JPH10287832A - Production of insulating varnish and multi-layered printed wiring board using the insulating varnish - Google Patents

Production of insulating varnish and multi-layered printed wiring board using the insulating varnish

Info

Publication number
JPH10287832A
JPH10287832A JP9096300A JP9630097A JPH10287832A JP H10287832 A JPH10287832 A JP H10287832A JP 9096300 A JP9096300 A JP 9096300A JP 9630097 A JP9630097 A JP 9630097A JP H10287832 A JPH10287832 A JP H10287832A
Authority
JP
Japan
Prior art keywords
resin
printed wiring
adhesive film
whisker
wiring board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9096300A
Other languages
Japanese (ja)
Other versions
JP3838390B2 (en
Inventor
Kazunori Yamamoto
和徳 山本
Akishi Nakaso
昭士 中祖
Kazuhito Kobayashi
和仁 小林
Yasushi Kamishiro
恭 神代
Atsushi Takahashi
敦之 高橋
Kouji Morita
高示 森田
Shigeharu Ariga
茂晴 有家
Kazuhisa Otsuka
和久 大塚
Naoyuki Urasaki
直之 浦崎
Daisuke Fujimoto
大輔 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP09630097A priority Critical patent/JP3838390B2/en
Priority to US09/057,522 priority patent/US6197149B1/en
Priority to DE69839104T priority patent/DE69839104D1/en
Priority to EP19980106742 priority patent/EP0873047B1/en
Publication of JPH10287832A publication Critical patent/JPH10287832A/en
Application granted granted Critical
Publication of JP3838390B2 publication Critical patent/JP3838390B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an insulating varnish capable of giving printed wiring broads flat in surfaces and good in circuit processability by stirring whiskers in an organic solvent to dissociate whisker aggregates contained in the whiskers, adding the prepared homogeneous slurry to a resin varnish and subsequently stirring the mixture. SOLUTION: This method for producing an insulating varnish comprises stirring electrically insulating ceramic whiskers having an average diameter of 0.3-3 μm and an average length of 3-50 μm in an organic solvent to dissociate whisker aggregates contained in the whiskers in a dry state, adding the prepared homogeneous slurry to a resin varnish, and subsequently stirring the mixture. Thereby, the objective insulating varnish giving printed wiring boards high in mounting reliability, good in wire bondability and good in dimensional stability is obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電子部品を実装す
るプリント配線板の薄型化及び高密度化への要求に対応
できるプリント配線板や多層プリント配線板用の接着フ
ィルムに適用する絶縁ワニスの製造方法と、その絶縁ワ
ニスを用いた多層プリント配線板に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an insulating varnish applied to an adhesive film for a printed wiring board or a multilayer printed wiring board which can meet the demand for thinner and higher density printed wiring boards on which electronic components are mounted. The present invention relates to a manufacturing method and a multilayer printed wiring board using the insulating varnish.

【0002】[0002]

【従来の技術】プリント配線板は、通常、銅箔とプリプ
レグを積層、熱圧成形して得た銅張積層板に回路加工し
て得られる。また、多層プリント配線板は、これらのプ
リント配線板同士をプリプレグを介して熱圧成形するか
又は、これらのプリント配線板と銅箔とをプリプレグを
介して熱圧成形して一体化して得た内層回路入り多層銅
張積層板の表面に回路を形成して得られる。
2. Description of the Related Art A printed wiring board is usually obtained by laminating a copper foil and a prepreg, and performing circuit processing on a copper-clad laminate obtained by hot pressing. Further, a multilayer printed wiring board was obtained by hot-pressing these printed wiring boards via a prepreg, or by hot-pressing these printed wiring boards and copper foil through a prepreg and integrating them. It is obtained by forming a circuit on the surface of a multilayer copper clad laminate containing an inner layer circuit.

【0003】プリント配線板用のプリプレグには、従
来、ガラスクロスに樹脂を含浸・乾燥し、樹脂を半硬化
状態にしたガラスクロスプリプレグが用いられ、多層プ
リント配線板には、該ガラスクロスプリプレグの他に、
特開平6−200216号公報や特開平6−24246
5号公報に記載されているような、ガラスクロスを用い
ないプリプレグであるフィルム形成能を有する樹脂を半
硬化状態にした接着フィルムや、特開平6−19686
2号公報に記載されているような、接着フィルムを銅箔
の片面に形成した銅箔付き接着フィルムが使用されてい
る。なお、ここでいうフィルム形成能とは、プリプレグ
の搬送、切断及び積層等の工程中において、樹脂の割れ
や欠落等のトラブルを生じにくく、その後の熱圧成形時
に層間絶縁層が内層回路存在部等で異常に薄くなったり
層間絶縁抵抗の低下やショートというトラブルを生じに
くい性能を意味する。
As a prepreg for a printed wiring board, a glass cloth prepreg obtained by impregnating a glass cloth with a resin and drying the resin to make the resin semi-cured has been used. For a multilayer printed wiring board, the prepreg of the glass cloth prepreg has been used. other,
JP-A-6-200216 and JP-A-6-24246
Japanese Patent Application Laid-Open No. 6-19686, which describes a prepreg that does not use a glass cloth and is made of a resin having a film forming ability in a semi-cured state.
An adhesive film with a copper foil having an adhesive film formed on one side of a copper foil, as described in Japanese Patent Publication No. 2 (JP-A) No. 2 (1994), is used. The film-forming ability referred to here means that troubles such as cracking or chipping of the resin hardly occur during the steps of transporting, cutting, and laminating the prepreg, and the interlayer insulating layer is formed in the portion where the inner layer circuit exists at the time of subsequent hot pressing. It means performance that is unlikely to cause troubles such as abnormal thinning, reduction in interlayer insulation resistance and short circuit.

【0004】[0004]

【発明が解決しようとする課題】近年、電子機器の小型
軽量化、高性能化、低コスト化が進行し、プリント配線
板には高密度化、薄型化、高信頼性化、低コスト化が要
求されている。高密度化のためには、微細配線が必要で
あり、そのためには表面の平坦性が良好でかつ、寸法安
定性が良好でなくてはならない。さらに微細なスルーホ
ールやインターステーシャルバイアホール(IVH)が
必要であり、ドリル加工性、レーザ穴加工性が良好であ
ることが要求されている。表面の平坦性を良好にするた
めには、多層化積層成形時の樹脂の流動性を高くする必
要があり、これにはエポキシ樹脂等の熱硬化性樹脂の適
用が望ましい。
In recent years, electronic devices have been reduced in size, weight, performance, and cost, and printed wiring boards have been required to have higher density, thinner, higher reliability, and lower cost. Has been requested. For high density, fine wiring is required, and for that purpose, the surface must have good flatness and good dimensional stability. Further, fine through holes and interstitial via holes (IVH) are required, and good drill workability and laser hole workability are required. In order to improve the flatness of the surface, it is necessary to increase the fluidity of the resin at the time of multilayer lamination molding, and it is desirable to use a thermosetting resin such as an epoxy resin.

【0005】ところが、エポキシ樹脂は、成形前の段階
での分子量が低いために高い流動性を示しており、シー
ト状の接着フィルムを形成する性質を有していない。そ
こで、従来はガラスクロス等の補強基材に絶縁樹脂を含
浸させたプリプレグをあらかじめ作製し、これを絶縁層
に用いてきたが、従来のプリプレグでは上記の要求への
対応が困難になってきた。
[0005] However, epoxy resins exhibit high fluidity due to their low molecular weight before molding, and do not have the property of forming a sheet-like adhesive film. Therefore, in the past, a prepreg in which an insulating resin was impregnated into a reinforcing base material such as glass cloth was prepared in advance, and this was used for the insulating layer. However, it has become difficult to respond to the above requirements with the conventional prepreg. .

【0006】現在、プリプレグ用に一般的に使用されて
いるガラスクロスは、その厚みが薄くなるに従いヤーン
(ガラス繊維束)同士の間の隙間が大きくなる。そのた
め、厚みが薄いクロスほど目曲がり(ヤーンが曲がった
り、本来直角に交差すべき縦糸と横糸が直角でなく交差
する現象)が発生しやすくなる。この目曲がりが原因と
なり、熱圧成形後に異常な寸法変化やそりを生じやすく
なる。さらに薄いガラスクロスほどヤーン間の隙間が大
きいためプリプレグの繊維の体積分率が低くなるため層
間絶縁層の剛性が低下する。そのため外層の回路を加工
した後の部品実装工程等においてたわみが大きくなりや
すく問題となっている。
At present, in the glass cloth generally used for the prepreg, the gap between the yarns (glass fiber bundles) increases as the thickness decreases. For this reason, the thinner the cloth, the more the curling (the phenomenon that the yarn is bent or the warp and the weft, which should intersect at right angles, intersect at right angles rather than at right angles) is more likely to occur. Due to this bending, abnormal dimensional changes and warpage tend to occur after hot pressing. Further, the thinner the glass cloth is, the larger the gap between the yarns is, the lower the volume fraction of the fibers of the prepreg becomes, and the lower the rigidity of the interlayer insulating layer becomes. For this reason, there is a problem in that the deflection is likely to increase in a component mounting step or the like after processing the circuit in the outer layer.

【0007】現在、一般に使用されているガラスクロス
で最も薄いのは30μmのクロスであり、これを使用し
たプリプレグの厚さは40μm程度になる。これ以上に
プリプレグの厚さを薄くするために、樹脂分を減らすと
内層回路の凹凸への樹脂による穴埋め性が低下しボイド
が発生する。またこれ以上にガラスクロスを薄くすると
クロス自体の強度が低下するためガラスクロスに樹脂を
含浸する工程でガラスクロスが破断しやすなりプリプレ
グの製造が困難になる。さらに、これらのガラスクロス
を使用したプリプレグを用いて作製した多層プリント配
線板は、小径ドリル加工時に偏在するガラスクロスによ
って芯ぶれがしやすく、ドリルを折りやすい。また、ガ
ラス繊維の存在のため、レーザによる穴あけ性が悪く、
内層回路の凹凸が表面に現れやすく表面平坦性が悪い。
したがって、現状のガラスクロス基材のプリプレグを使
用しては、高まる多層プリント配線板の高密度化、薄型
化の要求に対応出来ない状況にある。
At present, the thinnest glass cloth generally used is a 30 μm cloth, and the thickness of a prepreg using the cloth is about 40 μm. If the resin content is reduced in order to further reduce the thickness of the prepreg, the ability to fill holes in the unevenness of the inner layer circuit with the resin is reduced, and voids are generated. Further, if the glass cloth is made thinner than this, the strength of the cloth itself is reduced, so that the glass cloth is easily broken in the step of impregnating the glass cloth with a resin, and it becomes difficult to manufacture a prepreg. Furthermore, a multilayer printed wiring board manufactured using a prepreg using these glass cloths is easily misaligned by a glass cloth unevenly distributed during small-diameter drilling, and the drill is easily folded. In addition, due to the presence of glass fibers, laser drilling is poor,
The unevenness of the inner layer circuit easily appears on the surface, and the surface flatness is poor.
Therefore, it is not possible to meet the increasing demand for higher density and thinner multilayer printed wiring boards using the current glass cloth base material prepreg.

【0008】一方、ガラスクロスのないプリプレグであ
る接着フィルムや銅箔付き接着フィルムは、厚さをより
薄くでき、小径ドリル加工性、レーザ穴加工性及び表面
平坦性に優れる。しかしながら、これらのプリプレグで
作製した多層プリント配線板は、外層絶縁層にガラスク
ロス基材がないため、剛性が極めて低い。この剛性の低
さは、高温下において極めて顕著であり、部品実装工程
においてたわみが生じやすく、ワイヤーボンディング性
も極めて悪い。また外層絶縁層にガラスクロス基材がな
く熱膨張係数が大きいため実装部品との熱膨張の差が大
きく、実装部品との接続信頼性が低く、加熱冷却の熱膨
張収縮によるはんだ接続部にクラックや破断が起こり易
い等多くの問題を抱える。したがって、現状のガラスク
ロスのないプリプレグである接着フィルムや銅箔付き接
着フィルムを使用しては、高まる多層プリント配線板の
高密度化、薄型化の要求に対応出来ない状況にある。
On the other hand, an adhesive film which is a prepreg without a glass cloth or an adhesive film with a copper foil can be made thinner, and is excellent in small diameter drill workability, laser hole workability and surface flatness. However, the multilayer printed wiring boards made with these prepregs have extremely low rigidity because the outer insulating layer does not have a glass cloth base material. This low rigidity is extremely remarkable at a high temperature, and is likely to bend in the component mounting process, and the wire bonding property is extremely poor. In addition, there is no glass cloth substrate in the outer insulating layer and the coefficient of thermal expansion is large because the thermal expansion coefficient is large, the reliability of connection with the mounted component is low, and cracks in the solder connection due to the thermal expansion and contraction of heating and cooling And many problems such as easy breakage. Therefore, it is not possible to meet the increasing demand for higher density and thinner multilayer printed wiring boards by using an adhesive film which is a prepreg without a glass cloth or an adhesive film with a copper foil.

【0009】そこで、従来のプリプレグでは解決できな
い多層プリント配線板に対する高密度化、薄型化、高信
頼性化、低コスト化という課題を解決するための新規接
着フィルムとして、ガラスクロス等の基材を含まず、形
状保持のための電気絶縁性ウイスカーを絶縁樹脂中に分
散させることにより得られるワニスをキャリア基材に流
延して得られるシート状の接着フィルムが有効であるこ
とを見出した。しかし、電気絶縁性ウイスカーは乾燥状
態で凝集する性質が有り、電気絶縁性ウイスカーを絶縁
樹脂中に分散させるためには、特殊な混練設備が必要で
あったり、電気絶縁性ウイスカーの表面処理を適切に行
うことが必要になるが、そのような対策を施しても電気
絶縁性ウイスカーの凝集体を皆無にすることができな
い。ところで、多層配線板材料は、内層回路充填性確保
のために絶縁層厚を内層回路厚以上に設定しているが、
多層配線板の全体厚を薄くするために、絶縁性を確保で
きる範囲で可能な限り薄くすることが望まれている。そ
こで、絶縁層厚は通常25〜100μmで、少なくとも
25μmを確保している。ところが、電気絶縁性のウイ
スカーの凝集体のサイズ(長さ)は、50μmを超え、
中には300μmを超えるものもあった。この電気絶縁
性ウイスカーの凝集体を含んだワニスを用いて作製した
シート状接着フィルムを多層配線板に適用した場合に
は、導体間に電気絶縁性ウイスカーの凝集体が接触し、
CAF(Conductive AnodicFilament)に類似した絶縁
不良を起こすことがある。
Therefore, a substrate such as glass cloth is used as a novel adhesive film for solving the problems of high density, thinness, high reliability, and low cost for a multilayer printed wiring board that cannot be solved by a conventional prepreg. It was found that a sheet-like adhesive film obtained by casting a varnish obtained by dispersing an electrically insulating whisker for maintaining shape in an insulating resin on a carrier base material was effective. However, electrical insulating whiskers have the property of agglomerating in a dry state, and special kneading equipment is required to disperse the electrical insulating whiskers in the insulating resin. However, even if such measures are taken, the aggregates of the electrically insulating whiskers cannot be completely eliminated. By the way, in the multilayer wiring board material, the insulating layer thickness is set to be equal to or greater than the inner layer circuit thickness in order to secure the inner layer circuit filling property.
In order to reduce the overall thickness of the multilayer wiring board, it is desired to reduce the thickness as much as possible as long as insulation can be ensured. Therefore, the thickness of the insulating layer is usually 25 to 100 μm, and at least 25 μm is secured. However, the size (length) of the electrically insulating whisker aggregate exceeds 50 μm,
Some of them exceeded 300 μm. When a sheet-like adhesive film produced using a varnish containing the aggregate of the electrically insulating whisker is applied to the multilayer wiring board, the aggregate of the electrically insulating whisker contacts between the conductors,
Insulation failure similar to CAF (Conductive Anodic Filament) may occur.

【0010】本発明は、電気絶縁性ウイスカーを複合化
させた接着フィルムへの電気絶縁性のウイスカーの凝集
体の混入の抑制に優れた絶縁ワニスの製造方法を提供す
ることを目的とする。
An object of the present invention is to provide a method for producing an insulating varnish which is excellent in suppressing the incorporation of aggregates of electrically insulating whiskers into an adhesive film in which electrically insulating whiskers are compounded.

【0011】[0011]

【課題を解決するための手段】本発明の絶縁ワニスの製
造方法は、乾燥状態で凝集性を示す電気絶縁性ウイスカ
ーをあらかじめ有機溶剤中で攪拌させてスラリーとし、
このスラリーを樹脂ワニス中に配合した後、攪拌するこ
とを特徴とする。
According to the method for producing an insulating varnish of the present invention, an electrically insulating whisker exhibiting cohesiveness in a dry state is previously stirred in an organic solvent to form a slurry,
It is characterized in that the slurry is blended in a resin varnish and then stirred.

【0012】[0012]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(スラリー)本発明に用いるスラリーは、乾燥状態の電
気絶縁性セラミックウイスカー集合体の中に存在する凝
集体を解離させるために、ウイスカーを有機溶剤中で攪
拌混合させることにより得る。ここで、スラリーを作製
する際に用いる有機溶剤は、樹脂ワニスに相溶すること
が必要で、絶縁ワニスの安定化のためにはワニス化溶剤
と同じものが好ましい。このスラリーの固形分は20〜
80重量%で、好ましくは25〜50重量%である。2
0重量%未満では樹脂ワニスに添加する溶剤が多くなり
すぎるために絶縁ワニスの塗工ができなくなり、80重
量%を超えると電気絶縁性ウイスカーの分散効果がなく
なってしまう。
(Slurry) The slurry used in the present invention is obtained by stirring and mixing whiskers in an organic solvent in order to dissociate aggregates present in the electrically insulating ceramic whisker aggregate in a dry state. Here, the organic solvent used in preparing the slurry must be compatible with the resin varnish, and is preferably the same as the varnishing solvent in order to stabilize the insulating varnish. The solids content of this slurry is 20-
It is 80% by weight, preferably 25 to 50% by weight. 2
If the amount is less than 0% by weight, the solvent added to the resin varnish becomes too large, so that the application of the insulating varnish cannot be performed. If the amount exceeds 80% by weight, the effect of dispersing the electrically insulating whisker is lost.

【0013】(ウィスカー)本発明に用いるウィスカー
としては、電気絶縁性のセラミックウィスカーであり、
弾性率が200GPa以上であるものが好ましく、20
0GPa未満では、多層プリント配線板としたときに十
分な剛性が得られない。ウィスカーの種類としては、例
えば、硼酸アルミニウム、ウォラストナイト、チタン酸
カリウム、塩基性硫酸マグネシウム、窒化けい素、α−
アルミナの中から選ばれた1以上のものを用いることが
できる。その中でも、硼酸アルミニウムウィスカーは、
弾性率が約400GPaとガラスよりも遥かに高く、熱
膨張係数も小さく、しかも比較的安価である。この硼酸
アルミニウムウィスカーを用いた本発明のプリプレグを
使用して作製したプリント配線板は、従来のガラスクロ
スを用いたプリント配線板よりも、常温及び高温下にお
ける剛性が高く、ワイヤーボンディング性に優れ、熱膨
張係数が小さく、寸法安定性にすぐれる。したがって、
本発明に用いるウィスカーの材質としては、硼酸アルミ
ニウムが最適である。
(Whisker) The whisker used in the present invention is an electrically insulating ceramic whisker.
It is preferable that the elastic modulus is 200 GPa or more.
If it is less than 0 GPa, sufficient rigidity cannot be obtained when a multilayer printed wiring board is formed. Examples of whisker types include aluminum borate, wollastonite, potassium titanate, basic magnesium sulfate, silicon nitride, α-
One or more materials selected from alumina can be used. Among them, aluminum borate whiskers are
It has a modulus of elasticity of about 400 GPa, much higher than that of glass, a small coefficient of thermal expansion, and is relatively inexpensive. The printed wiring board manufactured using the prepreg of the present invention using the aluminum borate whisker has higher rigidity at room temperature and high temperature than the conventional printed wiring board using glass cloth, and has excellent wire bonding properties. Low thermal expansion coefficient and excellent dimensional stability. Therefore,
As a material of the whisker used in the present invention, aluminum borate is optimal.

【0014】ウィスカーの平均直径は、0.3μm未満
であると樹脂ワニスへの混合が難しくなるとともに塗工
作業性が低下し、3μmを超えると表面の平坦性に悪影
響がでるとともにウィスカーの微視的な均一分散性が損
なわれる。したがって、ウィスカーの平均直径は0.3
〜3μmの範囲であることが好ましい。さらに同様の理
由と塗工性が良い(平滑に塗りやすい)ことから、平均
直径は、0.5〜1μmの範囲であることがより好まし
い。このような直径のウィスカーを選択することによ
り、従来のガラスクロスを基材としたプリプレグを使用
するよりも表面平坦性に優れたプリント配線板を得るこ
とができる。
If the average diameter of the whiskers is less than 0.3 μm, it is difficult to mix the whiskers with the resin varnish and the coating workability is reduced. If the average diameter exceeds 3 μm, the surface flatness is adversely affected and the whiskers are microscopically observed. Uniform dispersibility is impaired. Therefore, the average diameter of the whiskers is 0.3
It is preferably in the range of 33 μm. Further, for the same reason and good coatability (easy to apply smoothly), the average diameter is more preferably in the range of 0.5 to 1 μm. By selecting a whisker having such a diameter, a printed wiring board having more excellent surface flatness than using a prepreg using a conventional glass cloth as a base material can be obtained.

【0015】またウィスカーの平均長さは、平均直径の
10倍以上であることが好ましい。10倍未満である
と、繊維としての補強効果が僅かになると同時に、後述
するウィスカーの樹脂層中での2次元配向が困難になる
ため、配線板にしたときに十分な剛性が得られない。し
かしウィスカーが長すぎる場合は、ワニス中への均一分
散が難しくなり、塗工性が低下する。また、ある一つの
導体回路間と接触したウィスカーが他の導体回路と接触
する確率が高くなり、繊維に沿って移動する傾向にある
銅イオンのマイグレーションによる回路間短絡事故を起
こす可能性があるという問題がある。従ってウィスカー
の平均長さは50μm以下が好ましい。このような長さ
のウィスカーを使用した本発明の接着フィルムを用いて
作製したプリント配線板は、従来のガラスクロスを基材
にしたプリプレグを使用したプリント配線板よりも耐マ
イグレーション性に優れる。
The average length of the whiskers is preferably at least 10 times the average diameter. If the ratio is less than 10 times, the reinforcing effect as a fiber becomes small, and at the same time, it becomes difficult to perform two-dimensional orientation in the resin layer of the whisker described later, so that sufficient rigidity cannot be obtained when the wiring board is used. However, when the whisker is too long, it is difficult to uniformly disperse the whisker in the varnish, and the coatability is reduced. In addition, the probability that a whisker in contact with one conductor circuit comes into contact with another conductor circuit increases, and there is a possibility of causing an inter-circuit short circuit accident due to migration of copper ions that tend to move along the fiber. There's a problem. Therefore, the average length of the whiskers is preferably 50 μm or less. A printed wiring board manufactured using the adhesive film of the present invention using the whiskers having such a length has better migration resistance than a conventional printed wiring board using a prepreg based on a glass cloth.

【0016】またプリント配線板の剛性及び耐熱性をさ
らに高めるのに、シランカップリング剤で表面処理した
ウィスカーを使用することも有効である。カップリング
剤で表面処理したウィスカーは、樹脂との濡れ性、結合
性がすぐれ剛性及び耐熱性を向上させることができる。
このとき使用するカップリング剤は、シリコン系、チタ
ン系、アルミニウム系、ジルコニウム系、ジルコアルミ
ニウム系、クロム系、ボロン系、リン系、アミノ酸系等
の公知のものを使用できる。
In order to further increase the rigidity and heat resistance of the printed wiring board, it is effective to use whiskers whose surfaces have been treated with a silane coupling agent. Whiskers surface-treated with a coupling agent are excellent in wettability and bonding with a resin, and can improve rigidity and heat resistance.
As the coupling agent used at this time, known compounds such as silicon-based, titanium-based, aluminum-based, zirconium-based, zirconaluminum-based, chromium-based, boron-based, phosphorus-based, and amino acid-based can be used.

【0017】(樹脂)本発明で使用する樹脂は、従来の
ガラスクロスを基材としたプリプレグに使用されている
樹脂及びガラスクロス基材を含まない接着フィルムある
いは銅箔付き接着フィルムに使用されている熱硬化性樹
脂等を使用することが出来る。ここでいう樹脂とは、樹
脂、硬化剤、硬化促進剤、さらには必要に応じてカップ
リング剤や希釈剤を含むものを意味する。
(Resin) The resin used in the present invention is a resin used for a conventional prepreg based on a glass cloth and an adhesive film containing no glass cloth substrate or an adhesive film with a copper foil. Thermosetting resin or the like can be used. The term “resin” as used herein means a resin, a curing agent, a curing accelerator, and, if necessary, a coupling agent or a diluent.

【0018】従来のガラスクロスを基材としたプリプレ
グに使用されている樹脂は、それ単独では、フィルム形
成能がないため、銅箔の片面に塗工により接着剤層とし
て形成し、加熱により溶剤除去し樹脂を半硬化した場
合、搬送、切断及び積層等の工程中において、樹脂の割
れや欠落等のトラブルを生じやすく、又、その後の熱圧
成形時に層間絶縁層が内層回路存在部等で異常に薄くな
り層間絶縁抵抗の低下やショートというトラブルを生じ
やすかったため、従来、銅箔付き接着フィルム用途に使
用することが困難であった。しかし、本発明では、樹脂
中にはウィスカーが分散され、該樹脂はウィスカーによ
り補強されているため、本発明の樹脂とウィスカーから
なるプリプレグ層にはフィルム形成能が発現し、搬送、
切断及び積層等の工程中において、樹脂の割れや欠落等
のトラブルを生じにくく、またウィスカーが存在するた
め熱圧成形時の層間絶縁層が異常に薄くなる現象の発生
を防止できる。
The resin used in conventional prepregs based on glass cloth has no film forming ability by itself, so it is formed as an adhesive layer on one side of a copper foil by coating, and the solvent is heated. When the resin is removed and semi-cured, troubles such as cracking or missing of the resin are likely to occur during the process of transport, cutting, lamination, etc. Conventionally, it has been difficult to use it for an adhesive film with a copper foil because it is abnormally thin and easily causes problems such as a decrease in interlayer insulation resistance and a short circuit. However, in the present invention, whiskers are dispersed in the resin, and the resin is reinforced by the whiskers.
During the processes such as cutting and lamination, troubles such as cracking or chipping of the resin hardly occur, and the occurrence of an abnormal thinning of the interlayer insulating layer during hot pressing due to the presence of whiskers can be prevented.

【0019】また、従来、接着フィルムや銅箔付き接着
フィルムに使用されている樹脂を用いることも効果的で
ある。これらの樹脂は、高分子量成分等を含むことによ
り、樹脂単独でもフィルム形成能があるが、本発明によ
りウィスカーをその樹脂中に分散することにより、いっ
そうフィルム形成能が高められ取扱性が向上し、さらに
絶縁信頼性もより高めることが可能となる。またウィス
カーの分散によりフィルム形成能を高めた分だけ高分子
量成分の添加量を減らすことも可能であり、それによっ
て樹脂の耐熱性や接着性等を改善できる場合もある。
It is also effective to use a resin conventionally used for an adhesive film or an adhesive film with a copper foil. These resins have a film forming ability even when used alone by containing a high molecular weight component and the like.However, by dispersing whiskers in the resin according to the present invention, the film forming ability is further enhanced and the handleability is improved. In addition, the insulation reliability can be further improved. It is also possible to reduce the amount of the high molecular weight component to be added by the amount of the film forming ability enhanced by the dispersion of the whiskers, thereby improving the heat resistance and adhesiveness of the resin in some cases.

【0020】樹脂の種類としては、例えばエポキシ樹
脂、ビスマレイミドトリアジン樹脂、ポリイミド樹脂、
フェノール樹脂、メラミン樹脂、けい素樹脂、不飽和ポ
リエステル樹脂、シアン酸エステル樹脂、イソシアネー
ト樹脂、またはこれらの種々の変性樹脂類が好適であ
る。この中で、プリント配線板特性上、特にビストリア
ジン樹脂、エポキシ樹脂が好適である。そのエポキシ樹
脂としては、ビスフェノールA型エポキシ樹脂、ビスフ
ェノールF型エポキシ樹脂、ビスフェノールS型エポキ
シ樹脂、フェノールノボラック型エポキシ樹脂、クレゾ
ールノボラック型エポキシ樹脂、ビスフェノールAノボ
ラック型エポキシ樹脂、サリチルアルデヒドノボラック
型エポキシ樹脂、ビスフェノールFノボラック型エポキ
シ樹脂、脂環式エポキシ樹脂、グリシジルエステル型エ
ポキシ樹脂、グリシジルアミン型エポキシ樹脂、ヒダン
トイン型エポキシ樹脂、イソシアヌレート型エポキシ樹
脂、脂肪族環状エポキシ樹脂及びそれらのハロゲン化
物、水素添加物、及び前記樹脂の混合物が好適である。
なかでも、ビスフェノールAノボラック型エポキシ樹脂
またはサリチルアルデヒドノボラック型エポキシ樹脂
は、耐熱性に優れ好ましい。
Examples of the type of resin include epoxy resin, bismaleimide triazine resin, polyimide resin,
Phenol resins, melamine resins, silicon resins, unsaturated polyester resins, cyanate ester resins, isocyanate resins, or various modified resins thereof are suitable. Among them, bistriazine resin and epoxy resin are particularly preferable in terms of characteristics of the printed wiring board. As the epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolak type epoxy resin, cresol novolak type epoxy resin, bisphenol A novolak type epoxy resin, salicylaldehyde novolak type epoxy resin, Bisphenol F novolak type epoxy resin, alicyclic epoxy resin, glycidyl ester type epoxy resin, glycidylamine type epoxy resin, hydantoin type epoxy resin, isocyanurate type epoxy resin, aliphatic cyclic epoxy resin and their halides and hydrogenated products And mixtures of the above resins.
Among them, bisphenol A novolak type epoxy resin or salicylaldehyde novolak type epoxy resin is preferable because of its excellent heat resistance.

【0021】(硬化剤)このような樹脂の硬化剤として
は、従来使用しているものが使用でき、樹脂がエポキシ
樹脂の場合には、例えばジシアンジアミド、ビスフェノ
ールA、ビスフェノールF、ポリビニルフェノール、フ
ェノールノボラック樹脂、ビスフェノールAノボラック
樹脂及びこれらのフェノール樹脂のハロゲン化物、水素
化物等を使用できる。なかでも、ビスフェノールAノボ
ラック樹脂は耐熱性に優れ好ましい。この硬化剤の前記
樹脂に対する割合は、従来使用している割合でよく、樹
脂100重量部に対して、2〜100重量部の範囲が好
ましく、さらには、ジシアンジアミドでは、2〜5重量
部、それ以外の硬化剤では、30〜80重量部の範囲が
好ましい。2重量部未満では、十分な硬化が得られず、
100重量部を超えると、余剰の硬化剤が残存し、硬化
物の電気特性等を低下させるおそれがある。
(Curing agent) As the curing agent for such a resin, those conventionally used can be used. When the resin is an epoxy resin, for example, dicyandiamide, bisphenol A, bisphenol F, polyvinyl phenol, phenol novolak Resins, bisphenol A novolak resins, and halides and hydrides of these phenolic resins can be used. Among them, bisphenol A novolak resin is preferable because of its excellent heat resistance. The ratio of the curing agent to the resin may be a conventionally used ratio, and is preferably in the range of 2 to 100 parts by weight with respect to 100 parts by weight of the resin. Further, in the case of dicyandiamide, 2 to 5 parts by weight, For other curing agents, the range is preferably 30 to 80 parts by weight. If it is less than 2 parts by weight, sufficient curing cannot be obtained,
If the amount exceeds 100 parts by weight, an excessive curing agent may remain, and the electric properties and the like of the cured product may be deteriorated.

【0022】(硬化促進剤)硬化促進剤としては、樹脂
がエポキシ樹脂の場合、イミダゾール化合物、有機リン
化合物、第3級アミン、第4級アンモニウム塩などを使
用する。この硬化促進剤の前記樹脂に対する割合は、従
来使用している割合でよく、樹脂100重量部に対し
て、0.01〜20重量部の範囲が好ましく、0.1〜
10重量部の範囲がより好ましい。0.01重量部未満
であると、硬化が著しく遅くなり、20重量部を超える
と、硬化反応の制御ができないほど硬化速度が大きくな
る。
(Curing Accelerator) As the curing accelerator, when the resin is an epoxy resin, an imidazole compound, an organic phosphorus compound, a tertiary amine, a quaternary ammonium salt or the like is used. The ratio of the curing accelerator to the resin may be a conventionally used ratio, and is preferably in the range of 0.01 to 20 parts by weight, more preferably 0.1 to 20 parts by weight, based on 100 parts by weight of the resin.
A range of 10 parts by weight is more preferred. If the amount is less than 0.01 part by weight, the curing will be remarkably slow, and if it exceeds 20 parts by weight, the curing rate will be so high that the curing reaction cannot be controlled.

【0023】(希釈剤)本発明の熱硬化性樹脂は、溶剤
で希釈して樹脂ワニスとして使用する。このような溶剤
には、アセトン、メチルエチルケトン、トルエン、キシ
レン、メチルイソブチルケトン、酢酸エチル、エチレン
グリコールモノメチルエーテル、メタノール、エタノー
ル、N,N−ジメチルホルムアミド、N,N−ジメチルア
セトアミド等を使用できる。この希釈剤の前記樹脂に対
する割合は、従来使用している割合でよく、樹脂100
重量部に対して1〜200重量部の範囲が好ましく、3
0〜100重量部の範囲がさらに好ましい。1重量部未
満であると、希釈剤としての効果がなく、200重量部
を超えると、樹脂組成物の粘度が低すぎて、銅箔やキャ
リアフィルムに塗布するのが困難となる。
(Diluent) The thermosetting resin of the present invention is diluted with a solvent and used as a resin varnish. As such a solvent, acetone, methyl ethyl ketone, toluene, xylene, methyl isobutyl ketone, ethyl acetate, ethylene glycol monomethyl ether, methanol, ethanol, N, N-dimethylformamide, N, N-dimethylacetamide and the like can be used. The ratio of the diluent to the resin may be a conventionally used ratio,
The amount is preferably in the range of 1 to 200 parts by weight, and more preferably 3 to 200 parts by weight.
The range of 0 to 100 parts by weight is more preferable. If the amount is less than 1 part by weight, there is no effect as a diluent, and if it exceeds 200 parts by weight, the viscosity of the resin composition is too low, and it is difficult to apply the resin composition to a copper foil or a carrier film.

【0024】(その他の配合剤)さらに本発明において
は、樹脂中に上記した各成分の他に、必要に応じて従来
より公知のカップリング剤、充填材、難燃剤等を適宜配
合してもよい。
(Other Ingredients) In the present invention, conventionally known coupling agents, fillers, flame retardants and the like may be appropriately added to the resin, if necessary, in addition to the above-mentioned components. Good.

【0025】(樹脂とウィスカーの割合)樹脂に対する
電気絶縁性ウィスカーの配合量は、樹脂固形分100重
量部に対して、5重量部未満であるとこの接着フィルム
は切断時に樹脂が細かく砕けて飛散しやすくなる等の取
り扱い性が悪くなるとともに、配線板にしたときに十分
な剛性が得られない。一方ウィスカーの配合量が350
重量部を超えると、熱圧成形時の内層回路の穴埋め性や
回路間への樹脂充填性が損なわれ、熱圧成形後のウィス
カー複合樹脂層中にボイドやかすれが発生しやすくな
り、配線板特性を損なう恐れがある。したがって、ウィ
スカーの配合量は、樹脂固形分100重量部に対し5〜
350重量部の範囲が好ましい。さらに、内層回路の穴
埋め性や回路間への樹脂充填性に優れ、なおかつ、製造
した配線板が従来のガラスクロス使用のプリプレグを用
いて製造した配線板と比較し、同等または同等以上の剛
性と寸法安定性とワイヤボンディング性を持つことが出
来る理由から、ウィスカーの配合量は、樹脂固形分10
0重量部に対して、30〜230重量部であることがよ
り好ましい。
(Ratio of Resin to Whisker) If the compounding amount of the electrically insulating whisker with respect to the resin is less than 5 parts by weight with respect to 100 parts by weight of the resin solids, the resin is finely crushed at the time of cutting and the resin is scattered. In addition, the handleability is deteriorated, for example, and the sufficient rigidity cannot be obtained when the wiring board is used. On the other hand, the whisker content was 350
If the amount exceeds the weight part, the filling property of the inner layer circuit at the time of hot pressing and the resin filling property between the circuits are impaired, and the whisker composite resin layer after the hot pressing tends to generate voids and fading, and the wiring board There is a risk that the characteristics will be impaired. Therefore, the amount of the whisker is 5 to 100 parts by weight of the resin solid content.
A range of 350 parts by weight is preferred. In addition, it has excellent fillability of the inner layer circuit and resin filling between the circuits, and the manufactured wiring board has the same or higher rigidity as compared to the wiring board manufactured using the prepreg using the conventional glass cloth. Due to the dimensional stability and wire bonding properties, the whisker content is 10% resin solids.
More preferably, the amount is 30 to 230 parts by weight with respect to 0 parts by weight.

【0026】(キャリアフィルム)本発明において絶縁
層であるウィスカー複合樹脂層(Bステージ状態)をそ
の片面に形成する対象であるキャリアフィルムとして
は、銅箔、アルミ箔等の金属箔、ポリエステルフィル
ム、ポリイミドフィルム、あるいは前記金属箔及びフィ
ルムの表面を離型剤により処理したものを使用する。
(Carrier Film) In the present invention, the carrier film on which the whisker composite resin layer (B-stage state), which is an insulating layer, is formed on one surface thereof is a metal foil such as a copper foil or an aluminum foil, a polyester film, or the like. A polyimide film or a film obtained by treating the surfaces of the metal foil and the film with a release agent is used.

【0027】(ウィスカーの配向)本発明の電気絶縁性
ウィスカーとBステージ状態の樹脂とから構成される接
着フィルムの中のウィスカーは、2次元配向に近い状態
(ウィスカーの軸方向が接着フィルム層の形成する面と
平行に近い状態)にさせることが好ましい。このように
ウィスカーを配向させることにより、本発明の接着フィ
ルムは良好な取り扱い性が得られると同時に配線板にし
たときに高い剛性と良好な寸法安定性及び表面平坦性が
得られる。
(Orientation of Whisker) Whiskers in the adhesive film composed of the electrically insulating whisker of the present invention and the resin in the B-stage state are in a state close to two-dimensional orientation (whisker is in the axial direction of the adhesive film layer). (A state close to being parallel to the surface to be formed). By orienting the whiskers in this manner, the adhesive film of the present invention can obtain good handleability and, at the same time, high rigidity, good dimensional stability and surface flatness when formed into a wiring board.

【0028】(塗工方式)上記のようにウィスカーを配
向させるには、前述した好ましい範囲の繊維長のウィス
カーを使用すると同時に、銅箔にウィスカーを配合した
樹脂ワニスを塗工する際に、ブレードコータ、ロッドコ
ータ、ナイフコータ、スクイズコータ、リバースロール
コータ、トランスファロールコータ等の銅箔と平行な面
方向にせん断力を負荷できるかあるいは、銅箔の面に垂
直な方向に圧縮力を負荷できる塗工方式を採用すればよ
い。
(Coating method) In order to orient the whiskers as described above, a whisker having a fiber length in the above-described preferred range is used, and at the same time, when a resin varnish in which whiskers are mixed with a copper foil is coated, a blade is used. A coating that can apply a shearing force in the direction parallel to the copper foil such as a coater, rod coater, knife coater, squeeze coater, reverse roll coater, transfer roll coater, etc., or can apply a compressive force in the direction perpendicular to the copper foil surface. The construction method may be adopted.

【0029】本発明は、有機溶剤を用いてスラリー状に
調製した電気絶縁性ウイスカーを樹脂ワニスに加えて攪
拌混合することにより製造する絶縁ワニスの製造方法で
あって、絶縁ワニス中に電気絶縁性ウイスカー凝集体を
含まないために、電気絶縁性ウイスカーを複合化させた
接着フィルムの絶縁信頼性を高めることができる。ま
た、本発明の接着フィルムを使用して作製した絶縁層
は、基材がガラスよりレーザに対し被加工性が良好でし
かも微細なウィスカーであるため、従来のガラスクロス
プリプレグを使用した絶縁層では困難であったレーザ穴
あけが容易にできる。そのため、直径100μm以下の
小径のインターステーシャルバイアホール(IVH)が
容易に作製可能となり、プリント配線板の回路を微細化
でき、電子機器の高密度化、高性能化に大きく貢献でき
る。
The present invention relates to a method for producing an insulating varnish by adding an electrically insulating whisker prepared in a slurry form using an organic solvent to a resin varnish and mixing with stirring. Since no whisker aggregates are included, the insulation reliability of the adhesive film in which the electrically insulating whiskers are compounded can be improved. In addition, since the insulating layer produced using the adhesive film of the present invention is a fine whisker, since the base material has better workability with respect to laser than glass and is a fine whisker, the insulating layer using the conventional glass cloth prepreg is not used. Difficult laser drilling can be done easily. Therefore, a small-diameter interstitial via hole (IVH) having a diameter of 100 μm or less can be easily manufactured, and the circuit of the printed wiring board can be miniaturized, which greatly contributes to higher density and higher performance of electronic devices.

【0030】[0030]

【実施例】【Example】

実施例1 (ワニス)ビスフェノールAノボラック型エポキシ樹脂
(分子量:1200、エポキシ当量;206)を70重
量部と、ビスフェノールAノボラック樹脂(分子量:7
00、水酸基当量:118)を30重量部と、2−エチ
ル−4−メチルイミダゾールを0.5重量部からなる熱
硬化性樹脂を、スラリー状の硼酸アルミニウムウィスカ
ーに投入し、硼酸アルミニウムウィスカーがワニス中に
均一に分散するまで撹拌した。ここで、スラリー状の硼
酸アルミニウムウィスカーは、平均直径0.8μm、平
均繊維長20μmの硼酸アルミニウムウィスカー90重
量部を、メチルエチルケトンの180重量部に投入し、
これを15分間攪拌混合することにより得たものを用い
た。上記の様にして得た絶縁ワニスを、厚さ18μmの
銅箔と厚さ50μmのPETフィルムにそれぞれナイフ
コータにて塗工し、温度150℃で10分間加熱乾燥し
て、溶剤を除去するとともに、樹脂を半硬化して、接着
層の厚さが50μmと100μmの銅箔付き接着フィル
ムと、接着層の厚さが50μmと100μmのPETフ
ィルム付き接着フィルムとを作製し、PETフィルム付
き接着フィルムからPETフィルムを剥離・除去して、
ウィスカー体積分率が30%でウィスカーと半硬化状態
にあるエポキシ樹脂からなる、厚さが50μmの接着フ
ィルムと厚さが100μmの接着フィルムとを作製し
た。作製した銅箔付き接着フィルムは、カッターナイフ
及びシャーにより、樹脂の飛散等なくきれいに切断で
き、接着フィルム同士のブロッキングも発生せず、良好
な取扱性であった。また、 PETフィルムに塗工して
作製した接着フィルムは、PETフィルムの剥離時や通
常の取り扱い時に割れる等のトラブルはなく、またカッ
ターナイフ及びシャーにより、樹脂の飛散等なくれいに
切断でき、接着フィルム同士のブロッキングも発生せ
ず、良好な取扱性であった。
Example 1 70 parts by weight of (varnish) bisphenol A novolak type epoxy resin (molecular weight: 1200, epoxy equivalent: 206) and bisphenol A novolak resin (molecular weight: 7)
00, hydroxyl equivalent: 118) and a thermosetting resin comprising 0.5 parts by weight of 2-ethyl-4-methylimidazole are charged into a slurry-like aluminum borate whisker, and the aluminum borate whisker is varnished. Stir until homogeneously dispersed throughout. Here, the aluminum borate whisker in a slurry state is prepared by adding 90 parts by weight of aluminum borate whisker having an average diameter of 0.8 μm and an average fiber length of 20 μm to 180 parts by weight of methyl ethyl ketone,
This was used by stirring and mixing for 15 minutes. The insulating varnish obtained as described above was applied to a copper foil of 18 μm thickness and a PET film of 50 μm thickness by a knife coater, respectively, and heated and dried at a temperature of 150 ° C. for 10 minutes to remove the solvent. The resin is semi-cured to produce an adhesive film with a copper foil with an adhesive layer thickness of 50 μm and 100 μm, and an adhesive film with a PET film with an adhesive layer thickness of 50 μm and 100 μm. Peel and remove the PET film,
An adhesive film having a thickness of 50 μm and an adhesive film having a thickness of 100 μm were formed from a whisker and a semi-cured epoxy resin having a whisker volume fraction of 30%. The produced adhesive film with a copper foil was cut cleanly by a cutter knife and a shear without scattering of a resin, etc., and there was no blocking between the adhesive films, and the handleability was good. In addition, the adhesive film produced by coating the PET film has no troubles such as cracking during peeling of the PET film or normal handling, and can be cut into small pieces by the cutter knife and shear without scattering of resin. There was no blocking between the films, and the handling was good.

【0031】(電食試験)つぎに、厚さ0.8mmのガ
ラスエポキシ両面銅張積層板の銅箔表面に電食試験の内
層面の電極の形状にエッチングレジストパターンを形成
し、不要な銅箔をエッチング除去し、この上下に上記で
作製した絶縁層の厚さが50μmの銅箔付き接着フィル
ムを接着フィルムが電食試験の内層面の電極となるパタ
ーンと接するように重ね合せて積層し、175℃、2.
5MPa、60分間の条件で熱圧成形した。得られた積層
板の、内層の電極となる電食試験パターンの位置に合わ
せた部分に、外層の電極となる形状にエッチングレジス
トパターンを形成し、不要な銅箔をエッチング除去し
て、電食試験片を得た。この内層と外層の電極間に50
Vの電圧を印加し、85℃、85%RHの雰囲気下で1
000時間経過後の絶縁抵抗値を測定した結果、109
Ω以上の良好な値を示し、接着フィルムが耐電食性に優
れていることを確認した。
(Electrolytic corrosion test) Next, an etching resist pattern was formed on the copper foil surface of the glass epoxy double-sided copper-clad laminate having a thickness of 0.8 mm in the shape of an electrode on the inner surface of the electrolytic corrosion test. The foil was removed by etching, and an adhesive film with a copper foil having a thickness of 50 μm was laminated on the upper and lower sides so that the adhesive film was in contact with the pattern serving as the electrode on the inner surface of the electrolytic corrosion test. 175 ° C., 2.
Hot pressing was performed under the conditions of 5 MPa for 60 minutes. An etching resist pattern was formed in a shape corresponding to the outer layer electrode on a portion of the obtained laminated plate corresponding to the position of the electrolytic corrosion test pattern serving as the inner layer electrode, and unnecessary copper foil was removed by etching. A test piece was obtained. 50 between the inner and outer layer electrodes
V under a 85 ° C., 85% RH atmosphere.
As a result of measuring the insulation resistance value after lapse of 000 hours, 10 9
A good value of Ω or more was shown, and it was confirmed that the adhesive film was excellent in electric corrosion resistance.

【0032】(曲げ弾性率)また、作製した厚さ100
μmの接着フィルムの上下に厚さ18μmの片面粗化銅
箔を、該粗化面が接着フィルムに向き合うように重ね、
175℃、2.5MPa、60分間の条件で熱圧成形し
た。得られた銅張積層板の銅箔をエッチング除去し、曲
げ弾性率を三点曲げで測定したところ、20GPa(銅
箔なし、たてよこ平均)であった。 (穴あけ精度)また、直径0.3mmのドリルでこの銅
張積層板を10枚重ねて穴あけしたときの最上板と最下
板の穴位置のずれ量を測定したところ20μm以下であ
った。
(Flexural Modulus) The thickness 100
A single-sided roughened copper foil having a thickness of 18 μm is placed on and under the μm adhesive film so that the roughened surface faces the adhesive film,
Hot pressing was performed under the conditions of 175 ° C., 2.5 MPa, and 60 minutes. When the copper foil of the obtained copper-clad laminate was removed by etching and the flexural modulus was measured by three-point bending, it was 20 GPa (no copper foil, average vertical length). (Drilling Accuracy) Also, when the copper-clad laminates were drilled by stacking ten copper-clad laminates with a diameter of 0.3 mm, the deviation between the hole positions of the uppermost plate and the lowermost plate was measured to be 20 μm or less.

【0033】(多層プリント配線板)この銅張積層板の
銅箔の不要な箇所をエッチング除去して回路を形成し、
その両面に先に作製した厚さ50μmの本発明の接着フ
ィルムを重ね、そのさらに外側に厚さ18μmの片面粗
化銅箔を粗化面が接着フィルムに向き合うように積層
し、175℃、2.5MPa、60分間の条件で熱圧成形
し、内層回路入り多層銅張積層板を作製した。この内層
回路入り多層銅張積層板の表面粗さを、触針式表面粗さ
計で測定したところ、測定箇所がその直下に内層回路の
ある部分とない部分とを含む長さ25mmの一直線上の外
層表で、内層回路のある部分とない部分の段差の10点
平均が、3μm以下であり、回路加工に支障のない良好
な表面平坦性であった。さらにこの内層回路入り多層銅
張積層板の表面銅箔の所定位置をエッチング除去して直
径75μmの穴をあけ、その穴に住友重機械工業(株)製
インパクトレーザを用いて穴あけを行い、過マンガン酸
によるデスミア処理を行い、無電解メッキを行った後、
エッチングパターンを焼き付け・現像して形成し、不要
な銅をエッチング除去して回路を形成した。この多層プ
リント配線板の両面に、前述の厚さ50μmの接着フィ
ルムを重ね、そのさらに外側に厚さ18μmの片面粗化
銅箔を粗化面が接着フィルムに向き合うように重ね、1
75℃、2.5MPa、60分間の条件で熱圧成形し、内
層回路入り多層銅張積層板を作製し、所定位置の銅箔を
エッチング除去して直径75μmの穴をあけ、その穴に
住友重機械工業(株)製インパクトレーザを用いて穴あけ
を行い、過マンガン酸によるデスミア処理を行い、無電
解メッキにを行った後、エッチングパターンを焼き付け
・現像して形成し、不要な銅をエッチング除去すること
により回路を形成した。以上の工程をくり返して10層
プリント配線板を作製した。
(Multilayer Printed Wiring Board) An unnecessary portion of the copper foil of the copper-clad laminate is removed by etching to form a circuit.
The adhesive film of the present invention having a thickness of 50 μm previously prepared was stacked on both surfaces thereof, and a single-sided roughened copper foil having a thickness of 18 μm was further laminated on the outside thereof so that the roughened surface faced the adhesive film. It was hot-pressed under the conditions of 0.5 MPa and 60 minutes to produce a multilayer copper-clad laminate having an inner layer circuit. When the surface roughness of the multilayer copper-clad laminate containing the inner layer circuit was measured by a stylus type surface roughness meter, the measurement location was on a straight line having a length of 25 mm including a portion with and without an inner layer circuit immediately below. In the outer layer table, the 10-point average of the level difference between the portion having the inner layer circuit and the portion not having the inner layer circuit was 3 μm or less, and good surface flatness which did not hinder circuit processing was obtained. Further, a predetermined position of the surface copper foil of the multilayer copper-clad laminate containing the inner layer circuit was removed by etching to form a hole having a diameter of 75 μm, and the hole was formed using an impact laser manufactured by Sumitomo Heavy Industries, Ltd. After performing desmear treatment with manganese acid and performing electroless plating,
An etching pattern was formed by baking and developing, and unnecessary copper was removed by etching to form a circuit. The above-mentioned adhesive film having a thickness of 50 μm is overlaid on both sides of the multilayer printed wiring board, and a single-sided roughened copper foil having a thickness of 18 μm is further overlaid so that the roughened surface faces the adhesive film.
A hot-press molding is performed at 75 ° C., 2.5 MPa, for 60 minutes to produce a multilayer copper-clad laminate having an inner layer circuit, a copper foil at a predetermined position is removed by etching, and a hole having a diameter of 75 μm is formed. After drilling using an impact laser manufactured by Heavy Machinery Co., Ltd., performing desmear treatment with permanganic acid, performing electroless plating, baking and developing the etching pattern, etching unnecessary copper A circuit was formed by removal. The above steps were repeated to produce a 10-layer printed wiring board.

【0034】(多層プリント配線板の試験)この多層プ
リント配線板の一部を切り取り、その熱膨張率と曲げ弾
性率を測定した。熱膨張率はTMAにて、曲げ弾性率
は、DMAの曲げモードにて測定した結果、たてよこ方
向の平均の熱膨張係数は、10ppm/℃(常温下)で
あり、たてよこ方向の平均の曲げ弾性率は常温下で60
GPa、高温下(200℃)で40GPaであった。ま
た、バーコル硬度計による表面硬度は、常温下で65、
高温下(200℃)で50であった。 (ワイヤボンディング性)さらに、この10層プリント
配線板の一部にベアチップを実装し、ワイヤボンディン
グで表面回路と接続した。ワイヤボンディング条件は、
超音波出力を1W、超音波出力時間を50μs、ボンド
荷重を100g、ワイヤボンディング温度を180℃と
したところ、良好にワイヤボンディングできた。 (熱衝撃試験)また、この10層プリント配線板に寸法
8mm×20mmのICチップ(TSOP)を、はんだを介
して表面回路とし接続し、このICチップ(TSOP)を
実装した基板を、−65℃で30分間と150℃で30
分間の環境に晒すことを1サイクルとする熱衝撃試験で
評価しところ、2,000サイクル後もはんだ接続部に
断線等の不良は発生していなかった。
(Test of Multilayer Printed Wiring Board) A part of this multilayer printed wiring board was cut out, and its coefficient of thermal expansion and flexural modulus were measured. The coefficient of thermal expansion was measured by TMA, and the flexural modulus was measured by the bending mode of DMA. As a result, the average coefficient of thermal expansion in the vertical direction was 10 ppm / ° C. (at ordinary temperature). The average flexural modulus is 60 at room temperature.
GPa was 40 GPa at a high temperature (200 ° C.). The surface hardness measured by a Barcol hardness meter is 65 at room temperature,
It was 50 at high temperature (200 ° C.). (Wire bonding property) Further, a bare chip was mounted on a part of the 10-layer printed wiring board, and connected to a surface circuit by wire bonding. The wire bonding conditions are
When the ultrasonic output was 1 W, the ultrasonic output time was 50 μs, the bond load was 100 g, and the wire bonding temperature was 180 ° C., the wire bonding was successfully performed. (Thermal Shock Test) Further, an IC chip (TSOP) having a size of 8 mm × 20 mm was connected to this 10-layer printed wiring board as a surface circuit via solder, and the substrate on which the IC chip (TSOP) was mounted was replaced by a −65. 30 minutes at 150 ° C and 30 minutes at 150 ° C
A thermal shock test with one cycle of exposure to the environment for one minute revealed that no defects such as disconnection occurred in the solder connection even after 2,000 cycles.

【0035】また、この基板の内部のインターステーシ
ャルバイアホールを含む回路の導通試験を行ったが断線
等のトラブルの発生はなかった。
Further, a continuity test of a circuit including an interstitial via hole inside the substrate was performed, but no trouble such as disconnection occurred.

【0036】実施例2 サリチルアルデヒドノボラック型エポキシ樹脂(分子
量:1000、エポキシ当量:180)を70重量部
と、ビスフェノールAノボラック樹脂(分子量:70
0、水酸基当量:118)を30重量部と、N−メチル
イミダゾールを0.5重量部からなる熱硬化性樹脂を、
スラリー状の硼酸アルミニウムウィスカーに投入し、硼
酸アルミニウムウィスカーがワニス中に均一に分散する
まで撹拌した。ここで、スラリー状の硼酸アルミニウム
ウィスカーは、平均直径0.8μm、平均繊維長20μ
mの硼酸アルミニウムウィスカー90重量部を、メチル
エチルケトンの180重量部に投入し、これを15分間
攪拌混合することにより得たものを用いた。 (接着フィルム)上記の様にして得た絶縁ワニスを、厚
さ18μmの銅箔と厚さ50μmのPETフィルムにナ
イフコータで塗工し、温度150℃で10分間加熱乾燥
して、溶剤を除去するとともに、樹脂を半硬化して、接
着層の厚さが50μmと100μmの銅箔付き接着フィ
ルムと、接着層の厚さが50μmと100μmのPET
フィルム付き接着フィルムを作製し、PETフィルム付
き接着フィルムからPETフィルムを剥離除去して、ウ
ィスカー体積分率が30%でウィスカーと半硬化状態に
あるエポキシ樹脂からなる、厚さが50μmと100μ
mの接着フィルムを作製した。作製した銅箔付き接着フ
ィルムは、カッターナイフ及びシャーにより、樹脂の飛
散等なくきれいに切断でき、接着フィルム同士のブロッ
キングも発生せず、良好な取扱性であった。また、PE
Tフィルムに塗工して作製した接着フィルムは、PET
フィルムの剥離時や通常の取り扱い時に割れる等のトラ
ブルはなく、またカッターナイフ及びシャーにより、樹
脂の飛散等なくきれいに切断でき、接着フィルム同士の
ブロッキングも発生せず、良好な取扱性であった。
Example 2 70 parts by weight of salicylaldehyde novolak type epoxy resin (molecular weight: 1000, epoxy equivalent: 180) and bisphenol A novolak resin (molecular weight: 70)
0, hydroxyl equivalent: 118) and 30 parts by weight of N-methylimidazole and 0.5 part by weight of a thermosetting resin,
The slurry was poured into aluminum borate whiskers and stirred until the aluminum borate whiskers were uniformly dispersed in the varnish. Here, the slurry-like aluminum borate whisker has an average diameter of 0.8 μm and an average fiber length of 20 μm.
m of aluminum borate whiskers (90 parts by weight) were added to 180 parts by weight of methyl ethyl ketone, and the resulting mixture was stirred and mixed for 15 minutes. (Adhesive film) The insulating varnish obtained as described above is applied to a copper foil having a thickness of 18 μm and a PET film having a thickness of 50 μm with a knife coater, and is heated and dried at 150 ° C. for 10 minutes to remove the solvent. At the same time, the resin is semi-cured to form an adhesive film with a copper foil having an adhesive layer thickness of 50 μm or 100 μm, and a PET film having an adhesive layer thickness of 50 μm or 100 μm.
An adhesive film with a film is prepared, and the PET film is peeled off from the adhesive film with a PET film. The whisker has a volume fraction of 30% and is composed of an epoxy resin in a semi-cured state.
m was prepared. The produced adhesive film with a copper foil was cut cleanly by a cutter knife and a shear without scattering of a resin, etc., and there was no blocking between the adhesive films, and the handleability was good. Also, PE
Adhesive film made by coating on T film is PET
There was no trouble such as cracking during peeling of the film or during normal handling, and the film could be cut cleanly by a cutter knife and a shear without scattering of the resin.

【0037】(電食試験)つぎに、厚さ0.8mmのガ
ラスエポキシ両面銅張積層板の銅箔表面に、電食試験の
内層面の電極となる形状に、エッチングレジストパター
ンを形成し、不要な箇所の銅箔をエッチング除去し、こ
の上下に上記で作製した絶縁層の厚さ50μmの銅箔付
き接着フィルムを接着フィルムが電食試験の内層面の電
極となるパターンと接するように重ね合せて積層し、1
75℃、2.5MPa、60分間の条件で熱圧成形した。
得られた積層板の銅箔表面の、内層の電極となる電食試
験パターンの位置に合わせた部分に、外層の電極となる
形状にエッチングレジストパターンを形成し、不要な箇
所の銅箔をエッチング除去し、電食試験片を得た。この
内層と外層の電極間に50Vの電圧を印加し、85℃、
85%RHの雰囲気下で1000時間経過後の絶縁抵抗
値を測定した結果、109Ω以上の良好な値を示し、接
着フィルムが耐電食性に優れていることを確認した。
(Electrolytic corrosion test) Next, an etching resist pattern was formed on the copper foil surface of the glass epoxy double-sided copper-clad laminate having a thickness of 0.8 mm in a shape to be an electrode on the inner surface of the electrolytic corrosion test. Unnecessary portions of the copper foil are removed by etching, and an adhesive film with a copper foil having a thickness of 50 μm of the insulating layer prepared above is laminated on the upper and lower sides so that the adhesive film is in contact with a pattern serving as an electrode on the inner surface of the electrolytic corrosion test. Laminated together, 1
It was hot-pressed under the conditions of 75 ° C., 2.5 MPa and 60 minutes.
On the copper foil surface of the obtained laminate, an etching resist pattern is formed in the shape corresponding to the outer layer electrode on the portion corresponding to the position of the electrolytic corrosion test pattern serving as the inner layer electrode, and the unnecessary portion of the copper foil is etched. It was removed to obtain a test piece for electrolytic corrosion. A voltage of 50 V is applied between the inner layer electrode and the outer layer electrode.
As a result of measuring the insulation resistance after 1000 hours in an atmosphere of 85% RH, a good value of 10 9 Ω or more was shown, and it was confirmed that the adhesive film was excellent in electric corrosion resistance.

【0038】(曲げ弾性率)また、 作製した厚さ10
0μmの接着フィルムの上下に、厚さ18μmの片面粗
化銅箔を該粗化面が接着フィルムに向き合うように積層
し、175℃、2.5MPa、60分間の条件で熱圧成形
した。得られた銅張積層板の銅箔をエッチング除去し、
曲げ弾性率を三点曲げで測定したところ20GPa(銅
箔なし、たてよこ平均)であった。 (穴あけ精度)また、直径0.3mmのドリルにてこの
銅張積層板を10枚重ねて穴あけしたときの最上板と最
下板の穴位置のずれ量を測定したところ20μm以下で
あった。 (多層プリント配線板)この銅張積層板の銅箔の不要な
箇所をエッチング除去して回路を形成し、その両面に先
に作製した厚さ50μmの接着フィルムを重ね、そのさ
らに外側に厚さ18μmの片面粗化銅箔を粗化面が接着
フィルムに向き合うように積層し、170℃、2.5MP
a、60分間の条件で熱圧成形し、内層回路入り多層銅
張積層板を作製した。この内層回路入り多層銅張積層板
の表面粗さを、触針式表面粗さ計で測定した結果、測定
箇所がその直下に内層回路のある部分とない部分とを含
む長さ25mmの一直線上の外層表面で、内層回路のある
部分とない部分の段差の10点平均は、3μm以下であ
り、回路加工に支障のない良好な表面平坦性であった。
(Flexural modulus) Further, the prepared thickness 10
A single-sided roughened copper foil having a thickness of 18 μm was laminated on and under the 0 μm adhesive film so that the roughened surface faced the adhesive film, and was hot-pressed at 175 ° C., 2.5 MPa and 60 minutes. The copper foil of the obtained copper-clad laminate is etched away,
When the flexural modulus was measured by three-point bending, it was 20 GPa (no copper foil, vertical average). (Drilling Accuracy) When the copper-clad laminates were drilled by stacking ten copper-clad laminates with a diameter of 0.3 mm, the amount of displacement between the uppermost plate and the lowermost plate was measured to be 20 μm or less. (Multilayer printed wiring board) An unnecessary portion of the copper foil of the copper-clad laminate is removed by etching to form a circuit, and a 50 μm-thick adhesive film previously prepared is laminated on both surfaces thereof, and a thickness is further formed on the outside thereof. Laminated 18μm single-sided roughened copper foil with the roughened surface facing the adhesive film, 170 ℃, 2.5MP
a) Hot-press molding was performed under the conditions of 60 minutes to produce a multilayer copper-clad laminate containing an inner layer circuit. The surface roughness of the multilayer copper-clad laminate containing the inner layer circuit was measured with a stylus type surface roughness meter. As a result, the measurement location was on a straight line with a length of 25 mm including the part with and without the inner layer circuit immediately below. On the surface of the outer layer, the average of 10 points of the level difference between the portion having the inner layer circuit and the portion not having the inner layer circuit was 3 μm or less, and the surface flatness was satisfactory without any trouble in circuit processing.

【0039】さらにこの内層回路入り多層銅張積層板の
表面銅箔の所定位置をエッチング除去して直径75μm
の穴をあけ、その穴に住友重機械工業(株)製インパクト
レーザを用いて穴あけを行い、過マンガン酸によるデス
ミア処理を行い、無電解メッキを行った後、エッチング
レジストパターンを焼き付け・現像して形成し、不要な
箇所の銅をエッチング除去することにより回路形成し
た。この多層プリント配線板の両面に、先に作製した厚
さ50μmの接着フィルムを重ね、そのさらに外側に厚
さ18μmの片面粗化銅箔を、粗化面が接着フィルムに
向き合うように積層し、175℃、2.5MPa、60分
間の条件で熱圧成形し、内層回路入り多層銅張積層板を
作製し、所定位置の銅箔をエッチング除去して直径75
μmの穴をあけ、その穴に住友重機械工業(株)製インパ
クトレーザを用いて穴あけを行い、過マンガン酸による
デスミア処理を行い、無電解メッキを行った後、エッチ
ングレジストパターンを焼き付け・現像して形成し、不
要な箇所の銅箔をエッチング除去することにより回路形
成した。前記工程をくり返して10層プリント配線板を
作製した。
Further, a predetermined position of the surface copper foil of the multilayer copper-clad laminate containing the inner layer circuit was removed by etching to have a diameter of 75 μm.
Drilled holes using an impact laser manufactured by Sumitomo Heavy Industries, Ltd., performed desmear treatment with permanganic acid, performed electroless plating, and then baked and developed the etching resist pattern. The circuit was formed by etching away unnecessary portions of copper. On both sides of this multilayer printed wiring board, the adhesive film having a thickness of 50 μm previously prepared is laminated, and further on the outside thereof, a 18 μm-thick one-side roughened copper foil is laminated so that the roughened surface faces the adhesive film, It is hot-pressed under the conditions of 175 ° C., 2.5 MPa and 60 minutes to produce a multilayer copper-clad laminate with an inner layer circuit, and the copper foil at a predetermined position is removed by etching.
Drill a hole with a diameter of μm, drill the hole with an impact laser manufactured by Sumitomo Heavy Industries, Ltd., perform desmear treatment with permanganic acid, perform electroless plating, and then bake and develop the etching resist pattern. The circuit was formed by etching away unnecessary portions of the copper foil. The above steps were repeated to produce a 10-layer printed wiring board.

【0040】(多層プリント配線板の試験)この多層プ
リント配線板の一部を切り取り、その熱膨張率と曲げ弾
性率を測定した。熱膨張率はTMAにて、曲げ弾性率
は、DMAの曲げモードにて測定した。たてよこ方向の
平均の熱膨張係数は、10ppm/℃(常温下)であ
り、たてよこ方向の平均の曲げ弾性率は常温下で60G
Pa、高温下(200℃)で50GPaであった。ま
た、バーコル硬度計による表面硬度は、常温下で65、
高温下(200℃)で55であった。 (ワイヤボンディング性)さらに、この10層プリント
配線板の一部にベアチップを実装し、ワイヤボンディン
グで表面回路と接続した。ワイヤボンディング条件は、
超音波出力を1W、超音波出力時間を50μs、ボンド
荷重を100g、ワイヤボンディング温度を180℃と
したところ、良好にワイヤボンディングできた。 (熱衝撃試験)また、この10層プリント配線板に寸法
8mm×20mmのICチップ(TSOP)を、はんだを介
して表面回路と接続し、このICチップ(TSOP)を実
装した基板を−65℃で30分と150℃で30分の環
境に晒すことを1サイクルとする熱衝撃試験で評価した
ところ、2000サイクル後もはんだ接続部に断線等の
不良は発生していなかった。またこの基板の内部のイン
ターステーシャルバイアホールを含む回路の導通試験を
行ったが断線等のトラブルの発生はなかった。
(Test of Multilayer Printed Wiring Board) A part of the multilayer printed wiring board was cut out, and its coefficient of thermal expansion and flexural modulus were measured. The coefficient of thermal expansion was measured by TMA, and the flexural modulus was measured by a bending mode of DMA. The average coefficient of thermal expansion in the vertical direction is 10 ppm / ° C. (at room temperature), and the average bending elastic modulus in the vertical direction is 60 G at room temperature.
Pa and 50 GPa at high temperature (200 ° C.). The surface hardness measured by a Barcol hardness meter is 65 at room temperature,
It was 55 at high temperature (200 ° C.). (Wire bonding property) Further, a bare chip was mounted on a part of the 10-layer printed wiring board, and connected to a surface circuit by wire bonding. The wire bonding conditions are
When the ultrasonic output was 1 W, the ultrasonic output time was 50 μs, the bond load was 100 g, and the wire bonding temperature was 180 ° C., the wire bonding was successfully performed. (Thermal shock test) Also, an IC chip (TSOP) having a size of 8 mm × 20 mm was connected to the surface circuit via solder on the 10-layer printed wiring board, and the substrate on which the IC chip (TSOP) was mounted was −65 ° C. As a result of a thermal shock test in which exposure to an environment of 30 minutes and 150 ° C. for 30 minutes was performed in one cycle, no failure such as disconnection occurred in the solder connection even after 2,000 cycles. A continuity test was performed on a circuit including an interstitial via hole inside the substrate, but no trouble such as disconnection occurred.

【0041】比較例1 (ワニス)ビスフェノールAノボラック型エポキシ樹脂
(分子量:1200、エポキシ当量:206)を70重
量部と、ビスフェノールAノボラック樹脂(分子量:7
00、水酸基当量:118)を30重量部と、2−エチ
ル−4−メチルイミダゾールを0.5重量部と、メチル
エチルケトンを70重量部からなる熱硬化性樹脂に、平
均直径0.8μm、平均繊維長20μmの硼酸アルミニ
ウムウィスカーを樹脂固形分100重量部に対し90
(重量)部になるように配合し、硼酸アルミニウムウィ
スカーがワニス中に均一に分散するまで撹拌した。 (接着フィルム)この絶縁ワニスを、厚さ18μmの銅
箔と厚さ50μmのPETフィルムにナイフコータにて
塗工し、温度150℃で10分間加熱乾燥して、溶剤を
除去するとともに、樹脂を半硬化して、接着層の厚さが
50μmと100μmの銅箔付き接着フィルムと、接着
層の厚さが50μmと100μmのPETフィルム付き
接着フィルムを作製し、PETフィルム付き接着フィル
ムからPETフィルムを剥離・除去して、ウィスカー体
積分率が30%でウィスカーと半硬化状態にあるエポキ
シ樹脂からなる、厚さが50μmと100μmの接着フ
ィルムを作製した。作製した銅箔付き接着フィルムは、
カッターナイフ及びシャーにより、樹脂の飛散等なくき
れいに切断でき、接着フィルム同士のブロッキングも発
生せず、良好な取扱性であった。また、 PETフィル
ムに塗工して作製した接着フィルムは、PETフィルム
の剥離時や通常の取り扱い時に割れる等のトラブルはな
く、またカッターナイフ及びシャーにより、樹脂の飛散
等なくきれいに切断でき、接着フィルム同士のブロッキ
ングも発生せず、良好な取扱性であった。
COMPARATIVE EXAMPLE 1 70 parts by weight of (varnish) bisphenol A novolak type epoxy resin (molecular weight: 1200, epoxy equivalent: 206) and bisphenol A novolak resin (molecular weight: 7)
00, hydroxyl equivalent: 118), 30 parts by weight of 2-ethyl-4-methylimidazole, 0.5 part by weight of methyl ethyl ketone, and 70 parts by weight of methyl ethyl ketone. Aluminum borate whiskers having a length of 20 μm are mixed with 90 parts by weight of resin solid content of 90 parts by weight.
(Weight) and stirred until the aluminum borate whiskers were uniformly dispersed in the varnish. (Adhesive film) This insulating varnish was applied to a copper foil of 18 μm thickness and a PET film of 50 μm thickness by a knife coater, and was heated and dried at a temperature of 150 ° C. for 10 minutes to remove the solvent and to remove the resin. Cured to produce an adhesive film with a copper foil with an adhesive layer thickness of 50 μm and 100 μm, and an adhesive film with a PET film with an adhesive layer thickness of 50 μm and 100 μm. Peel the PET film from the adhesive film with a PET film Removal was performed to produce an adhesive film having a whisker volume fraction of 30% and an epoxy resin in a semi-cured state with whiskers and having a thickness of 50 μm and 100 μm. The produced adhesive film with copper foil is
With a cutter knife and a shear, the resin film could be cut cleanly without scattering of resin and the like, and there was no blocking between the adhesive films, and the handleability was good. In addition, the adhesive film produced by coating the PET film has no troubles such as cracking during peeling of the PET film or normal handling, and can be cut cleanly with a cutter knife and shear without scattering of resin. There was no blocking between them, and the handling was good.

【0042】(電食試験)つぎに、厚さ0.8mmのガ
ラスエポキシ両面銅張積層板の銅箔の不要な箇所をエッ
チング除去して電食試験の内層面の電極となるパターン
を形成し、この上下に上記で作製した絶縁層の厚さ50
μmの接着フィルムを、接着フィルムが電食試験の内層
面の電極となるパターンと接するように重ね合せ、さら
に厚さ18μmの片面粗化銅箔を該粗化が接着フィルム
に向き合うように積層し、175℃、2.5MPa、60
分間の条件で熱圧成形した。得られた積層板の銅箔の不
要な箇所をエッチング除去して、内層の電極となる電食
試験パターンの位置に合わせた部分に外層の電極となる
パターンを作製し、電食試験片を得た。この内層と外層
の電極間に50Vの電圧を印加し、85℃、85%RH
の雰囲気下で経時変化を追跡した結果、250時間後の
絶縁抵抗値が109Ω未満となり、接着フィルムが耐電
食性に劣っていることがわかった。 (曲げ弾性率)作製した厚さ100μmの接着フィルム
の上下に厚さ18μmの片面粗化銅箔を該粗化面が接着
フィルムに向き合うように積層し、175℃、2.5MP
a、60分間の条件で熱圧成形した。得られた銅張積層
板の銅箔をエッチング除去し、曲げ弾性率を三点曲げで
測定したところ20GPa(銅箔なし、たてよこ平均)
であった。 (穴あけ精度)また、直径0.3mmのドリルにてこの
銅張積層板を10枚重ねて穴あけしたときの最上板と最
下板の穴位置のずれ量を測定したところ20μm以下で
あった。 (多層プリント配線板)この銅張積層板に回路加工を施
し、その両面に先に作製した厚さ50μmの本発明の接
着フィルムを、そのさらに外側に厚さ18μmの片面粗
化銅箔を、粗化面が接着フィルムに向き合うように積層
し、175℃、2.5MPa、60分間の条件で、熱圧成
形し内層回路入り多層銅張積層板を作製した。この内層
回路入り多層銅張積層板の表面粗さを触針式表面粗さ計
にて測定した結果、測定箇所がその直下に内層回路のあ
る部分とない部分とを含む長さ25mmの一直線上の外層
表面で、内層回路のある部分とない部分の段差の10点
平均は、3μm以下であり、回路加工に支障のない良好
な表面平坦性であった。さらにこの内層回路入り多層銅
張積層板の表面銅箔の所定位置をエッチング除去して直
径75μmの穴をあけ、その穴に住友重機械工業(株)製
インパクトレーザを用いて穴あけを行い、過マンガン酸
によるデスミア処理を行い、無電解メッキを行った後、
エッチングレジストパターンを焼き付け・現像して、不
要な銅をエッチング除去して回路を形成した。この多層
プリント配線板の両面に、先に作製した厚さ50μmの
接着フィルムを重ね、そのさらに外側に厚さ18μmの
片面粗化銅箔を、粗化面が接着フィルムに向き合うよう
に積層し、170℃、2.5MPa、60分間の条件で熱
圧成形して、内層回路入り多層銅張積層板を作製し、銅
箔の所定位置をエッチング除去して直径75μmの穴を
あけ、その穴に住友重機械工業(株)製インパクトレーザ
を用いて穴あけを行い、過マンガン酸によるデスミア処
理を行い、無電解メッキを行った後、エッチングレジス
トパターンを焼き付け・現像して、不要な銅をエッチン
グ除去して回路を形成した。以上の工程をくり返して1
0層プリント配線板を作製した。
(Electrolytic corrosion test) Next, unnecessary portions of the copper foil of the glass epoxy double-sided copper clad laminate having a thickness of 0.8 mm were removed by etching to form a pattern to be an electrode on the inner surface of the electrolytic corrosion test. The thickness of the insulating layer prepared above and below is 50
μm adhesive film is laminated so that the adhesive film is in contact with the electrode pattern on the inner surface of the electrolytic corrosion test, and a 18 μm-thick one-side roughened copper foil is further laminated so that the roughening faces the adhesive film. , 175 ° C, 2.5MPa, 60
For 1 minute. Unnecessary portions of the copper foil of the obtained laminated board are removed by etching, and a pattern serving as an outer layer electrode is formed in a portion corresponding to the position of the inner layer electrode serving as an electrolytic corrosion test pattern, thereby obtaining an electrolytic corrosion test piece. Was. A voltage of 50 V is applied between the electrodes of the inner layer and the outer layer, and 85 ° C., 85% RH
As a result, the insulation resistance after 250 hours was less than 10 9 Ω, indicating that the adhesive film was inferior in electric corrosion resistance. (Bending elastic modulus) A single-sided roughened copper foil having a thickness of 18 μm is laminated on and under the prepared adhesive film having a thickness of 100 μm so that the roughened surface faces the adhesive film.
a, Hot-press molding was performed for 60 minutes. When the copper foil of the obtained copper-clad laminate was etched away and the flexural modulus was measured by three-point bending, it was 20 GPa (no copper foil, vertical average)
Met. (Drilling Accuracy) When the copper-clad laminates were drilled by stacking ten copper-clad laminates with a diameter of 0.3 mm, the amount of displacement between the uppermost plate and the lowermost plate was measured to be 20 μm or less. (Multilayer Printed Wiring Board) This copper-clad laminate is subjected to circuit processing, and the adhesive film of the present invention having a thickness of 50 μm previously prepared on both surfaces thereof, and a 18 μm-thick roughened copper foil having a thickness of 18 μm on the outside thereof, The laminate was laminated so that the roughened surface faced the adhesive film, and hot-pressed under the conditions of 175 ° C., 2.5 MPa, and 60 minutes to produce a multilayer copper-clad laminate with an inner circuit. As a result of measuring the surface roughness of the multilayer copper-clad laminate containing the inner layer circuit with a stylus type surface roughness meter, the measurement location was on a straight line having a length of 25 mm including a portion with and without an inner layer circuit immediately below. On the surface of the outer layer, the average of 10 points of the level difference between the portion having the inner layer circuit and the portion not having the inner layer circuit was 3 μm or less, and the surface flatness was satisfactory without any trouble in circuit processing. Further, a predetermined position of the surface copper foil of the multilayer copper-clad laminate containing the inner layer circuit was removed by etching to form a hole having a diameter of 75 μm, and the hole was formed using an impact laser manufactured by Sumitomo Heavy Industries, Ltd. After performing desmear treatment with manganese acid and performing electroless plating,
The circuit was formed by baking and developing the etching resist pattern and etching away unnecessary copper. On both sides of this multilayer printed wiring board, the adhesive film having a thickness of 50 μm previously prepared is laminated, and further on the outside thereof, a 18 μm-thick one-side roughened copper foil is laminated so that the roughened surface faces the adhesive film, Hot-press forming at 170 ° C., 2.5 MPa, 60 minutes to produce a multilayer copper-clad laminate with an inner layer circuit, etching and removing a predetermined position of the copper foil to form a hole having a diameter of 75 μm. Drill holes using an impact laser manufactured by Sumitomo Heavy Industries, Ltd., perform desmear treatment with permanganic acid, perform electroless plating, bake and develop an etching resist pattern, and remove unnecessary copper by etching. Thus, a circuit was formed. Repeat the above steps to get 1
A zero-layer printed wiring board was produced.

【0043】(多層プリント配線板の試験)この多層プ
リント配線板の一部を切り取り、その熱膨張率と曲げ弾
性率を測定した。熱膨張率はTMAにて、曲げ弾性率
は、DMAの曲げモードにて測定した。たてよこ方向の
平均の熱膨張係数は、10ppm/℃(常温下)であ
り、たてよこ方向の平均の曲げ弾性率は常温下で60G
Pa、高温下(200℃)で40GPaであった。ま
た、バーコル硬度計による表面硬度は、常温下で65、
高温下(200℃)で50であった。 (ワイヤボンディング性)さらに、この10層プリント
配線板の一部にベアチップを実装し、ワイヤボンディン
グで表面回路と接続した。ワイヤボンディング条件は、
超音波出力を1W、超音波出力時間を50μs、ボンド
荷重を100g、ワイヤボンディング温度を180℃と
したところ、良好にワイヤボンディングできた。 (熱衝撃試験)また、この10層プリント配線板に寸法
8mm×20mmのICチップ(TSOP)をはんだを介し
て表面回路と接続し、このICチップ(TSOP)を実装
した基板を、−65℃で30分間と150℃で30分間
の環境に晒すことを1サイクルとする熱衝撃試験で評価
したところ、2000サイクル後もはんだ接続部に断線
等の不良は発生していなかった。またこの基板の内部の
インターステーシャルバイアホールを含む回路の導通試
験を行ったが断線等のトラブルの発生はなかった。
(Test of Multilayer Printed Wiring Board) A part of this multilayer printed wiring board was cut out, and its coefficient of thermal expansion and flexural modulus were measured. The coefficient of thermal expansion was measured by TMA, and the flexural modulus was measured by a bending mode of DMA. The average coefficient of thermal expansion in the vertical direction is 10 ppm / ° C. (at room temperature), and the average bending elastic modulus in the vertical direction is 60 G at room temperature.
Pa and 40 GPa at high temperature (200 ° C.). The surface hardness measured by a Barcol hardness meter is 65 at room temperature,
It was 50 at high temperature (200 ° C.). (Wire bonding property) Further, a bare chip was mounted on a part of the 10-layer printed wiring board, and connected to a surface circuit by wire bonding. The wire bonding conditions are
When the ultrasonic output was 1 W, the ultrasonic output time was 50 μs, the bond load was 100 g, and the wire bonding temperature was 180 ° C., the wire bonding was successfully performed. (Thermal shock test) Further, an IC chip (TSOP) having a size of 8 mm × 20 mm was connected to the surface circuit via solder on the 10-layer printed wiring board, and the substrate on which the IC chip (TSOP) was mounted was subjected to −65 ° C. And a 30-minute exposure at 150 ° C. for 1 cycle, and no failure such as disconnection occurred in the solder connection after 2000 cycles. A continuity test was performed on a circuit including an interstitial via hole inside the substrate, but no trouble such as disconnection occurred.

【0044】比較例2 (プリプレグ)ビスフェノールAノボラック型エポキシ
樹脂(分子量:1200、エポキシ当量:206)を7
0重量部と、ビスフェノールAノボラック樹脂(分子
量:700、水酸基当量:118)を30重量部と、2
−エチル−4−メチルイミダゾールを0.5重量部と、
メチルエチルケトンを70重量部からなる熱硬化性樹脂
を、厚さ50μmと100μmのガラスクロスに含浸・
塗工し、温度150℃で10分間加熱乾燥して、溶剤を
除去するとともに、樹脂を半硬化し、ガラスクロスと半
硬化状態にあるエポキシ樹脂からなる、厚さが70μm
のエポキシプリプレグと、厚さが120μmのエポキシ
プリプレグを作製した。作製したプリプレグは、カッタ
ーナイフ及びシャーによる切断時に樹脂が飛散した。
Comparative Example 2 (prepreg) bisphenol A novolak type epoxy resin (molecular weight: 1200, epoxy equivalent: 206) was mixed with 7
0 parts by weight, 30 parts by weight of bisphenol A novolak resin (molecular weight: 700, hydroxyl equivalent: 118), and 2 parts by weight.
0.5 parts by weight of -ethyl-4-methylimidazole;
A thermosetting resin consisting of 70 parts by weight of methyl ethyl ketone is impregnated into glass cloth having a thickness of 50 μm and 100 μm.
It is coated and heated and dried at a temperature of 150 ° C. for 10 minutes to remove the solvent and semi-cured the resin, and is made of a glass cloth and a semi-cured epoxy resin having a thickness of 70 μm.
And an epoxy prepreg having a thickness of 120 μm. The resin was scattered in the prepared prepreg when cutting with a cutter knife and a shear.

【0045】(電食試験)つぎに、厚さ0.8mmのガ
ラスエポキシ両面銅張積層板の銅箔に電食試験の内層面
の電極となる形状に、エッチングレジストパターンを形
成し、不要な銅箔をエッチング除去し、この上下に先に
作製した、絶縁層の厚さ70μmのエポキシプリプレグ
と厚さ18μmの片面粗化銅箔を、エポキシプリプレグ
が電食試験の内層面の電極となるパターンと接するよう
に重ね合せて積層し、175℃、2.5MPa、60分間
の条件で熱圧成形した。得られた積層板の銅箔の不要な
箇所をエッチング除去し、内層の電極となる電食試験パ
ターンの位置に合わせた部分に外層の電極となるパター
ンを形成し、電食試験片を得た。この内層と外層の電極
間に50Vの電圧を印加し、85℃、85%RHの雰囲
気下で1000時間経過後の絶縁抵抗値を測定した結
果、109Ω以上の良好な値を示し、接着フィルムが耐
電食性に優れていることを確認した。 (曲げ弾性率)作製した厚さ120μmのエポキシプリ
プレグの上下に厚さ18μmの片面粗化銅箔を、該粗化
面がプリプレグに向き合うように積層し、175℃、
2.5MPa、60分間の条件で熱圧成形した。得られた
銅張積層板の銅箔をエッチング除去し、曲げ弾性率を三
点曲げで測定したところ8GPa(銅箔なし、たてよこ
平均)であった。 (穴あけ精度)また、直径0.3mmのドリルにてこの
銅張積層板を10枚重ねて穴あけしたときの最上板と最
下板の穴位置のずれ量を測定したところ50μm以上あ
った。
(Electrolytic corrosion test) Next, an etching resist pattern was formed on a copper foil of a glass epoxy double-sided copper clad laminate having a thickness of 0.8 mm in a shape to be an electrode on the inner surface of the electrolytic corrosion test. The copper foil is removed by etching, and the epoxy prepreg having an insulating layer thickness of 70 μm and the one-side roughened copper foil having a thickness of 18 μm prepared above and below the epoxy prepreg are used as an electrode on the inner surface of the electrolytic corrosion test. And hot-pressed under the conditions of 175 ° C., 2.5 MPa, and 60 minutes. Unnecessary portions of the copper foil of the obtained laminate were removed by etching, and a pattern serving as an outer layer electrode was formed in a portion corresponding to the position of the electrolytic corrosion test pattern serving as an inner layer electrode, to obtain an electrolytic corrosion test piece. . The inner layer and a voltage of 50V was applied between the outer electrodes, 85 ° C., a result of measuring the insulation resistance value after 1000 hours passed in an atmosphere of RH 85%, showed good values of more than 10 9 Omega, adhesive It was confirmed that the film had excellent corrosion resistance. (Bending elastic modulus) A single-sided roughened copper foil having a thickness of 18 μm was laminated above and below the prepared epoxy prepreg having a thickness of 120 μm so that the roughened surface faced the prepreg, and then heated at 175 ° C.
Hot pressing was performed under the conditions of 2.5 MPa and 60 minutes. When the copper foil of the obtained copper-clad laminate was removed by etching, and the flexural modulus was measured by three-point bending, it was 8 GPa (no copper foil, average vertical length). (Drilling Accuracy) Further, when the copper-clad laminates were drilled by stacking ten copper-clad laminates with a diameter of 0.3 mm, the deviation between the hole positions of the uppermost plate and the lowermost plate was measured and found to be 50 μm or more.

【0046】(多層プリント配線板)この銅張積層板に
回路加工を施して内層回路板を作製し、その両面に先に
作製した厚さ70μmのガラスエポキシプリプレグを、
そのさらに外側に厚さ18μmの片面粗化銅箔を粗化面
がプリプレグに向き合うように積層し、熱圧成形し内層
回路入り多層銅張積層板を作製した。この内層回路入り
多層銅張積層板の表面粗さを触針式表面粗さ計にて測定
した結果、測定箇所がその直下に内層回路のある部分と
ない部分とを含む長さ25mmの一直線上の外層表面で、
内層回路のある部分とない部分の段差の10点平均は、
8μm以上あった。さらにこの内層回路入り多層銅張積
層板の表面銅箔の所定位置をエッチング除去して直径7
5μmの穴をあけ、その穴に住友重機械工業(株)製イン
パクトレーザを用いて穴あけを試みたが、ガラス部分が
除去できなかった。
(Multilayer Printed Wiring Board) This copper-clad laminate is subjected to circuit processing to produce an inner layer circuit board, and the 70 μm thick glass epoxy prepreg previously prepared is provided on both sides thereof.
Further on the outside, a single-sided roughened copper foil having a thickness of 18 μm was laminated so that the roughened surface faced the prepreg, and hot-pressed to produce a multilayer copper-clad laminate having an inner circuit. As a result of measuring the surface roughness of the multilayer copper-clad laminate containing the inner layer circuit with a stylus type surface roughness meter, the measurement location was on a straight line having a length of 25 mm including a portion with and without an inner layer circuit immediately below. On the outer layer surface of
The 10-point average of the step between the part with and without the inner layer circuit is:
It was 8 μm or more. Further, a predetermined position of the surface copper foil of the multilayer copper clad laminate containing the inner layer circuit was removed by etching to obtain a diameter of 7 mm.
A hole of 5 μm was made, and an attempt was made to make a hole using an impact laser manufactured by Sumitomo Heavy Industries, Ltd., but the glass portion could not be removed.

【0047】比較例3 (接着フィルム)重量平均分子量が50,000の高分
子量エポキシ重合体を50重量部と、希釈剤として、
N,N−ジメチルアセトアミドを高分子量エポキシ重合
体が固形分として30重量%となるように用い、ビスフ
ェノールA型エポキシ樹脂(分子量:343、エポキシ
当量:175)を50重量部と、高分子量エポキシ重合
体の架橋剤としてフェノール樹脂マスク化ジイソシアネ
ートを0.2当量と、硬化剤として、2−エチル−4−
メチルイミダゾールを0.5重量部からなる熱硬化性樹
脂を、厚さ18μmの銅箔と厚さ50μmのPETフィ
ルムにナイフコータにて塗工し、温度150℃で10分
間加熱乾燥して溶剤を除去するとともに、樹脂を半硬化
して、接着層の厚さが50μmの銅箔付き接着フィルム
と、接着層の厚さが50μmのPETフィルム付き接着
フィルムを作製し、PETフィルム付き接着フィルムか
らPETフィルムを剥離・除去して、ウィスカー体積分
率が30%でウィスカーと半硬化状態にあるエポキシ樹
脂からなる、厚さが50μmの接着フィルムを作製し
た。作製した接着フィルムは、PETフィルムの剥離時
や通常の取り扱い時に割れる等のトラブルはなく、また
カッターナイフ及びシャーにより、樹脂の飛散等なくき
れいに切断できたが、接着フィルム同士のブロッキング
が発生し、取扱性では悪かった。
Comparative Example 3 (Adhesive Film) 50 parts by weight of a high molecular weight epoxy polymer having a weight average molecular weight of 50,000 and diluent
N, N-dimethylacetamide was used so that the high molecular weight epoxy polymer had a solid content of 30% by weight, 50 parts by weight of a bisphenol A type epoxy resin (molecular weight: 343, epoxy equivalent: 175), and a high molecular weight epoxy resin 0.2 equivalent of a phenolic resin-masked diisocyanate as a cross-linking agent and 2-ethyl-4- as a curing agent
A thermosetting resin consisting of 0.5 parts by weight of methylimidazole is coated on a 18 μm-thick copper foil and a 50 μm-thick PET film with a knife coater, and heated and dried at 150 ° C. for 10 minutes to remove the solvent. At the same time, the resin is semi-cured to produce an adhesive film with a copper foil having an adhesive layer thickness of 50 μm and an adhesive film with a PET film having an adhesive layer thickness of 50 μm. Was peeled and removed to prepare an adhesive film having a whisker volume fraction of 30% and an epoxy resin in a semi-cured state with a whisker and a thickness of 50 μm. The produced adhesive film was free of troubles such as cracking during peeling of the PET film or normal handling, and could be cut cleanly without scattering of resin by a cutter knife and shear, but blocking between the adhesive films occurred. The handling was bad.

【0048】(電食試験)つぎに、厚さ0.8mmのガ
ラスエポキシ両面銅張積層板の銅箔表面に電食試験の内
層面の電極となるパターンを形成し、不要な銅箔をエッ
チング除去し、この上下に上記で作製した接着層の厚さ
50μmの銅箔付き接着フィルムを、接着フィルムが電
食試験の内層面の電極となるパターンと接するように重
ね合せて積層し、175℃、2.5MPa、60分間の条
件で熱圧成形した。得られた積層板の銅箔の不要な箇所
をエッチング除去し、内層の電極となる電食試験パター
ンの位置に合わせた部分に外層の電極となるパターンを
形成し、電食試験片を得た。この内層と外層の電極間に
50Vの電圧を印加し、85℃、85%RHの雰囲気下
で1000時間経過後の絶縁抵抗値を測定した結果、1
9Ω以上の良好な値を示し、接着フィルムが耐電食性
に優れていることを確認した。
(Electrolytic corrosion test) Next, a pattern to be an electrode of the inner layer surface of the electrolytic corrosion test was formed on the copper foil surface of the glass epoxy double-sided copper clad laminate having a thickness of 0.8 mm, and unnecessary copper foil was etched. The adhesive film with a copper foil having a thickness of 50 μm and having an adhesive layer prepared above was overlaid and laminated so that the adhesive film was in contact with a pattern serving as an electrode on the inner surface of the electrolytic corrosion test. , 2.5 MPa and 60 minutes. Unnecessary portions of the copper foil of the obtained laminate were removed by etching, and a pattern serving as an outer layer electrode was formed in a portion corresponding to the position of the electrolytic corrosion test pattern serving as an inner layer electrode, to obtain an electrolytic corrosion test piece. . A voltage of 50 V was applied between the inner layer electrode and the outer layer electrode, and the insulation resistance was measured after 1000 hours in an atmosphere of 85 ° C. and 85% RH.
It showed a good value of 09 Ω or more, and it was confirmed that the adhesive film was excellent in electric corrosion resistance.

【0049】(多層プリント配線板)比較例1で作製し
た内層回路板の両面に、先に作製した厚さ50μmの接
着フィルムを重ね、そのさらに外側に厚さ18μmの片
面粗化銅箔を、粗化面が接着フィルムに向き合うように
積層し、175℃、2.5MPa、60分間の条件で熱圧
成形し内層回路入り多層銅張積層板を作製した。この内
層回路入り多層銅張積層板の表面粗さを触針式表面粗さ
計にて測定した結果、測定箇所がその直下に内層回路の
ある部分とない部分とを含む長さ25mmの一直線上の外
層表面で、内層回路のある部分とない部分の段差の10
点平均は、3μm以下であり、回路加工に支障のない良
好な表面平坦性であった。さらにこの内層回路入り多層
銅張積層板の表面銅箔の所定位置をエッチング除去して
直径75μmの穴をあけ、その穴に住友重機械工業(株)
製インパクトレーザを用いて穴あけを行い、過マンガン
酸によるデスミア処理を行い、無電解メッキを行った
後、エッチングレジストパターンを焼き付け・現像して
形成し、不要な箇所の銅をエッチング除去して回路を形
成した。この多層プリント配線板の両面に、先に作製し
た厚さ50μmの接着フィルムを重ね、そのさらに外側
に厚さ18μmの片面粗化銅箔を、粗化面が接着フィル
ムに向き合うように積層し、175℃、2.5MPa、6
0分間の条件で熱圧成形し、内層回路入り多層銅張積層
板を作製し、その銅箔の所定位置をエッチング除去して
直径75μmの穴をあけ、その穴に住友重機械工業(株)
製インパクトレーザを用いて穴あけを行い、過マンガン
酸によるデスミア処理を行い、無電解メッキを行った
後、エッチングレジストパターンを焼き付け・現像によ
り形成し、不要な銅をエッチング除去して回路を形成し
た。以上の工程をくり返して10層プリント配線板を作
製した。
(Multilayer Printed Wiring Board) The adhesive film having a thickness of 50 μm previously prepared was laminated on both sides of the inner circuit board prepared in Comparative Example 1, and a 18 μm-thick roughened copper foil was further provided on the outside thereof. The laminate was laminated so that the roughened surface faced the adhesive film, and was hot-pressed under the conditions of 175 ° C., 2.5 MPa, and 60 minutes to produce a multilayer copper-clad laminate with an inner circuit. As a result of measuring the surface roughness of the multilayer copper-clad laminate containing the inner layer circuit with a stylus type surface roughness meter, the measurement location was on a straight line having a length of 25 mm including a portion with and without an inner layer circuit immediately below. Of the step between the part with and without the inner layer circuit on the outer layer surface of
The point average was 3 μm or less, and good surface flatness that did not hinder circuit processing was obtained. Further, a predetermined position of the surface copper foil of the multilayer copper-clad laminate containing the inner layer circuit was removed by etching to form a hole having a diameter of 75 μm, and the hole was formed by Sumitomo Heavy Industries, Ltd.
After drilling using an impact laser manufactured, performing desmear treatment with permanganic acid, performing electroless plating, baking and developing an etching resist pattern, etching away unnecessary copper, and removing the circuit Was formed. On both sides of this multilayer printed wiring board, the adhesive film having a thickness of 50 μm previously prepared is laminated, and further on the outside thereof, a 18 μm-thick one-side roughened copper foil is laminated so that the roughened surface faces the adhesive film, 175 ° C, 2.5MPa, 6
It is hot-pressed under the condition of 0 minutes to prepare a multilayer copper-clad laminate containing an inner layer circuit, a predetermined position of the copper foil is removed by etching, a hole having a diameter of 75 μm is formed, and the hole is formed in the hole by Sumitomo Heavy Industries, Ltd.
Drilling was performed using an impact laser manufactured, desmearing with permanganic acid was performed, electroless plating was performed, an etching resist pattern was formed by baking and development, and unnecessary copper was removed by etching to form a circuit. . The above steps were repeated to produce a 10-layer printed wiring board.

【0050】(多層プリント配線板の試験)この多層プ
リント配線板の一部を切り取り、その熱膨張率と曲げ弾
性率を測定した。熱膨張率はTMAにて、曲げ弾性率
は、DMAの曲げモードにて測定した。たてよこ方向の
平均の熱膨張係数は、30ppm/℃(常温下)であ
り、たてよこ方向の平均の曲げ弾性率は常温下で20G
Pa、高温下(200℃)で10GPaであった。ま
た、バーコル硬度計による表面硬度は、常温下で30、
高温下(200℃)で10であった。 (ワイヤボンディング性)さらに、この10層プリント
配線板の一部にベアチップを実装し、ワイヤボンディン
グで表面回路と接続した。ワイヤボンディング条件は、
超音波出力を1W、超音波出力時間を50μs、ボンド
荷重を100gとした。ワイヤボンディング温度を10
0℃に下げてもワイヤのはがれが発生した。 (熱衝撃試験)また、この10層プリント配線板に寸法
8mm×20mmのICチップ(TSOP)をはんだを
介して表面回路と接続し、このICチップ(TSOP)
を実装した基板を、−65℃で30分と150℃で30
分の環境に晒すことを1サイクルとする熱衝撃試験で評
価したところ、100サイクル前後ではんだ接続部に断
線不良を発生した。またこの基板の内部のインターステ
ーシャルバイアホールを含む回路の導通試験を行ったと
ころ断線箇所があった。
(Test of Multilayer Printed Wiring Board) A part of this multilayer printed wiring board was cut out, and its coefficient of thermal expansion and flexural modulus were measured. The coefficient of thermal expansion was measured by TMA, and the flexural modulus was measured by a bending mode of DMA. The average coefficient of thermal expansion in the vertical direction is 30 ppm / ° C. (at room temperature), and the average bending elastic modulus in the vertical direction is 20 G at room temperature.
Pa and 10 GPa at a high temperature (200 ° C.). The surface hardness measured by a Barcol hardness tester was 30 at room temperature,
It was 10 at high temperature (200 ° C.). (Wire bonding property) Further, a bare chip was mounted on a part of the 10-layer printed wiring board, and connected to a surface circuit by wire bonding. The wire bonding conditions are
The ultrasonic output was 1 W, the ultrasonic output time was 50 μs, and the bond load was 100 g. Wire bonding temperature 10
Even when the temperature was lowered to 0 ° C., peeling of the wire occurred. (Thermal shock test) Also, an IC chip (TSOP) having a size of 8 mm × 20 mm was connected to the surface circuit via solder on this 10-layer printed wiring board, and this IC chip (TSOP)
Is mounted at -65 ° C for 30 minutes and 150 ° C for 30 minutes.
As a result of a thermal shock test in which exposure to the environment for one minute was performed as one cycle, a disconnection defect occurred in the solder connection part after about 100 cycles. Further, a continuity test of a circuit including an interstitial via hole inside the substrate revealed a broken portion.

【0051】[0051]

【発明の効果】本発明の絶縁ワニスの製造方法により、
電気絶縁性ウイスカーを複合化させた接着フィルムに電
気絶縁性ウイスカーの凝集体が混入することを絶縁ワニ
スの段階で抑制することが可能となり、接着フィルムの
絶縁信頼性を高めることができる。本発明にしたがって
製造した絶縁ワニスを用いて得られた接着フィルムは、
電気絶縁性ウイスカーの添加によりエポキシ樹脂をシー
ト状に形成することができたもので、これを使用したプ
リント配線板は、表面が平坦で回路加工性が良く、剛性
が高いため実装信頼性が高く、表面硬度が高いためワイ
ヤボンド性が良く、熱膨張係数が小さいため寸法安定性
が良くなる。したがって、多層プリント配線板の高密度
化、薄型化、高信頼性化、低コスト化に多大の貢献をす
る。
According to the method for producing an insulating varnish of the present invention,
Mixing of the aggregate of the electrically insulating whiskers into the adhesive film in which the electrically insulating whiskers are combined can be suppressed at the stage of the insulating varnish, and the insulation reliability of the adhesive film can be increased. Adhesive film obtained using the insulating varnish produced according to the present invention,
Epoxy resin could be formed into a sheet by adding an electrically insulating whisker.Printed wiring boards using this epoxy resin had a flat surface, good circuit workability, and high rigidity, resulting in high mounting reliability. In addition, since the surface hardness is high, the wire bonding property is good, and the dimensional stability is good because the coefficient of thermal expansion is small. Therefore, it greatly contributes to high density, thinner, higher reliability, and lower cost of the multilayer printed wiring board.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI // C08L 63/00 C08L 63/00 C (72)発明者 神代 恭 茨城県下館市大字小川1500番地 日立化成 工業株式会社下館研究所内 (72)発明者 高橋 敦之 茨城県下館市大字小川1500番地 日立化成 工業株式会社下館研究所内 (72)発明者 森田 高示 茨城県下館市大字小川1500番地 日立化成 工業株式会社下館研究所内 (72)発明者 有家 茂晴 茨城県下館市大字小川1500番地 日立化成 工業株式会社下館研究所内 (72)発明者 大塚 和久 茨城県下館市大字小川1500番地 日立化成 工業株式会社下館研究所内 (72)発明者 浦崎 直之 茨城県下館市大字小川1500番地 日立化成 工業株式会社下館研究所内 (72)発明者 藤本 大輔 茨城県下館市大字小川1500番地 日立化成 工業株式会社下館研究所内──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification symbol FI // C08L 63/00 C08L 63/00 C (72) Inventor Yasushi Yashiro 1500 Ogawa Oji, Shimodate City, Ibaraki Prefecture Hitachi Chemical Co., Ltd. Shimodate Within the research institute (72) Inventor Atsuyuki Takahashi 1500 Oji Ogawa, Shimodate City, Ibaraki Pref.Hitachi Kasei Kogyo Co., Ltd. 72) Inventor Shigeharu Ariya 1500, Oji, Shimodate, Ibaraki Pref.Hitachi Chemical Industry Co., Ltd., Shimodate R & D Laboratories Naoyuki Urasaki 1500 Ogawa Oaza, Shimodate City, Ibaraki Prefecture Inside Shimodate Research Laboratory, Hitachi Chemical Co., Ltd. (72) Inventor Fujimoto Daisuke 1500 Ogawa, Shimodate, Ibaraki Pref.Hitachi Chemical Industry Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】ウイスカーを有機溶剤中で撹拌させること
により乾燥状態のウイスカー集合体の中に存在する凝集
体を解離させたスラリを調製し、このスラリを樹脂ワニ
ス中に添加した後攪拌することを特徴とする絶縁ワニス
の製造方法。
1. A slurry in which aggregates present in a whisker aggregate in a dry state are dissociated by stirring a whisker in an organic solvent, and the slurry is added to a resin varnish and stirred. A method for producing an insulating varnish, comprising:
【請求項2】電気絶縁性ウイスカーに、セラミックウイ
スカーであって、該ウイスカーの平均直径が0.3〜3
μmの範囲にあり、平均長さが3〜50μmの範囲にあ
るものを用いることを特徴とする請求項1に記載の絶縁
ワニスの製造方法。
2. An electrically insulating whisker comprising a ceramic whisker having an average diameter of 0.3 to 3 whiskers.
The method for producing an insulating varnish according to claim 1, wherein a material having an average length in a range of 3 to 50 µm is used.
【請求項3】スラリを樹脂ワニス中に添加した後撹拌混
合して得られた絶縁ワニスを、さらにビーズミルで混練
し、ウイスカーの平均長さが3〜30μmの範囲となる
ように調製することを特徴とする請求項1または2に記
載の絶縁ワニスの製造方法。
3. An insulated varnish obtained by adding a slurry to a resin varnish and then stirring and mixing the resulting mixture is further kneaded with a bead mill so that an average whisker length is in a range of 3 to 30 μm. The method for producing an insulating varnish according to claim 1 or 2, wherein:
【請求項4】請求項1〜3に記載された絶縁ワニスを、
銅箔またはキャリアフィルムに塗布して得た接着フィル
ムを、内層回路を形成した配線板に積層した後、外層面
の回路を形成し、該回路と内層回路とを電気的に接続し
たことを特徴とする多層プリント配線板。
4. The insulating varnish according to claim 1, wherein
After laminating an adhesive film obtained by applying a copper foil or a carrier film to a wiring board on which an inner layer circuit is formed, a circuit on an outer layer surface is formed, and the circuit and the inner layer circuit are electrically connected. Multilayer printed wiring board.
JP09630097A 1997-04-15 1997-04-15 Method for manufacturing insulating varnish and multilayer printed wiring board using the insulating varnish Expired - Fee Related JP3838390B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP09630097A JP3838390B2 (en) 1997-04-15 1997-04-15 Method for manufacturing insulating varnish and multilayer printed wiring board using the insulating varnish
US09/057,522 US6197149B1 (en) 1997-04-15 1998-04-09 Production of insulating varnishes and multilayer printed circuit boards using these varnishes
DE69839104T DE69839104D1 (en) 1997-04-15 1998-04-14 Production of insulating lacquers and multilayer printed circuit boards using them
EP19980106742 EP0873047B1 (en) 1997-04-15 1998-04-14 Production of insulating varnishes and multilayer printed circuit boards using these varnishes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09630097A JP3838390B2 (en) 1997-04-15 1997-04-15 Method for manufacturing insulating varnish and multilayer printed wiring board using the insulating varnish

Publications (2)

Publication Number Publication Date
JPH10287832A true JPH10287832A (en) 1998-10-27
JP3838390B2 JP3838390B2 (en) 2006-10-25

Family

ID=14161191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09630097A Expired - Fee Related JP3838390B2 (en) 1997-04-15 1997-04-15 Method for manufacturing insulating varnish and multilayer printed wiring board using the insulating varnish

Country Status (1)

Country Link
JP (1) JP3838390B2 (en)

Also Published As

Publication number Publication date
JP3838390B2 (en) 2006-10-25

Similar Documents

Publication Publication Date Title
EP0763562B1 (en) Prepreg for printed circuit board
JP4957552B2 (en) Manufacturing method of prepreg with carrier for printed wiring board, prepreg with carrier for printed wiring board, manufacturing method of thin double-sided board for printed wiring board, thin double-sided board for printed wiring board, and manufacturing method of multilayer printed wiring board
KR100903137B1 (en) A Thermosetting Adhesive Film, and an Adhesive Structure Based on the Use Thereof
WO2004102589A1 (en) Insulating material, film, circuit board and method for manufacture thereof
JP3821728B2 (en) Prepreg
JP2009176889A (en) Insulating resin composition for multilayer printed wiring board, insulating film with support, multilayer printed wiring board, and manufacturing method therefor
JP3838389B2 (en) Insulating material and multilayer printed wiring board using the same
JP2001316564A (en) Electrical insulating resin composition, copper-foiled electrical insulating material and copper-clad laminated board
JP3972433B2 (en) Insulating varnish and multilayer printed wiring board using the same
JP2002212390A (en) Insulating resin composition, copper foil-attached insulating material and copper-clad laminate
JP2005209489A (en) Insulation sheet
JPH1140950A (en) Multilayered wiring board
JPH10287834A (en) Production of insulating varnish and multi-layered printed wiring board using the insulating varnish
JP3804812B2 (en) Method for producing insulating varnish
JP3838390B2 (en) Method for manufacturing insulating varnish and multilayer printed wiring board using the insulating varnish
JP3343330B2 (en) Method for producing insulating varnish, insulating varnish obtained by this method, and multilayer printed wiring board using this insulating varnish
JP3932635B2 (en) Insulating varnish and multilayer printed wiring board using the same
JPH10287833A (en) Production of insulating varnish and multi-layered printed wiring board using the insulating varnish
JP2003011269A (en) Manufacturing method of insulating material with copper leaf
JP3911739B2 (en) Insulation material for wiring boards
JP3390306B2 (en) Prepreg with carrier film for printed wiring boards
JP4366785B2 (en) Adhesive sheet, production method thereof, multilayer printed wiring board using the adhesive sheet, and production method thereof
JPH09202834A (en) Prepreg for printed circuit board and its production
JPH11140229A (en) Thermosetting resin composition, adhesive sheet using the same and metal foil having adhesive layer attached thereto
JP2000345103A (en) Insulation varnish and multilayered printed circuit board using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060713

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060726

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130811

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees