JPH10286689A - Solder - Google Patents

Solder

Info

Publication number
JPH10286689A
JPH10286689A JP9782897A JP9782897A JPH10286689A JP H10286689 A JPH10286689 A JP H10286689A JP 9782897 A JP9782897 A JP 9782897A JP 9782897 A JP9782897 A JP 9782897A JP H10286689 A JPH10286689 A JP H10286689A
Authority
JP
Japan
Prior art keywords
strength
wettability
weight
melting point
addition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9782897A
Other languages
Japanese (ja)
Other versions
JP3353640B2 (en
Inventor
Mitsuo Yamashita
満男 山下
Shinji Tada
慎司 多田
Kunio Shiokawa
国夫 塩川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP09782897A priority Critical patent/JP3353640B2/en
Priority to US09/059,268 priority patent/US6179935B1/en
Priority to DE19816671A priority patent/DE19816671C2/en
Publication of JPH10286689A publication Critical patent/JPH10286689A/en
Application granted granted Critical
Publication of JP3353640B2 publication Critical patent/JP3353640B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a solder that dispenses with lead content causing a problem in environmental measures, that excels in heat resistance and thermal fatigue strength, and that enhances wettability and strength by using tin as the main component and adding a specific amount of antimony, silver, copper and nickel. SOLUTION: The composition is designed to contain, in weight %, 2.5-3.5% antimony, 1.0-3.5% silver, 1.0% or less copper or nickel, and the remainder to be tin. This solder has a melting point of 232-240 deg.C, with enhanced thermal fatigue property and with silver for the improvement in wettability of tin- antimony alloy; since the addition of silver causes lowering of the melting point, it is compensated by adding nickel and raising the melting point. The addition of copper is 1% or less, improving heat resistance and strength without impairing wettability, while its addition in excess will cause a rapid rise in the melting point. Similarly, the addition of nickel with 1.0% or less improves wettability, strength and thermal stability, but the excess addition will lower rolling workability, so that its content is confined within the above range.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電子機器における金
属の接合に使用される「はんだ合金」に係り、特に鉛を
含有しないで対環境性の良好な「はんだ合金」に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a "solder alloy" used for joining metals in electronic equipment, and more particularly to a "solder alloy" which does not contain lead and has good environmental friendliness.

【0002】[0002]

【従来の技術】「はんだ接合」を行う場合に必要な特性
として、所望の接合温度を有し、接合時に「ぬれ性」が
良好であること、熱疲労強度や耐食性が優れること、さ
らに環境に対する配慮から鉛Pbを含有しないことが望ま
れる。半導体装置におけるチップの「はんだ合金」接合
部は、金属導体との面積接合であり、パワー通電時のチ
ップの熱発生により大きな熱ひずみを発生するために接
合部に使用される「はんだ合金」は過酷な使用環境に置
かれることとなり、優れた熱疲労強度が要求される。さ
らに半導体装置によっては構造的に複数回の「はんだ接
合」を必要とする場合があり、このときには接合温度の
異なる複数の種類の「はんだ合金」が必要で、後工程の
温度プロファイルの影響を受けにくい「はんだ合金」が
必要になる。
2. Description of the Related Art The properties required for performing "solder joining" include having a desired joining temperature, good "wettability" at the time of joining, excellent thermal fatigue strength and corrosion resistance, and environmentally friendly properties. It is desirable not to contain lead Pb from consideration. The "solder alloy" joint of the chip in the semiconductor device is an area joint with the metal conductor, and the "solder alloy" used for the joint to generate a large thermal strain due to the heat generation of the chip when power is applied is It will be placed in a severe use environment, and excellent thermal fatigue strength is required. Furthermore, depending on the semiconductor device, a plurality of "solder joints" may be required structurally, and in this case, a plurality of types of "solder alloys" having different joining temperatures are required, which is affected by a temperature profile in a later process. A difficult "solder alloy" is required.

【0003】これらの要求に対する従来の「はんだ合
金」としては、Pb-Sn 「はんだ合金」、及びSn-Sb 「は
んだ合金」が知られている。しかしながら従来の「はん
だ合金」には以下のような問題があった。Pb-Sn 「はん
だ合金」は、引張り強度が低くて延性に富むため、発生
ひずみ量が大きくて疲労強度が低く、また下記に記述す
るように耐熱性が低い点と合わせ、熱疲労強度が低いと
いう欠点がある。Pb-Sn 「はんだ合金」は、183 ℃を共
晶温度とする合金であり、Pbの増加により溶融点を183
℃から300 ℃付近まで高めることはできるが、液相のみ
が存在する液相温度と固相のみが存在する固相温度(18
3 ℃)の間の固液共存領域が広くなる。共晶組成(63Pb
37Sn)以外の高Pb「はんだ合金」であっても、接合時の
凝固時間は通常短く、高Pb―低Sn「はんだ合金」の二元
系状態図に基づいて理想的な凝固過程を辿ることは少な
く、鉛、スズ、それぞれの濃度が高い相や共晶組織など
種々形態の金属組織となり、安定化し難い。また耐熱性
の点では、共晶温度が183 ℃であるために比較的低温域
で材質劣化が生じやすいという問題がある。
[0003] Pb-Sn "solder alloys" and Sn-Sb "solder alloys" are known as conventional "solder alloys" for meeting these requirements. However, the conventional "solder alloy" has the following problems. Pb-Sn "Solder Alloy" has low tensile strength and high ductility, so it generates a large amount of strain and low fatigue strength, and has low thermal fatigue strength in combination with low heat resistance as described below. There is a disadvantage that. Pb-Sn “Solder alloy” is an alloy whose eutectic temperature is 183 ° C.
℃ to around 300 ℃, but the liquid phase temperature where only the liquid phase exists and the solid phase temperature where only the solid phase exists (18
The solid-liquid coexistence region between 3 ° C) becomes wider. Eutectic composition (63Pb
Even with high Pb “solder alloys” other than 37Sn), the solidification time during joining is usually short, and the ideal solidification process should be followed based on the binary phase diagram of high Pb-low Sn “solder alloy” And various forms of metal structures such as lead and tin, phases with high concentrations of each and a eutectic structure, and are difficult to stabilize. Further, in terms of heat resistance, there is a problem that since the eutectic temperature is 183 ° C., the material tends to deteriorate in a relatively low temperature range.

【0004】さらにPb-Sn 「はんだ合金」は、Pbを含有
するため環境対策の点で望ましくない。
[0004] Further, Pb-Sn "solder alloy" is not desirable in terms of environmental measures because it contains Pb.

【0005】[0005]

【発明が解決しようとする課題】Pb-Sn 「はんだ合金」
に替わる「はんだ合金」でPbを含有せず、かつ耐熱性の
良好な「はんだ合金」としては、溶融点232-245 ℃を有
するSn-Sb 「はんだ合金」が広く知られている。図4は
Sn-Sb 「はんだ合金」の相平衡を示す状態図である。
[Problems to be solved by the invention] Pb-Sn "Solder alloy"
As a “solder alloy” that does not contain Pb and has good heat resistance in place of Sn, an Sn—Sb “solder alloy” having a melting point of 232-245 ° C. is widely known. Figure 4
It is a phase diagram which shows the phase equilibrium of Sn-Sb "solder alloy".

【0006】この状態図は日本金属学会 金属データブ
ック(昭和49年版)に所収のものである。Sn-Sb 「は
んだ合金」は、Pb-Sn 「はんだ合金」より強度が比較的
高く優れている。Sn-Sb 「はんだ合金」は、Sb8.5wt%に
おいて包晶点(包晶温度245℃)を有し、Sbは通常、8 w
t% 以下で使用される。溶融はSnの溶融点232 ℃と包晶
温度245 ℃の間で生じるので、固液共存領域が狭くて溶
融開始温度が高く、耐熱性に優れている。Sb量を増加す
ることにより、強度的にも優れたものが得られる。しか
しながらSn-Sb 「はんだ合金」は、はんだ接合時のぬれ
性が悪く、また熱疲労強度も充分に満足できるものでは
なかった。
[0006] This state diagram is included in the Japan Institute of Metals Metals Data Book (1974 edition). Sn-Sb “solder alloy” is relatively strong and superior to Pb-Sn “solder alloy”. Sn-Sb “solder alloy” has a peritectic point (peritectic temperature of 245 ° C) at 8.5 wt% of Sb, and Sb is usually 8 watts.
Used below t%. Since melting occurs between the melting point of Sn of 232 ° C. and the peritectic temperature of 245 ° C., the solid-liquid coexistence region is narrow, the melting start temperature is high, and the heat resistance is excellent. By increasing the amount of Sb, a material excellent in strength can be obtained. However, Sn-Sb "solder alloy" had poor wettability at the time of solder joining, and the thermal fatigue strength was not sufficiently satisfactory.

【0007】この発明は上述の点に鑑みてなされその目
的は、Sn-Sb 「はんだ合金」に改良を加え、ぬれ性が良
く、熱疲労強度に優れるSn-Sb 系「はんだ合金」を提供
することにある。
The present invention has been made in view of the above points, and an object of the present invention is to provide an Sn-Sb-based "solder alloy" which is improved in Sn-Sb "solder alloy" and has excellent wettability and excellent thermal fatigue strength. It is in.

【0008】[0008]

【課題を解決するための手段】上述の目的はこの発明に
よればスズを主成分とし、アンチモンを2.5ないし
3.5重量%、銀を1.0ないし3.5重量%、銅を
1.0重量%以下の量含むこと、またはスズを主成分と
し、アンチモンを2.5ないし3.5重量%、銀を1.
0ないし3.5重量%、ニッケルを1.0重量%以下の
量含むことにより達成される。
According to the present invention, there is provided, according to the present invention, tin as a main component, 2.5 to 3.5% by weight of antimony, 1.0 to 3.5% by weight of silver, and copper of 1.0 to 3.5% by weight. 1.0% by weight or less, or tin-based as the main component, 2.5 to 3.5% by weight of antimony, and 1.
This is achieved by including nickel in an amount of 0 to 3.5% by weight and not more than 1.0% by weight of nickel.

【0009】Sn-Sb 「はんだ合金」では、Sbを添加して
溶融点232 ℃から240 ℃において、熱疲労特性を高めて
いるが、ぬれ性の改善と一層の強度増加をAg,Cu,Niの添
加により達成する。Agの添加は、疲労強度,ぬれ性を向
上する。Agは、結晶粒界に高濃度に存在し、結晶粒界の
移動を抑えるため疲労強度が向上する。しかしながらSn
-Ag 合金は、Sn-3.5wt% Agにおいて共晶点( 共晶温度22
1 ℃) を有し、Ag添加により溶融点の低下をもたらすの
でCu,Ni 添加により溶融点を高めて溶融点の低下を補う
ことができる。Ag添加量としては、3wt%と、6wt%含
有する合金では強度は同レベルである。Ag添加量が3.5w
t%を越すと、溶融点(液相温度)が高くなり、接合温度
をぬれ性確保のためにも高くする必要があり、さらに固
液共存領域が大きくなる。
In Sn-Sb “solder alloy”, Sb is added to enhance the thermal fatigue properties at a melting point of 232 ° C. to 240 ° C., but the wettability is improved and the strength is further increased by Ag, Cu, Ni. Achieved by the addition of Addition of Ag improves fatigue strength and wettability. Ag is present at a high concentration at the crystal grain boundaries, and the fatigue strength is improved because the movement of the crystal grain boundaries is suppressed. However, Sn
-Ag alloy has a eutectic point at Sn-3.5wt% Ag (eutectic temperature 22
1 ° C), and the addition of Ag lowers the melting point, so the addition of Cu and Ni raises the melting point and can compensate for the lowering of the melting point. The strength of the alloy containing 3 wt% and the alloy containing 6 wt% is at the same level. Ag addition amount is 3.5w
If it exceeds t%, the melting point (liquidus temperature) becomes high, and it is necessary to increase the bonding temperature to ensure wettability, and the solid-liquid coexistence region becomes large.

【0010】Cuの添加は、ぬれ性を損なうことなく、Sn
中に固溶して耐熱性と合金強度を向上させる。Cuを3wt
%以上添加すると、溶融点(液相温度)が急激に上昇
し、また特開平5-50286 号公報に指摘されているように
金属間化合物(Cu3Sn など)の形成量が多くなり、疲労
強度が損なわれる。Cuは0.5wt%の添加しても強度の向上
をもたらす。
[0010] The addition of Cu can reduce the Sn content without impairing the wettability.
Solid solution inside to improve heat resistance and alloy strength. Cu 3wt
% Or more, the melting point (liquidus temperature) sharply rises, and as pointed out in JP-A-5-50286, the amount of formation of intermetallic compounds (Cu 3 Sn, etc.) increases, Strength is impaired. Even if 0.5% by weight of Cu is added, the strength is improved.

【0011】Niの添加は、溶融点が高い(1450℃)ので
合金の熱的安定性をもたらすとともに、結晶組織の微細
化効果、Ni-Sn 化合物の形成による熱疲労特性向上効
果、およびCu基板と接合する際の接合強度を低下させる
金属間化合物(Cu3Sn )の生成を抑制する。Ni量が多く
なると(5wt%以上)、合金溶製が困難となり、接合時に
粘度が大きくなって広がり性が低下する。Ni量が1.0 wt
% 以下では、強度向上、およびぬれ性が向上する。Ni量
が1wt %を越すと硬くなり圧延加工性が悪くなる。
[0011] The addition of Ni brings about the thermal stability of the alloy due to its high melting point (1450 ° C), the effect of refining the crystal structure, the effect of improving the thermal fatigue properties by forming Ni-Sn compounds, and the Cu substrate. The formation of an intermetallic compound (Cu 3 Sn), which lowers the bonding strength when bonding with a metal, is suppressed. When the amount of Ni increases (5 wt% or more), it becomes difficult to melt the alloy, and the viscosity increases at the time of joining, and the spreadability decreases. Ni content is 1.0 wt
%, The strength and wettability are improved. If the Ni content exceeds 1 wt%, the steel becomes hard and the rolling workability deteriorates.

【0012】[0012]

【発明の実施の形態】「はんだ合金」は、スズを主成分
とし、アンチモンを2.5ないし3.5重量%、銀を
1.0ないし3.5重量%、銅を1.0重量%以下の量
含むSn-Sb 系「はんだ合金」,スズを主成分とし、アン
チモンを2.5ないし3.5重量%、銀を1.0ないし
3.5重量%、ニッケルを1.0重量%以下の量含むSn
-Sb 系「はんだ合金」,またはスズを主成分とし、アン
チモンを2.5ないし3.5重量%、銀を1.0ないし
3.5重量%、銅を1.0重量%以下の量、ニッケルを
1.0重量%以下の量含むSn-Sb 系「はんだ合金」が用
いられる。
BEST MODE FOR CARRYING OUT THE INVENTION "Solder alloy" contains tin as a main component, 2.5 to 3.5% by weight of antimony, 1.0 to 3.5% by weight of silver, and 1.0% by weight of copper. Sn-Sb-based "solder alloy" containing the following amounts, tin as a main component, 2.5 to 3.5% by weight of antimony, 1.0 to 3.5% by weight of silver, 1.0% by weight of nickel Sn containing the following amount
-Sb-based "solder alloy" or tin as a main component, 2.5 to 3.5% by weight of antimony, 1.0 to 3.5% by weight of silver, 1.0% by weight or less of copper, A Sn—Sb-based “solder alloy” containing nickel in an amount of 1.0% by weight or less is used.

【0013】図1はSn,Sb,Ag,Cu からなる「はんだ合
金」の最適組成領域を示す要部拡大正四面体図である。
図2はSn,Sb,Ag,Ni からなる「はんだ合金」の最適組成
領域を示す要部拡大正四面体図である。図3はSn,Sb,A
g,Ni+Cu からなる「はんだ合金」の最適組成領域を示
す要部拡大正四面体図である。
FIG. 1 is a principal part enlarged tetrahedral diagram showing an optimum composition region of a "solder alloy" composed of Sn, Sb, Ag, and Cu.
FIG. 2 is an enlarged regular tetrahedron diagram showing an optimum composition region of a “solder alloy” composed of Sn, Sb, Ag, and Ni. FIG. 3 shows Sn, Sb, A
FIG. 4 is an enlarged regular tetrahedral diagram showing an optimum composition region of a “solder alloy” composed of g, Ni + Cu.

【0014】この図で最適組成領域はf1,f2,f3,f4
f5,f6,f7,f8,またはf1,f2,f3,f4,f9,f10 ,f
11 ,f12,で囲まれた領域である。但しf1,f2,f3
f4,で囲まれる平面は含まれない。nを1 ないし12の整
数とするとき fn ( Sb重量%,Ag重量%,Cu 重量%また
はNi重量%または(Cu+Ni) 重量%,Sn 重量%) は正四面
体内の「はんだ合金」組成を示す。金属の重量%は正四
面体の高さを100 としたときに各組成から四つの平面に
下した垂線の長さである。(Cu+Ni) 重量%はCu,Niそれ
ぞれが1.0 重量%以下である。
In this figure, the optimal composition regions are f 1 , f 2 , f 3 , f 4 ,
f 5, f 6, f 7 , f 8 , or f 1, f 2, f 3 ,, f 4, f 9, f 10, f
11, f 12, in a region enclosed. Where f 1 , f 2 , f 3 ,
The plane enclosed by f 4 , is not included. When n is an integer of 1 to 12, f n (Sb wt%, Ag wt%, Cu wt% or Ni wt% or (Cu + Ni) wt%, Sn wt%) is the “solder alloy” in the tetrahedron. The composition is shown. The weight percent of the metal is the length of the perpendicular drawn from each composition to four planes, with the height of the tetrahedron being 100. (Cu + Ni)% by weight is 1.0% by weight or less for each of Cu and Ni.

【0015】f1(2.5, 1.0, 0, 96.5) 、f2(3.5, 1.0,
0, 95.5) 、f3(3.5, 3.5, 0,93.0) 、f4(2.5, 3.5,
0, 94.0) 、f5(2.5, 1.0, 1.0, 95.5)、f6(3.5, 1.
0,1.0, 94.5) 、f7(3.5, 3.5, 1.0, 92.0)、f8(2.5,
3.5, 1.0, 93.0)、f9(2.5, 1.0, 2.0, 94.5)、f10(3.
5, 1.0, 2.0, 93.5) 、f11(3.5, 3.5, 2.0, 91.0) 、
f12(2.5, 3.5, 2.0, 92.0) 「はんだ合金」は、Sn,Sb,Ag,Cu,Ni各原料金属を電気炉
中で溶解することにより作製される。
F 1 (2.5, 1.0, 0, 96.5), f 2 (3.5, 1.0,
0, 95.5), f 3 (3.5, 3.5, 0,93.0), f 4 (2.5, 3.5,
0, 94.0), f 5 ( 2.5, 1.0, 1.0, 95.5), f 6 (3.5, 1.
0,1.0, 94.5), f 7 (3.5, 3.5, 1.0, 92.0), f 8 (2.5,
3.5, 1.0, 93.0), f 9 (2.5, 1.0, 2.0, 94.5), f 10 (3.
5, 1.0, 2.0, 93.5) , f 11 (3.5, 3.5, 2.0, 91.0),
f 12 (2.5, 3.5, 2.0, 92.0) “Solder alloy” is produced by melting Sn, Sb, Ag, Cu, and Ni raw materials in an electric furnace.

【0016】[0016]

【実施例】実験には純度99.99wt%以上の金属を使用し
た。この溶製原料を金型に鋳込み引張り試験片(3 mm
φ)を作製し、また溶製原料の一部を用いてぬれ性を測
定した。引張試験は室温で実施した。ぬれ性はメニスコ
グラフ法で、フラックス(RMAタイプ)を使用して測
定した。はんだ原料を280 ℃に加熱、溶融させ、2 mm
φの銅線を使用し、浸漬後、ぬれ力を測定した。
EXAMPLE A metal having a purity of 99.99 wt% or more was used in the experiment. This ingot is cast into a mold and a tensile test piece (3 mm
φ) was prepared, and the wettability was measured using a part of the smelting raw material. The tensile test was performed at room temperature. The wettability was measured by a meniscograph method using a flux (RMA type). Heat the solder material to 280 ° C and melt it, 2 mm
After immersion using a copper wire of φ, the wetting force was measured.

【0017】合金各組成の溶融点,引張り強さ,破断伸
び,ぬれ力が表1に示される。表中の組成を示す数字は
重量%を表す。
Table 1 shows the melting point, tensile strength, elongation at break, and wetting force of each composition of the alloy. The numbers indicating the compositions in the table represent% by weight.

【0018】[0018]

【表1】 [Table 1]

【0019】Sn-Sb 合金中のSb量を増加すると、引張り
強度は増大するが、ぬれ性は低下する傾向を有する。Ag
添加量を増加すると、強度の向上が認められる。しかし
強度レベルの増加はAgを3wt%添加しても6 wt% 添加して
もほぼ同レベルである。Agは溶融点を大きく低下しない
で、ぬれ性を改善するのに有効であるが、3.5wt%を越す
と、溶融温度(液相線)が上昇し、作業温度を高くする
必要が生じ、共晶温度221 ℃(固相線)との固液共存温
度域も広くなる。従って強度を向上させ、ぬれ性を改善
させる適切なAgの添加量は1 〜3.5wt%量である。
When the amount of Sb in the Sn—Sb alloy is increased, the tensile strength increases, but the wettability tends to decrease. Ag
When the added amount is increased, the strength is improved. However, the increase in strength level was almost the same whether Ag was added at 3 wt% or 6 wt%. Ag is effective in improving the wettability without significantly lowering the melting point, but when it exceeds 3.5 wt%, the melting temperature (liquidus) rises and the working temperature needs to be raised. The solid-liquid coexistence temperature range with the crystallization temperature of 221 ° C (solidus) is also widened. Therefore, the appropriate amount of Ag added for improving the strength and improving the wettability is 1 to 3.5 wt%.

【0020】Sn-3wt% SbにCuやNiを添加すると、強度が
向上するから、強化効果をもたらしていることがわか
る。Sn-3wt%Sb-1wt%Ag-1wt%Cu にNiを0.5wt%, 1.0wt%添
加したものは優れたぬれ性を示しており、複合添加によ
り強度向上とともにぬれ性が向上することがわかる。ま
たSn-3%wtSb-3wt%Agにおいては、Cu,Ni を0.5wt%添加し
たものは、強度が最も高く、ぬれ性もSn−5 wt%Sb 「は
んだ合金」,Sn −8 wt%Sb 「はんだ合金」に比して優れ
ている。Sn-3wt%Sb 「はんだ合金」に3 wt% Ag,0.5wt%
Cu, 0.5wt%Niを複合添加することにより強度は3〜5倍
になっている。Cu,Ni は単独に添加しても強度向上に効
果はあるが、複合添加した方が熱疲労強度の向上に役立
つ。
When Cu or Ni is added to Sn-3wt% Sb, the strength is improved, and it can be seen that a strengthening effect is brought about. Sn-3wt% Sb-1wt% Ag-1wt% Cu with 0.5wt% and 1.0wt% of Ni added shows excellent wettability, indicating that the addition of composite improves wettability as well as strength. . In Sn-3% wtSb-3wt% Ag, the one with Cu and Ni added at 0.5wt% has the highest strength and the wettability is Sn-5wt% Sb `` Solder alloy '', Sn-8wt% Sb Superior to "solder alloy". Sn-3wt% Sb 3wt% Ag, 0.5wt% for "solder alloy"
The strength is increased 3 to 5 times by adding Cu and 0.5wt% Ni in combination. Even if Cu and Ni are added alone, they are effective in improving the strength, but adding them in combination is more effective in improving the thermal fatigue strength.

【0021】Sn-Sb 合金は、溶融点が230-245 ℃の範囲
にあり、耐熱強度に優れることが特徴であるが、ぬれ性
に劣ることが欠点であった。以上の実施例で得た測定結
果からわかるようにAg,Cu,Niを添加することにより、4w
t%以上のSbを含有するSn-Sb「はんだ合金」に比し、強
度的に格段に優れ、耐熱性を有し、ぬれ性も向上した
「はんだ合金」が得られる。
The Sn-Sb alloy has a melting point in the range of 230-245 ° C. and is characterized by having excellent heat resistance, but has a disadvantage in that it has poor wettability. As can be seen from the measurement results obtained in the above examples, by adding Ag, Cu, Ni, 4w
Compared to a Sn-Sb "solder alloy" containing tb or more of Sb, a "solder alloy" having remarkably superior strength, heat resistance, and improved wettability can be obtained.

【0022】[0022]

【発明の効果】この発明によれば「はんだ合金」がスズ
を主成分とし、アンチモンを2.5ないし3.5重量
%、銀を1.0ないし3.5重量%、銅を1.0重量%
以下の量含むとし、またはスズを主成分とし、アンチモ
ンを2.5ないし3.5重量%、銀を1.0ないし3.
5重量%、ニッケルを1.0重量%以下の量含むとする
ので、4wt%以上のSbを含有するSn-Sb 「はんだ合金」に
比し、強度的に格段に優れ、耐熱性を有し、ぬれ性も向
上した「はんだ合金」が得られた。また本合金は鉛を含
まないので環境的にも望ましい「はんだ合金」が得られ
た。
According to the present invention, the "solder alloy" contains tin as a main component, 2.5 to 3.5% by weight of antimony, 1.0 to 3.5% by weight of silver and 1.0 to 3.5% by weight of copper. weight%
Or tin as a main component, 2.5 to 3.5% by weight of antimony, and 1.0 to 3% of silver.
5% by weight and 1.0% by weight or less of nickel. Compared to Sn-Sb "Solder alloy" containing 4% by weight or more of Sb, it has remarkably superior strength and heat resistance. Thus, a "solder alloy" having improved wettability was obtained. Since this alloy does not contain lead, an environmentally desirable "solder alloy" was obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】Sn,Sb,Ag,Cu からなる「はんだ合金」の最適組
成領域を示す要部拡大正四面体図
Fig. 1 Enlarged regular tetrahedron diagram showing the optimal composition region of a "solder alloy" composed of Sn, Sb, Ag, and Cu

【図2】Sn,Sb,Ag,Ni からなる「はんだ合金」の最適組
成領域を示す要部拡大正四面体図
Fig. 2 Enlarged main part tetrahedron diagram showing the optimal composition region of "Solder alloy" composed of Sn, Sb, Ag, Ni

【図3】Sn,Sb,Ag,Ni+Cuからなる「はんだ合金」の最適
組成領域を示す要部拡大正四面体図
FIG. 3 is an enlarged regular tetrahedron diagram showing an optimum composition region of a “solder alloy” composed of Sn, Sb, Ag, Ni + Cu

【図4】Sn-Sb 「はんだ合金」の相平衡を示す状態図Fig. 4 Phase diagram showing phase equilibrium of Sn-Sb "solder alloy"

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】スズを主成分とし、アンチモンを2.5な
いし3.5重量%、銀を1.0ないし3.5重量%、銅
を1.0重量%以下の量含む「はんだ合金」。
1. A "solder alloy" containing tin as a main component, containing 2.5 to 3.5% by weight of antimony, 1.0 to 3.5% by weight of silver and 1.0% by weight or less of copper. .
【請求項2】スズを主成分とし、アンチモンを2.5な
いし3.5重量%、銀を1.0ないし3.5重量%、ニ
ッケルを1.0重量%以下の量含む「はんだ合金」。
2. A "solder alloy" containing tin as a main component, containing 2.5 to 3.5% by weight of antimony, 1.0 to 3.5% by weight of silver and 1.0% by weight or less of nickel. .
JP09782897A 1997-04-16 1997-04-16 Solder alloy Expired - Lifetime JP3353640B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP09782897A JP3353640B2 (en) 1997-04-16 1997-04-16 Solder alloy
US09/059,268 US6179935B1 (en) 1997-04-16 1998-04-14 Solder alloys
DE19816671A DE19816671C2 (en) 1997-04-16 1998-04-15 Use of alloys as lead-free solder alloys

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09782897A JP3353640B2 (en) 1997-04-16 1997-04-16 Solder alloy

Publications (2)

Publication Number Publication Date
JPH10286689A true JPH10286689A (en) 1998-10-27
JP3353640B2 JP3353640B2 (en) 2002-12-03

Family

ID=14202595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09782897A Expired - Lifetime JP3353640B2 (en) 1997-04-16 1997-04-16 Solder alloy

Country Status (1)

Country Link
JP (1) JP3353640B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001078931A1 (en) * 2000-04-17 2001-10-25 Fujitsu Limited Solder joining
US6440360B1 (en) * 1999-02-08 2002-08-27 Tokyo First Trading Company Pb-free soldering alloy
US6518518B1 (en) 1999-01-27 2003-02-11 Ngk Spark Plug Co., Ltd. Resin substrate
JP2006511041A (en) * 2002-12-18 2006-03-30 アゴスチネッリ・パオロ Electrical conductor
EP2312622A2 (en) 2009-10-15 2011-04-20 Mitsubishi Electric Corporation Power semiconductor element bonded to a substrate by a Sn-Sb-Cu solder and manufacturing method therefor
WO2011151894A1 (en) * 2010-06-01 2011-12-08 千住金属工業株式会社 No-clean lead-free solder paste
JP2012125783A (en) * 2010-12-14 2012-07-05 Nihon Superior Co Ltd Lead-free solder alloy
JP2016047555A (en) * 2015-09-10 2016-04-07 千住金属工業株式会社 Lead-free solder alloy and on-board electric circuit
JP2016179498A (en) * 2015-03-24 2016-10-13 株式会社タムラ製作所 Lead-free solder alloy, electronic circuit board, and electronic control device
JPWO2015125855A1 (en) * 2014-02-24 2017-03-30 株式会社弘輝 Lead-free solder alloy, solder material and joint structure
EP3127652A4 (en) * 2014-04-02 2017-08-30 Senju Metal Industry Co., Ltd Solder alloy for led, and led module
JP2017170465A (en) * 2016-03-22 2017-09-28 株式会社タムラ製作所 Lead-free solder alloy, electronic circuit board, and electronic control device
JP2018001179A (en) * 2016-06-28 2018-01-11 株式会社タムラ製作所 Lead-free solder alloy, electronic circuit board and electronic control device
JP2018171656A (en) * 2018-05-28 2018-11-08 千住金属工業株式会社 Lead-free solder alloy and on-vehicle electronic circuit
JP2019072770A (en) * 2018-12-05 2019-05-16 千住金属工業株式会社 Lead-free solder alloy and on-vehicle electronic circuit
US10456872B2 (en) 2017-09-08 2019-10-29 Tamura Corporation Lead-free solder alloy, electronic circuit substrate, and electronic device
JP2019195849A (en) * 2016-06-28 2019-11-14 株式会社タムラ製作所 Lead-free solder alloy, electronic circuit substrate, and electronic controller
US10926360B2 (en) 2016-03-22 2021-02-23 Tamura Corporation Lead-free solder alloy, solder joint, solder paste composition, electronic circuit board, and electronic device
US11850685B2 (en) 2017-03-17 2023-12-26 Fuji Electric Co., Ltd. Solder material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014181883A1 (en) 2013-05-10 2014-11-13 富士電機株式会社 Semiconductor device and method for manufacturing semiconductor device

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6518518B1 (en) 1999-01-27 2003-02-11 Ngk Spark Plug Co., Ltd. Resin substrate
US7291791B2 (en) 1999-01-27 2007-11-06 Ngk Spark Plug Co., Ltd. Resin substrate
US6440360B1 (en) * 1999-02-08 2002-08-27 Tokyo First Trading Company Pb-free soldering alloy
WO2001078931A1 (en) * 2000-04-17 2001-10-25 Fujitsu Limited Solder joining
JP4914009B2 (en) * 2002-12-18 2012-04-11 アゴスチネッリ・パオロ Electrical conductor
JP2006511041A (en) * 2002-12-18 2006-03-30 アゴスチネッリ・パオロ Electrical conductor
US8334598B2 (en) 2009-10-15 2012-12-18 Mitsubishi Electric Corporation Power semiconductor device and manufacturing method therefor
EP2750173A2 (en) 2009-10-15 2014-07-02 Mitsubishi Electric Corporation Power semiconductor element bonded to a substrate by a Sn-Sb-Cu solder and manufacturing method therefor
EP2312622A2 (en) 2009-10-15 2011-04-20 Mitsubishi Electric Corporation Power semiconductor element bonded to a substrate by a Sn-Sb-Cu solder and manufacturing method therefor
WO2011151894A1 (en) * 2010-06-01 2011-12-08 千住金属工業株式会社 No-clean lead-free solder paste
JP5553181B2 (en) * 2010-06-01 2014-07-16 千住金属工業株式会社 No-clean lead-free solder paste
KR101436714B1 (en) * 2010-06-01 2014-09-01 센주긴조쿠고교 가부시키가이샤 No-clean lead-free solder paste
US9770786B2 (en) 2010-06-01 2017-09-26 Senju Metal Industry Co., Ltd. Lead-free solder paste
JP2012125783A (en) * 2010-12-14 2012-07-05 Nihon Superior Co Ltd Lead-free solder alloy
JPWO2015125855A1 (en) * 2014-02-24 2017-03-30 株式会社弘輝 Lead-free solder alloy, solder material and joint structure
EP3278920A1 (en) * 2014-04-02 2018-02-07 Senju Metal Industry Co., Ltd. Solder alloy for led
EP3127652A4 (en) * 2014-04-02 2017-08-30 Senju Metal Industry Co., Ltd Solder alloy for led, and led module
US10265807B2 (en) 2014-04-02 2019-04-23 Senju Metal Industry Co., Ltd. Solder alloy and module
US10272527B2 (en) 2014-04-02 2019-04-30 Senju Metal Industry Co., Ltd. Solder alloy, and LED module
JP2016179498A (en) * 2015-03-24 2016-10-13 株式会社タムラ製作所 Lead-free solder alloy, electronic circuit board, and electronic control device
JP2017209732A (en) * 2015-03-24 2017-11-30 株式会社タムラ製作所 Lead-free solder alloy, electronic circuit board, and electronic control device
JP2016047555A (en) * 2015-09-10 2016-04-07 千住金属工業株式会社 Lead-free solder alloy and on-board electric circuit
US10926360B2 (en) 2016-03-22 2021-02-23 Tamura Corporation Lead-free solder alloy, solder joint, solder paste composition, electronic circuit board, and electronic device
JP2017170465A (en) * 2016-03-22 2017-09-28 株式会社タムラ製作所 Lead-free solder alloy, electronic circuit board, and electronic control device
JP2018001179A (en) * 2016-06-28 2018-01-11 株式会社タムラ製作所 Lead-free solder alloy, electronic circuit board and electronic control device
JP2019195849A (en) * 2016-06-28 2019-11-14 株式会社タムラ製作所 Lead-free solder alloy, electronic circuit substrate, and electronic controller
US11850685B2 (en) 2017-03-17 2023-12-26 Fuji Electric Co., Ltd. Solder material
US10456872B2 (en) 2017-09-08 2019-10-29 Tamura Corporation Lead-free solder alloy, electronic circuit substrate, and electronic device
JP2018171656A (en) * 2018-05-28 2018-11-08 千住金属工業株式会社 Lead-free solder alloy and on-vehicle electronic circuit
JP2019072770A (en) * 2018-12-05 2019-05-16 千住金属工業株式会社 Lead-free solder alloy and on-vehicle electronic circuit

Also Published As

Publication number Publication date
JP3353640B2 (en) 2002-12-03

Similar Documents

Publication Publication Date Title
JP3353640B2 (en) Solder alloy
JP3296289B2 (en) Solder alloy
JP6767506B2 (en) Highly reliable lead-free solder alloy
JP5585746B2 (en) High temperature lead-free solder alloy
US6365097B1 (en) Solder alloy
US6179935B1 (en) Solder alloys
US6156132A (en) Solder alloys
JP2019520985A6 (en) Highly reliable lead-free solder alloy
JP4453612B2 (en) Lead-free solder alloy
JP3353662B2 (en) Solder alloy
JPH0970687A (en) Leadless solder alloy
WO2015083661A1 (en) Solder material and joining structure
TWI469845B (en) High temperature lead free solder alloy
JPH09155587A (en) Tin-zinc based leadless solder
JPH10193169A (en) Lead-free solder alloy
JP3878305B2 (en) Zn alloy for high temperature soldering
JP3945915B2 (en) Zn alloy for solder
JP3673021B2 (en) Lead-free solder for electronic component mounting
JPH11172353A (en) Zn alloy for high temperature soldering
JP3386009B2 (en) Solder alloy
CA2540486A1 (en) Pb-free solder alloy compositions comprising essentially tin (sn), silver (ag), copper (cu), nickel (ni), phosphorus (p) and/or rare earth: cerium (ce) or lanthanum (la)
JP7025208B2 (en) Solder alloy
JP2008221330A (en) Solder alloy
JP5051633B2 (en) Solder alloy
JP4890221B2 (en) Die bond material

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070927

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080927

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080927

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090927

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090927

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100927

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110927

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110927

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120927

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120927

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130927

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term