを一致させるように研磨パッド5の球曲面の
半径(すなわち点Pの位置)を選択しておくとよい。
First, the chuck 22 is located at an upper portion as shown by a two-dot chain line, and a disk-shaped semiconductor wafer 23 is fixed to the chuck 22 here. Next, the motor 14 is driven to rotate the feed screw 15, and the moving table 16 is moved laterally to stop it. Then, the pressurizing cylinder 17 is driven to feed out the elevating shaft 18 until the state shown in FIG. Then, the disc-shaped semiconductor wafer 23 is brought into contact with the polishing pad 5 which is a polishing surface, and is further pressed with a predetermined pressing force. Since the polishing pad 5 such as a nonwoven fabric has a slight elastic force due to the pressing force, the chamfered portion of the disc-shaped semiconductor wafer 23 comes into contact with the polishing pad 5 over almost the entire circumference. In this case, the radius of the spherical surface of the polishing pad 5 (that is, the position of the point P) may be selected so that the surface of the chamfered portion and the tangential direction of the ball of the polishing pad 5 which is the inner surface of the ball coincide with each other. .

【0019】この状態で、供給通路7から研磨剤を研磨
パッド5の上面に供給するとともに、モーター11を回
転させて回転軸3を介して研磨台4を回動させる。
In this state, the polishing agent is supplied from the supply passage 7 to the upper surface of the polishing pad 5, and the motor 11 is rotated to rotate the polishing table 4 via the rotating shaft 3.

【0020】この研磨台4は研磨パッド5を矢印A方向
に回転させ、研磨パッド5と円盤状半導体ウェーハ23
の面取部にはそのほぼ全周にわたり接触位置によりそれ
ぞれ異なるベクトルの摩擦力が加わる。すなわち図3に
示されるように円盤状半導体ウェーハ23の点Cには大
きなベクトルの回転力が、点Dには小さなベクトルの回
転力が発生し、中心軸Oと中心点O’とが一致しない以
上、円盤状半導体ウェーハ23には連れ回り力が矢印B
方向に発生する。
The polishing table 4 rotates the polishing pad 5 in the direction of arrow A, and the polishing pad 5 and the disc-shaped semiconductor wafer 23 are rotated.
A frictional force of a different vector is applied to the chamfered portion over substantially the entire circumference depending on the contact position. That is, as shown in FIG. 3, a large vector rotational force is generated at point C and a small vector rotational force is generated at point D of the disc-shaped semiconductor wafer 23, and the central axis O and the central point O ′ do not coincide. As described above, the co-rotating force is applied to the disc-shaped semiconductor wafer 23 by the arrow B.
Occurs in the direction.

【0021】そのため、円盤状半導体ウェーハ23の面
取部は研磨パッド5と押圧状態で相対移動を繰り返し、
面取部の均一なミラー面取研磨が行われる。このように
中心軸Oと中心点O’を一致させないようにすると、面
取部のミラー面取加工に供される研磨パッド5の面積は
図3の斜線部分で示されるように広がり、この研磨パッ
ド5の寿命を格段に延ばすことができる。
Therefore, the chamfered portion of the disc-shaped semiconductor wafer 23 repeatedly moves relative to the polishing pad 5 in a pressed state,
Uniform mirror chamfer polishing of the chamfered portion is performed. If the center axis O and the center point O ′ are not made to coincide with each other, the area of the polishing pad 5 used for the mirror chamfering of the chamfered portion increases as shown by the hatched portion in FIG. The life of the pad 5 can be significantly extended.

【0022】また、研磨パッド5に円盤状半導体ウェー
ハ23を押し当てようとする力が円盤状半導体ウェーハ
23の外周部に位置する面取部のほぼ全域を使用して支
えられるため、ミラー面取加工の速度に最も必要な押し
付け力を高めても、円盤状半導体ウェーハ23に局部的
な荷重が加わらず、加工時の局部欠損を防止できる。ま
た、延いては円盤状半導体ウェーハの面取部のミラー面
取加工速度を飛躍的に高めることになる。さらに、研磨
面の形状が球面であると、セット時もしくはミラー面取
研磨中に、円盤状半導体ウェーハ23の位置がずれたと
しても、面取部のミラー面取加工には影響がなく、常時
面取部の傾斜角を維持した優れたミラー面取加工が可能
となる。
Further, since the force for pressing the disc-shaped semiconductor wafer 23 against the polishing pad 5 is supported using substantially the entire chamfered portion located on the outer peripheral portion of the disc-shaped semiconductor wafer 23, the mirror chamfer is performed. Even if the pressing force most necessary for the processing speed is increased, a local load is not applied to the disc-shaped semiconductor wafer 23, so that local loss during processing can be prevented. In addition, the mirror chamfering speed of the chamfered portion of the disc-shaped semiconductor wafer is drastically increased. Furthermore, if the shape of the polished surface is spherical, even if the position of the disc-shaped semiconductor wafer 23 is displaced during setting or during mirror chamfering polishing, there is no effect on the mirror chamfering of the chamfered portion, Excellent mirror chamfering while maintaining the inclination angle of the chamfered portion can be performed.

【0023】なお、一面のミラー面取加工が終了した時
点で円盤状半導体ウェーハ23をチャック22から取外
し、その裏である他面のミラー面取加工を行い、一枚の
円盤状半導体ウェーハ23のミラー面取加工が終了す
る。
When the one-sided mirror chamfering is completed, the disc-shaped semiconductor wafer 23 is removed from the chuck 22, and the other side of the disc-shaped semiconductor wafer 23 is chamfered. Mirror chamfering is completed.

【0024】図4は第2の実施の態様であり、昇降軸1
8を円盤状半導体ウェーハ23の中心点O’と研磨台4
の回転軸Oとを一致させ、固定され回転しない昇降軸1
8に固定されたチャック22に円盤状半導体ウェーハ2
3が固定され、研磨台4が回転されるものであり、研磨
パッドを広範囲の面にわたって使用出来ないが昇降軸1
8の上下移動のみで加工時のセットができ、加工時間の
短縮につながる。
FIG. 4 shows a second embodiment of the present invention,
8 is the center point O 'of the disc-shaped semiconductor wafer 23 and the polishing table 4
Shaft 1 that is fixed and does not rotate
Semiconductor wafer 2 on chuck 22 fixed to
3, the polishing table 4 is rotated, and the polishing pad cannot be used over a wide range of surfaces.
The setting at the time of machining can be performed only by the vertical movement of 8, which leads to shortening of machining time.

【0025】図5は第3の実施の態様であり、固定され
回転しない昇降軸18をやはりチャック22に対して回
転不能にしたものである。この場合は第1の実施の態様
同様、研磨パッド5の寿命を延ばすことができる。
FIG. 5 shows a third embodiment in which the fixed and non-rotating elevating shaft 18 is also made unrotatable with respect to the chuck 22. In this case, as in the first embodiment, the life of the polishing pad 5 can be extended.

【0026】図6は第4の実施の態様であり、第2と第
3の実施の態様を組合わせたものであり、駆動部25を
利用し回転しない揺動軸181によって所定のタイミン
グで円盤状半導体ウェーハ23を研磨パッド5に対して
位置変化させるものである。この場合はセットが楽なば
かりか、研磨パッド5の寿命も延ばすことができる。
FIG. 6 shows a fourth embodiment, which is a combination of the second and third embodiments. The disk is formed at a predetermined timing by a swing shaft 181 which does not rotate using a driving unit 25. The position of the semiconductor wafer 23 is changed with respect to the polishing pad 5. In this case, not only the setting is easy, but also the life of the polishing pad 5 can be extended.

【0027】図7は第5の実施の態様であり、チャック
22自体を研磨パッド5に対して回転させるものであ
り、モータ26によって回転軸182とともにチャック
22を回転させ、研磨台4を支持体31で固定するもの
である。この場合、支持体31と回転軸182との軸が
一致している。
FIG. 7 shows a fifth embodiment in which the chuck 22 itself is rotated with respect to the polishing pad 5, and the motor 22 rotates the chuck 22 together with the rotating shaft 182, so that the polishing table 4 is supported. It is fixed at 31. In this case, the axis of the support 31 and the axis of the rotation axis 182 coincide.

【0028】図8は第6の実施の態様であり、第5の実
施の態様のものの両軸を不一致としたものであり、この
効果は図5のものと同じである。
FIG. 8 shows a sixth embodiment in which both axes of the fifth embodiment are not coincident with each other, and the effect is the same as that of FIG.

【0029】図9は第7の実施の態様であり、第5と第
6の実施の態様を組合わせたものであり、駆動部25を
利用し回転している回転軸182を所定のタイミングで
揺動させ、円盤状半導体ウェーハ23を研磨パッド5に
対して位置変化させるものであり、研磨パッド5の寿命
も延ばせることになる。
FIG. 9 shows a seventh embodiment, which is a combination of the fifth and sixth embodiments, in which the rotating shaft 182 rotating by using the drive unit 25 is moved at a predetermined timing. By swinging, the position of the disc-shaped semiconductor wafer 23 is changed with respect to the polishing pad 5, and the life of the polishing pad 5 can be extended.

【0030】図10は第8の実施の態様であり、チャッ
ク22と研磨台23をともに強制回転させたものであ
り、両者の相対回転速度を高めることが可能である。
FIG. 10 shows an eighth embodiment in which both the chuck 22 and the polishing table 23 are forcibly rotated, and the relative rotational speed of both can be increased.

【0031】図11は第9の実施の態様であり、研磨面
としての研磨パッド5及び研磨台41を円錐面の一部形
状としたものであり、円盤状半導体ウェーハ23の表裏
に形成された傾斜角度を有する面取部に対して、同角度
になっており、面取部のミラー面取加工処理を高精度に
行えることになる。ここで面取部の傾斜角度は22゜、
11゜等種類が複数あるため、この角度に合致させる研
磨台41及び研磨パッド51を用意すればよい。
FIG. 11 shows a ninth embodiment in which a polishing pad 5 and a polishing table 41 as polishing surfaces are partially formed in a conical surface, and are formed on the front and back of a disc-shaped semiconductor wafer 23. The angle is the same as that of the chamfered portion having the inclination angle, so that the mirror chamfering processing of the chamfered portion can be performed with high accuracy. Here, the inclination angle of the chamfer is 22 °,
Since there are a plurality of types such as 11 °, a polishing table 41 and a polishing pad 51 that match this angle may be prepared.

【0032】図12は第10の実施の態様であり、第1
の実施の態様と相違する点は、研磨パッド5の上方周縁
部に最外周端部をミラー面取研磨するための環状凸部2
4が形成されていることである。このような環状凸部2
4を設けておけば、面取部とともに最外周端部をも同時
にミラー面取加工できることになる。
FIG. 12 shows a tenth embodiment.
The embodiment differs from the embodiment in that an annular convex portion 2 for chamfering and polishing the outermost end portion on the upper peripheral portion of the polishing pad 5 is provided.
4 is formed. Such an annular convex portion 2
If 4 is provided, the outermost peripheral end as well as the chamfered portion can be mirror-chamfered at the same time.

【0033】以上、本発明の実施例を図面により説明し
てきたが、具体的な構成はこれら実施例に限られるもの
ではなく、本発明の要旨を逸脱しない範囲における変更
や追加があっても本発明に含まれる。例えば、実施例で
は面取部を傾斜角度22゜、11゜等の平面部として表
現しているが、曲面のものも有り、例えば最外周端部と
面取部とが全てアール面になっているものも含まれる。
Although the embodiments of the present invention have been described with reference to the drawings, the specific configuration is not limited to these embodiments, and even if there are changes and additions without departing from the gist of the present invention. Included in the invention. For example, in the embodiment, the chamfered portion is expressed as a flat portion having an inclination angle of 22 °, 11 °, or the like, but there is also a curved surface, and for example, the outermost end and the chamfered portion are all round surfaces. Is included.

【0034】[0034]

【発明の効果】本発明によれば、次のような効果が得ら
れる。
According to the present invention, the following effects can be obtained.

【0035】(a)請求項1の発明によると、研磨面に
円盤状半導体ウェーハを押し当てようとする力を円盤状
半導体ウェーハの外周部に位置する面取部のほぼ全域を
使用して支えるようにしたもので、ミラー面取加工の速
度に最も必要な押し付け力を高めても、円盤状半導体ウ
ェーハに局部的な荷重が加わらず、加工時の局部欠損を
防止でき、延いては円盤状半導体ウェーハの面取部のミ
ラー面取加工速度を飛躍的に高めるものである。
(A) According to the first aspect of the present invention, the force for pressing the disc-shaped semiconductor wafer against the polished surface is supported by using substantially the entire area of the chamfer located at the outer peripheral portion of the disc-shaped semiconductor wafer. Even if the pressing force, which is the most necessary for the mirror chamfering speed, is increased, a local load is not applied to the disc-shaped semiconductor wafer, and local defects can be prevented during the processing. This is to dramatically increase the mirror chamfering speed of a chamfered portion of a semiconductor wafer.

【0036】(b)請求項2の発明によると、円盤状半
導体ウェーハの直径に基づき、研磨面としての球内面形
状の曲率半径を算出することにより、容易に球内面形状
が決まり、このようにすることにより円盤状半導体ウェ
ーハを凹状の研磨面に当接するのみで、理論的に常時円
盤状半導体ウェーハの全周が研磨面に当ることになり、
両者の位置設定が極めて簡素化される。
(B) According to the second aspect of the present invention, the radius of curvature of the spherical inner surface shape as the polishing surface is calculated based on the diameter of the disc-shaped semiconductor wafer, so that the spherical inner surface shape is easily determined. By just contacting the disc-shaped semiconductor wafer with the concave polishing surface, the entire circumference of the disc-shaped semiconductor wafer always hits the polishing surface at all times theoretically,
The setting of both positions is greatly simplified.

【0037】(c)請求項3の発明によると、円盤状半
導体ウェーハの面取部が球内面形状の研磨面に広い面積
で平均化して当接するため、研磨面の寿命が延びる。
(C) According to the third aspect of the present invention, the chamfered portion of the disc-shaped semiconductor wafer abuts on the polished surface having a spherical inner surface over a wide area, thereby extending the life of the polished surface.

【0038】(d)請求項4の発明によると、円盤状半
導体ウェーハの表裏に形成された傾斜角度(例えば22
゜)の面取部に対して、同角度の開き角を有する円錐面
を確実に当てることが可能となり、面取部のミラー面取
加工処理を高精度に行える。
(D) According to the invention of claim 4, the inclination angle (for example, 22 degrees) formed on the front and back of the disc-shaped semiconductor wafer.
The conical surface having the same angle of opening can be reliably applied to the chamfered portion ゜), and the mirror chamfering process of the chamfered portion can be performed with high accuracy.

【0039】(e)請求項5の発明によると、基本的に
片面の全ての面取部がミラー面取加工中に研磨面と接し
ており、仕上り精度を確認できないが、加工時間の設定
によって表裏同精度の面取部のミラー面取加工が可能と
なる。
(E) According to the invention of claim 5, basically, all the chamfered portions on one side are in contact with the polished surface during the mirror chamfering, and the finishing accuracy cannot be confirmed. Mirror chamfering of the chamfered part with the same accuracy on both sides is possible.

【0040】[0040]

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1の実施の態様を示す装置の一部断面図であ
る。
FIG. 1 is a partial sectional view of an apparatus showing a first embodiment.

【図2】図1の一部斜視図である。FIG. 2 is a partial perspective view of FIG.

【図3】図2の研磨面の平面図である。FIG. 3 is a plan view of the polishing surface of FIG. 2;

【図4】第2の実施の態様を示す概略図である。FIG. 4 is a schematic diagram showing a second embodiment.

【図5】第3の実施の態様を示す概略図である。FIG. 5 is a schematic diagram showing a third embodiment.

【図6】第4の実施の態様を示す概略図である。FIG. 6 is a schematic diagram showing a fourth embodiment.

【図7】第5の実施の態様を示す概略図である。FIG. 7 is a schematic view showing a fifth embodiment.

【図8】第6の実施の態様を示す概略図である。FIG. 8 is a schematic diagram showing a sixth embodiment.

【図9】第7の実施の態様を示す概略図である。FIG. 9 is a schematic view showing a seventh embodiment.

【図10】第8の実施の態様を示す概略図である。FIG. 10 is a schematic view showing an eighth embodiment.

【図11】第9の実施の態様を示す概略図である。FIG. 11 is a schematic view showing a ninth embodiment.

【図12】第10の実施の態様を示す概略図である。FIG. 12 is a schematic view showing a tenth embodiment.

【図13】従来の装置を示す概略図である。FIG. 13 is a schematic view showing a conventional device.

【図14】図13の平面図である。FIG. 14 is a plan view of FIG.

【図15】図13の面取部及び研磨ドラムを示す局部図
である。
FIG. 15 is a local view showing a chamfer portion and a polishing drum of FIG. 13;

【符号の説明】[Explanation of symbols]

1 ベッド台 2 軸受 3 回転軸 4 研磨台 5 研磨パッド 6 溝 7 供給通路 8 プーリ 9 ベルト 10 モータプーリ 11 モータ 12 コラム 13 摺動レール 14 モータ 15 送りネジ 16 移動台 17 加圧シリンダー 18 昇降軸 19 軸受 20 自在継手 21 回転軸受 22 チャック 23 半導体ウェーハ 24 環状凸部 31 支持体 41 研磨台 51 研磨パッド 181 揺動軸 182 回転軸 1 Bed stand 2 Bearing 3 Rotary shaft 4 Polishing table 5 Polishing pad 6 Groove 7 Supply passage 8 Pulley 9 Belt 10 Motor pulley 11 Motor 12 Column 13 Sliding rail 14 Motor 15 Feed screw 16 Moving table 17 Pressure cylinder 18 Elevating shaft 19 Bearing DESCRIPTION OF SYMBOLS 20 Universal joint 21 Rotation bearing 22 Chuck 23 Semiconductor wafer 24 Annular convex part 31 Supporter 41 Polishing table 51 Polishing pad 181 Swing axis 182 Rotation axis

───────────────────────────────────────────────────── フロントページの続き (72)発明者 平林 安雄 東京都東久留米市八幡町3丁目6番22号 旭栄研磨加工株式会社内 (72)発明者 本多 恵治 東京都東久留米市八幡町3丁目6番22号 旭栄研磨加工株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Yasuo Hirabayashi 3-6-22, Yawatacho, Higashikurume-shi, Tokyo Asahisaka Abrasive Processing Co., Ltd. (72) Inventor Keiji Honda 3 Yawatacho, Higashikurume-shi, Tokyo Chome 6-22 Asahi Sakae Polishing Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 凹形状をなす研磨面に対して、円盤状半
導体ウェーハの外周の面取部をほぼ全周において押し当
てた状態で、この研磨面と円盤状半導体ウェーハとの相
対的回転を与えることにより、円盤状半導体ウェーハの
外周の面取部のミラー面取加工を行うようにしたことを
特徴とする円盤状半導体ウェーハ面取部のミラー面取加
工方法。
In a state where a chamfered portion on the outer periphery of a disc-shaped semiconductor wafer is pressed substantially all around the concave-shaped polishing surface, relative rotation between the polishing surface and the disc-shaped semiconductor wafer is controlled. A mirror chamfering method for a chamfered portion of a disc-shaped semiconductor wafer, wherein a mirror chamfering process for a chamfered portion on an outer periphery of the disc-shaped semiconductor wafer is performed.
【請求項2】 凹形状をなす研磨面として、円盤状半導
体ウェーハの外周面取部をほぼ全周において押し当て可
能な曲率半径の球内面形状を用いた請求項1に記載の円
盤状半導体ウェーハ面取部のミラー面取加工方法。
2. The disc-shaped semiconductor wafer according to claim 1, wherein the concave-shaped polished surface has a spherical inner surface shape having a radius of curvature capable of pressing the outer peripheral chamfered portion of the disc-shaped semiconductor wafer substantially all around. Mirror chamfering method for chamfered part.
【請求項3】 研磨面である球内面の中心点に円盤状半
導体ウェーハの回転軸を一致させ、かつ研磨面と回転軸
と前記円盤状半導体ウェーハの回転軸とを不一致とさ
せ、少なくとも前記研磨面をその回転軸で強制的に回転
させるようにした請求項2に記載の円盤状半導体ウェー
ハ面取部のミラー面取加工方法。
3. The polishing machine according to claim 1, wherein the rotation axis of the disc-shaped semiconductor wafer is made coincident with the center point of the inner surface of the sphere, which is a polishing surface, and the polishing surface, the rotation axis and the rotation axis of said disc-shaped semiconductor wafer are not coincident with each other. 3. The mirror chamfering method for a disk-shaped semiconductor wafer chamfered part according to claim 2, wherein the surface is forcibly rotated about its rotation axis.
【請求項4】 凹状をなす研磨面として、円盤状ウェー
ハの外周の面取部をほぼ全周において押し当て可能な円
錐内面形状の一部を用いた請求項1に記載の円盤状半導
体ウェーハ面取部のミラー面取加工方法。
4. The disk-shaped semiconductor wafer surface according to claim 1, wherein the concave polishing surface is a part of a conical inner surface shape capable of pressing a chamfered portion on an outer circumference of the disk-shaped wafer substantially all around. Mirror chamfering method for the bevel.
【請求項5】 円盤状半導体ウェーハの一面を加圧プレ
ートに固定し、他面の面取部を加圧プレートによって研
磨面に押し当て、前記他面の面取部のミラー面取加工を
所定時間行い、その後、円盤状半導体ウェーハの一面か
ら加工プレートを取外し、次に円盤状半導体ウェーハの
他面を加圧プレートに固定し、一面の面取部を加圧プレ
ートに押し当て、前記一面の面取部のミラー面取加工を
前記他面のミラー面取加工時間とほぼ同時間行うように
した請求項1ないし4のいずれかに記載の円盤状半導体
ウェーハ面取部のミラー面取加工方法。
5. A surface of a disc-shaped semiconductor wafer is fixed to a pressure plate, and a chamfered portion of the other surface is pressed against a polishing surface by a pressure plate, and a mirror chamfering process of the chamfered portion of the other surface is performed. Time, then remove the working plate from one surface of the disc-shaped semiconductor wafer, then fix the other surface of the disc-shaped semiconductor wafer to the pressure plate, press the chamfer of one surface against the pressure plate, 5. The mirror chamfering method for a disk-shaped semiconductor wafer chamfer according to claim 1, wherein the mirror chamfering of the chamfered portion is performed for substantially the same time as the mirror chamfering time of the other surface. .
JP18471496A 1996-07-15 1996-07-15 Mirror chamfering method for disk-shaped semiconductor wafer chamfer Expired - Fee Related JP3389014B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18471496A JP3389014B2 (en) 1996-07-15 1996-07-15 Mirror chamfering method for disk-shaped semiconductor wafer chamfer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18471496A JP3389014B2 (en) 1996-07-15 1996-07-15 Mirror chamfering method for disk-shaped semiconductor wafer chamfer

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2002331751A Division JP2003145399A (en) 2002-11-15 2002-11-15 Mirror chamfering method for chamfered portion of disc semiconductor wafer

Publications (2)

Publication Number Publication Date
JPH1029142A true JPH1029142A (en) 1998-02-03
JP3389014B2 JP3389014B2 (en) 2003-03-24

Family

ID=16158087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18471496A Expired - Fee Related JP3389014B2 (en) 1996-07-15 1996-07-15 Mirror chamfering method for disk-shaped semiconductor wafer chamfer

Country Status (1)

Country Link
JP (1) JP3389014B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002049802A1 (en) * 2000-12-21 2002-06-27 Nikon Corporation Device and method for polishing, and method and device for manufacturing semiconductor device
JP2002187050A (en) * 2000-12-21 2002-07-02 Nikon Corp Polishing machine, polishing method of semiconductor wafer, manufacturing method of semiconductor device and manufacturing equipment
US6685539B1 (en) 1999-08-24 2004-02-03 Ricoh Company, Ltd. Processing tool, method of producing tool, processing method and processing apparatus
JP2008084522A (en) * 2006-09-01 2008-04-10 Hoya Corp Method and apparatus for manufacturing glass substrate for magnetic disk, glass substrate for magnetic disk, method for manufacturing magnetic disk, and magnetic disk
JP2008080482A (en) * 2006-09-01 2008-04-10 Hoya Corp Manufacturing method and manufacturing device for magnetic disk glass substrate, magnetic disk glass substrate, magnetic disk manufacturing method, and magnetic disk
CN109333221A (en) * 2018-10-26 2019-02-15 武汉优光科技有限责任公司 A kind of automatic beveling machine
WO2020054811A1 (en) * 2018-09-14 2020-03-19 株式会社Sumco Wafer mirror surface chamfering method, wafer manufacturing method, and wafer

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6685539B1 (en) 1999-08-24 2004-02-03 Ricoh Company, Ltd. Processing tool, method of producing tool, processing method and processing apparatus
WO2002049802A1 (en) * 2000-12-21 2002-06-27 Nikon Corporation Device and method for polishing, and method and device for manufacturing semiconductor device
JP2002187050A (en) * 2000-12-21 2002-07-02 Nikon Corp Polishing machine, polishing method of semiconductor wafer, manufacturing method of semiconductor device and manufacturing equipment
JP2008084522A (en) * 2006-09-01 2008-04-10 Hoya Corp Method and apparatus for manufacturing glass substrate for magnetic disk, glass substrate for magnetic disk, method for manufacturing magnetic disk, and magnetic disk
JP2008080482A (en) * 2006-09-01 2008-04-10 Hoya Corp Manufacturing method and manufacturing device for magnetic disk glass substrate, magnetic disk glass substrate, magnetic disk manufacturing method, and magnetic disk
WO2020054811A1 (en) * 2018-09-14 2020-03-19 株式会社Sumco Wafer mirror surface chamfering method, wafer manufacturing method, and wafer
CN112218737A (en) * 2018-09-14 2021-01-12 胜高股份有限公司 Method for chamfering mirror surface of wafer, method for manufacturing wafer, and wafer
JPWO2020054811A1 (en) * 2018-09-14 2021-02-18 株式会社Sumco Wafer mirror chamfering method, wafer manufacturing method, and wafer
US10971351B2 (en) 2018-09-14 2021-04-06 Sumco Corporation Wafer surface beveling method, method of manufacturing wafer, and wafer
CN109333221A (en) * 2018-10-26 2019-02-15 武汉优光科技有限责任公司 A kind of automatic beveling machine
CN109333221B (en) * 2018-10-26 2019-11-22 武汉优光科技有限责任公司 A kind of automatic beveling machine

Also Published As

Publication number Publication date
JP3389014B2 (en) 2003-03-24

Similar Documents

Publication Publication Date Title
KR100429739B1 (en) Apparatus and method of abrading outer periphery of device wafer
JP4386897B2 (en) Carrier head
JP2000015557A (en) Polishing device
JP2000003890A (en) Method of chamfering wafer
JP3510584B2 (en) Peripheral polishing device for disk-shaped workpiece
US6261160B1 (en) Method and apparatus for specular-polishing of work edges
JPH09103955A (en) Method and apparatus for adjusting abrading pad at normal position
JP2003151935A (en) Polishing pad conditioner of chemical mechanical polisher, and method of conditioning polishing pad
JPH11245151A (en) Work periphery polishing device
JPH1029142A (en) Mirror chamfering and machining method for disk semiconductor wafer chamfered section
JP5033066B2 (en) Polishing apparatus and polishing method for workpiece outer periphery
JPH10180622A (en) Device and method for precision grinding
JP2004050345A (en) Processing device for outer periphery of thin plate-like work
JP4416958B2 (en) Semiconductor wafer peripheral polishing apparatus and polishing method
JP2003145399A (en) Mirror chamfering method for chamfered portion of disc semiconductor wafer
US6089960A (en) Semiconductor wafer polishing mechanism
JPH04214223A (en) Finishing apparatus for attaching circular pattern to disk-shaped work
JPH07299738A (en) Wafer polishing device
JPH1148109A (en) Mirror polishing method and device for work edge
JP2001062686A (en) Index type edge polisher
JP2003109923A (en) Device for polishing semiconductor wafer
JP4122800B2 (en) Semiconductor wafer polishing method
JP3230551U (en) Wafer polishing equipment
JP2019160848A (en) Polishing apparatus
JPH11320358A (en) Polishing device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20080117

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090117

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090117

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100117

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20100117

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100117

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20100117

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100117

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100117

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110117

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120117

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20130117

LAPS Cancellation because of no payment of annual fees