JPH10286632A - 中空形材の曲げ加工の座屈限界及びしわ形状予測方法 - Google Patents

中空形材の曲げ加工の座屈限界及びしわ形状予測方法

Info

Publication number
JPH10286632A
JPH10286632A JP11030397A JP11030397A JPH10286632A JP H10286632 A JPH10286632 A JP H10286632A JP 11030397 A JP11030397 A JP 11030397A JP 11030397 A JP11030397 A JP 11030397A JP H10286632 A JPH10286632 A JP H10286632A
Authority
JP
Japan
Prior art keywords
bending
wall
wrinkle
buckling
buckling limit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11030397A
Other languages
English (en)
Other versions
JP3783746B2 (ja
Inventor
Masatoshi Yoshida
正敏 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP11030397A priority Critical patent/JP3783746B2/ja
Publication of JPH10286632A publication Critical patent/JPH10286632A/ja
Application granted granted Critical
Publication of JP3783746B2 publication Critical patent/JP3783746B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Bending Of Plates, Rods, And Pipes (AREA)

Abstract

(57)【要約】 【課題】 中空形材の曲げ加工において、曲げ内側壁の
座屈限界としわ形状(しわ深さ、しわの波長)を理論的
に予測する。 【解決手段】 曲げ中立軸に対して平行となる曲げ内側
壁をもつ口型断面の中空形材において、曲げ内側壁を一
枚の板であると仮定して、該曲げ内側壁の座屈限界応力
を求め、該座屈限界応力に基づき形材の座屈限界曲げ半
径を求め、該座屈限界曲げ半径より小なる曲げ半径で
は、曲げによる形材長手方向に平行となる曲げ内側壁中
心線上では面内歪みは増加せず、変形は全てしわにより
吸収されると仮定して、曲げ内側壁に発生するしわ形状
を求める。しわ形状は、形材長手方向及び幅方向に正弦
波の関数であると仮定する。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、アルミニウム合金
等からなる中空の角筒状の部材の曲げ加工に際しての座
屈限界及びしわ形状の予測方法に関し、特に曲げ加工を
多用する自動車用のバンパー部材や骨格構造部材の形材
断面設計及び曲げ加工方法決定に関連するものである。
【0002】
【従来の技術】自動車等の輸送機材の構造用部材として
アルミ形材を適用する場合、自動車の骨格形状に合わせ
て曲げ加工が施される場合が多く、例えばプレスベンダ
ー、ドローベンダー等が用いられる(図18参照)。こ
のような曲げ加工において、特に曲げ半径が小さく、ま
た、断面の肉厚が薄い場合に、加工条件によっては、圧
縮応力の加わる曲げ内側壁や突出フランジ等において座
屈によるしわ等の形状不良、また引張応力の加わる曲げ
外側壁には破断が生じ、そのため製品形状が制限されて
しまうという問題がある。特に、しわ発生部位が他部材
との接合部位となる場合は、その接合が困難となるおそ
れがある。かかる曲げによるしわ発生を防止するため
に、例えば、肉厚を厚くするとか、また曲げ加工の際に
心金を使用する等の方法がとられている。しかし前者で
は可及的な軽量化が求められる自動車構造部材等の要求
に反している。
【0003】
【発明が解決しようとする課題】ところで、このような
曲げ加工における不具合に対して、力学的見地から曲げ
内側壁における座屈限界(しわ発生)及びしわ形状を理
論的に予測した例は見あたらない。本発明者は、曲げ加
工に際し、かかる座屈限界としわ形状が加工前に予測で
きれば、熟練作業者によらずとも適切な曲げ加工条件の
設定、評価、また、ひいてはしわの発生予測から形材断
面設計を容易ならしめる一助になることを想起し、本発
明をなし得たものである。
【0004】
【課題を解決するための手段】すなわち、本発明は、曲
げ中立軸に対して平行となる曲げ内側壁をもつ中空形材
において、該曲げ内側壁を一枚の板であると仮定して、
該曲げ内側壁の座屈限界応力を求め、該座屈限界応力に
基づき曲げ加工における座屈曲げ半径を予測する中空形
材の曲げ加工の座屈限界予測方法(請求項1)である。
【0005】さらに、本発明は、曲げ中立軸に対して平
行となる曲げ内側壁をもつ中空形材において、該曲げ内
側壁を一枚の板であると仮定して、該曲げ内側壁の座屈
限界応力を求め、該座屈限界応力に基づき形材の座屈曲
げ半径を求め、該座屈曲げ半径より小なる曲げ半径で
は、曲げ中立軸に対して平行となる曲げ内側壁中心線上
では面内歪みは増加せず、変形は全てしわにより吸収さ
れると仮定して、曲げ内側壁に発生するしわ形状を求め
る中空形材の曲げ加工の座屈限界及びしわ形状予測方法
(請求項2)である。
【0006】上記座屈限界及びしわ形状予測方法は、前
記しわ形状を正弦波の関数とし(請求項3)、あるい
は、前記しわ形状を、曲げ内側壁を支持する壁の幅厚比
(t’肉厚/b’形材長手方向に対して直角方向の板
幅)が曲げ内側壁の幅厚比(t/b)の1.2倍以上で
あれば形材長手方向に正弦波、幅方向に1波長の正弦
波、1.2倍未満であれば形材長手方向に正弦波、幅方
向に半波長の正弦波の関数として表現する(請求項4)
場合を含む。
【0007】さらに具体的にいえば、上記座屈限界及び
しわ形状予測方法は、以下のステップからなる方法を含
む。第1ステップとして、形材の断面形状を規定するパ
ラメータ及び材料特性で決まるパラメータに基づいて、
座屈限界応力σcr及び座屈開始時のしわの波長λを算出
し、第2ステップとして、該σcrに基づき座屈限界曲げ
半径Rcrを算出し、第3ステップとして、曲げ半径Rが
座屈限界曲げ半径Rcr以下の場合は、座屈限界歪み量ε
crを算出し、第4ステップとして、曲げ中立軸に対して
平行となる曲げ内側壁中心線上では面内歪みは増加せ
ず、変形は全てしわにより吸収されると仮定して、Be
rnoulliの仮定による歪みの釣り合い式と、曲げ
中立軸から内側に発生する圧縮力と外側に発生する引張
力の総計は零となる応力の釣り合い式が成立するよう
に、曲げ外側壁に発生する歪み量εtを求め、第5ステ
ップとして、前記εcr、前記εt、前記座屈開始時のし
わ波長λ及び断面形状を規定する前記パラメータに基づ
いてしわ波長λ’を算出し、第6ステップとして、前記
εcr、前記εt及び断面形状を規定する前記パラメータ
に加えて、該λ’に基づいてしわ深さδを算出すること
(請求項5)。
【0008】
【発明の実施の形態】本発明によれば、中空形材の断面
形状、材料特性の影響を考慮して、座屈限界(しわの発
生)及びしわ形状を予測することが可能になる。以下、
本発明の予測方法につき、理論及び算出アルゴリズムを
説明する。
【0009】解析対象として、肉厚がウエブ部とフラン
ジ部で等しい中空矩形□型形材の断面形状(図1;断面
全体は日型であるが、解析対象は口型部分)で説明す
る。ここで、bはウエブにより支持される曲げ内側壁の
幅(内寸)、Hはウエブの幅(外寸)、tは板厚、Rは
曲げ中心半径である。形材は、常に曲げ型との接触点
で、型に沿うまでの加工を受けるとし、理論式の導出を
行なった。
【0010】(解析上の仮定)まず、理論モデル構築に
際して、解析上次の仮定を置いた。 曲げ加工時の歪み分布は、平面が曲げ加工後も平面で
残るというBernoulliの仮定が成立する。 曲げ内側壁の変形は、座屈開始までは、全て面内ひず
みで吸収される。 曲げ内側壁の幅方向中心線上では、座屈開始後、面内
歪みは増加せず、変形は全てしわにより吸収される。 ウエブ部では、座屈は生じない。 変形に際し、肉厚の変化は無視できる。 材料の公称応力−公称歪曲線は次式(1)で表され
る。
【数1】
【0011】曲げ内側壁は塑性座屈し、その座屈波形
は、ウエブ部の剛性に応じて以下の2通りを考える。そ
れぞれの座屈波形の模式図を図2(a)、2(b)に示
す。・ウエブ部が低剛性の場合は、図2(a)に示すよ
うにウエブとの交差部を支持端と考え、座屈波形wを次
式(2)で仮定する。
【数2】 ・ウエブが高剛性の場合は、図2(b)に示すようにウ
エブとの交差部を固定端と考え、座屈波形wを次式
(3)で仮定する。
【数3】 ここで、δはしわの深さ、λ’はしわの波長(コード
長)である。
【0012】(座屈限界応力σcrと座屈開始時のしわの
波長λの導出)以上の〜の仮定を前提として、座屈
限界応力σcrと座屈開始時のしわの波長λ(アーク長)
を導出する。まず、曲げ内側壁を一枚の矩形板と仮定
し、それぞれの座屈形態における座屈限界応力σcr及び
座屈開始時のしわの波長λの導出を行った。なお、しわ
の波長(コード長)λ’は、変形に伴って変化するが、
仮定より、曲げ内側壁中央のしわの線長に相当する座
屈開始時のしわの波長λは不変である。また、座屈開始
時はλ=λ’となる。導出のための初期入力データは、
解析対象たる中空□型形材の断面形状を規定するパラメ
ータとして、b:ウエブにより支持される曲げ内側壁の
幅(内寸)、H:ウエブの幅(外寸)、t:板厚であ
り、材料特性で決まるパラメータとして、材料の耐力σ
0.2、K値及びn値である。
【0013】本発明では、曲げ内側壁の座屈を塑性座屈
として取り扱う必要がある。そのために、塑性状態を直
交異方性体に置換して解析する
【外1】 の理論を用いる。それによれば、歪みエネルギーの釣り
合いから次式(4)が成立する。
【数4】
【0014】ここで、形材長手方向(X方向)の応力が
高応力であることに着目し、Bleichによる異方性
を考慮した剛性を用いると、Dx、Dy、Dxy、Dyx、G
tは以下の式(5)で定義される。
【数5】 なお、ここで、Eは弾性率、νはポアソン比、Etは以
下の式(6)に示す接線係数である。
【数6】
【0015】式(4)において、エネルギーが最小とな
る条件より、座屈限界応力σcr、座屈開始時のしわの波
長λは、次式(7)、(8)のようになる。 ・ウエブ部が低剛性の場合(座屈形態:図2(a))
【数7】 ・ウエブ部が高剛性の場合(座屈形態:図2(b))
【数8】
【0016】座屈限界歪み量εcrは、応力−歪み曲線の
仮定から、式(7)或いは(8)と式(1)の双方を満
足する解として得られる。
【0017】(座屈限界曲げ半径Rcrの導出)座屈限界
曲げ半径Rcrを座屈限界応力σcrから導出する。中空矩
形□型断面形材において、Hをウエブの幅(外寸)とし
た場合、下記式(9)のようになる。
【数9】
【0018】(曲げ外側壁歪み量εtの導出)応力及び
歪みの釣り合いから、曲げ外側壁歪み量εt及びしわ深
さδを求める。仮定、から曲げ加工時の歪み分布
は、図3のようになる。ここで、Uは中立軸移動量、ε
wはしわによる歪み相当量である。なお、Uは重心から
曲げ外側壁への移動を正としている。曲げ外側壁で発生
する歪み量εtは次式(10)で表される。
【数10】
【0019】また、しわによる歪み相当量εwは、座屈
波形wを用いて次式(11)のように表される。
【数11】 仮定より、εcは、曲げ内側壁幅方向中心線上のεw
εcrの和であり、次式(12)のようにおける。
【数12】 式(2)或いは(3)を式(11)に代入すると、曲げ
内側壁中央でのεwは以下の式(13)のようになる。
【数13】
【0020】断面力を0とすると、応力の釣り合い式よ
り次式(14)となる。
【数14】 曲げ外側壁歪み量εtは式(10)〜(13)を用いて
式(14)をニュートン・ラフソン法等の計算手法で計
算可能である。
【0021】(しわの波長λ’及びしわ深さδの導出)
しわの波長λ’は、座屈開始時のしわの波長λを用いて
次式(15)のように表される。
【数15】 式(10)、(12)、(15)を用いると、しわの波
長λ’、座屈開始時のしわの深さδはそれぞれ次式(1
6)、(17)のようになる。
【数16】
【数17】
【0022】なお、上記したのは、ウエブ部とフランジ
部の肉厚が一定の□型矩形断面形状を対象としたもので
あったが、本理論は、ウエブ部とフランジ部の肉厚が相
違する場合にも適用可能である。いずれの場合も、ウエ
ブ部の剛性による座屈限界応力σcr及び座屈開始時のし
わの波長のλの算出式(7)と(8)の使い分けは、図
4に示すようにウエブ部の板厚:t’、幅(内寸):
b’とし、フランジ部の板厚:t、幅(内寸)bとした
とき、ウエブ部の幅厚比(t’/b’)と曲げ内側壁の
幅厚比(t/b)を比較して行えばよいが、t’/b’
<1.2t/bのとき(7)式、t’/b’≧1.2t
/bのとき(8)式とする。その理由は後述する。
【0023】さらに、本理論は、曲げ中立軸に対して平
行となる曲げ内側壁を持つ中空形材であれば、例えば図
5に示すような種々の断面形状の中空形材にも適用可能
である。図5において斜線部が曲げ内側壁であり、その
両側の支持部材の厚みをt’、幅をb’とし、両側の支
持部材の厚みや幅が異なる(t1’、b1’、t2’、
2’)ときは、ウエブ部の幅厚比(t’/b’)=
(t1’+t2’)/(b1’+b2’)とおくとよい。そ
して、この場合、ウエブ幅Hの代わりに、曲げの中立軸
から曲げ内壁外面までの距離H1、曲げ外壁面までの距
離H2(図4参照)を用いることで、下記(9)−2式
のようにRcrは求まる。
【数18】 さらに、δ、εt、λ’を求めるためには、式(1
0)、式(14)の代わりにそれぞれ次の式(10)−
2、(14)−2を用いる。
【数19】
【数20】 ここで、σiは任意の位置での応力、tiは任意の位置で
の板厚であり、座標系は図3に従うものとする。
【0024】次に、算出式(7)と(8)の使い分けを
簡単に説明する。まず、弾性域での座屈では、板の座屈
応力σcrは以下の式(18)、(19)のようにおけ
る。
【数21】 この座屈係数kは、板端部の拘束状態、応力状態で様々
に変化する。座屈係数kはTimoshenkoらによ
って明らかにされており、4辺単純支持、純圧縮条件
(ウエブが低剛性のときに対応)での座屈係数kは4と
なり、2辺固定、2辺単純支持、純圧縮条件(ウエブが
高剛性のときに対応)での座屈係数kは8となる。
【0025】一方、曲げ内側壁の幅厚比をt/b、ウエ
ブの幅厚比をt’/b’として、α=(t’/b’)/
(t/b)をパラメーターとして弾性域での座屈係数k
を求めると、図6のようになる。なお、図6は、解析モ
デルの形状を図7に示すものとし、汎用の静的陰解法ソ
フトABAQUSを用いた固有値解析により求めたもの
である。図6から、α=1.2を境界として、α≧1.
2のとき座屈係数kは8により近く、α<1.2のとき
4により近いことが分かる。ここで、板端部の拘束状
態、応力状態と座屈係数kの関係は、弾性域、塑性域を
問わず変化しないと考えられる。つまり、上記の結果は
塑性域にも適用されると考えられるから、本発明におい
て、α≧1.2のとき高剛性の式(8)を使用し、α<
1.2のとき低剛性の式(7)を使用するとよい。これ
は後述する実施例の結果とも一致する。
【0026】以上の算出理論をフローチャートで示す
と、図8及び図9のようになる。
【0027】
【実施例】上述の理論式の算出結果と、実際にドローベ
ンダーによる曲げ加工試験結果とを比較した。曲げ加工
試験及び算出には、ウエブ部とフランジ部で板厚一定の
中空矩形断面形状を有する日型断面のアルミ合金形材を
使用した。具体的には、以下に示す。
【0028】(曲げ加工試験)曲げ加工試験は、表1に
示す実験条件で、一般的なアルミ押出用合金である6N
01−T1合金を用い、30゜まで曲げ加工を行った。
供試材は、日型断面形材であり、100mm長の面が曲
げ外側壁(引張側)及び曲げ内側壁となるように、曲げ
中心半径180mm及び280mmの2パターンの試験
を行った。ここで、曲げ外側壁の歪み量は、予め曲げ外
側壁に添付した5mmピッチのスクライブドスクエアを
用いて測定した。この試験結果を表2に示す。なお、心
金は用いていない。
【表1】
【表2】
【0029】(計算)一方、計算の方は、図8及び図9
に示したフローチャートに基づいてプログラミングし、
表1に示す材料の引張特性及び断面形状に基づくデータ
と、式(1)で使用するσ0.2、K値、n値を入力し
て、曲げ外側歪み量εt、しわ深さδ及び波長λ’を算
出した。ここで、式(1)で使用する係数K、nについ
ては、しわの深さには、座屈変形後の応力−歪み関係が
大きく影響すると考えられるので、高歪み領域までの公
称応力−公称歪み関係が、平均的に一致するように決定
した。その結果、σ0.2=128.38MPa、K=1
66.6、n=0.26とした。供試材(6N01−T
1)の公称応力−公称歪み曲線(実験曲線)と計算に用
いる応力−歪み曲線を図10に示す。
【0030】(計算結果と実験結果の比較)座屈限界曲
げ半径Rcr以下の曲げ半径の領域である曲げ中心半径R
が100〜300mmの範囲で、しわの波長λ’と曲げ
中心半径Rとの関係を算出し、これを実測値と比較し
た。図11は、しわの波長λ’を曲げ内側壁の幅bで無
次元化した無次元しわ波長λ’/bと曲げ中心半径Rの
関係を、幅厚比(t/b)を0.025、0.050、
0.075、0.100とした4パターンにつき算出し
たものである。なお、算出にあたっては、本断面では
t’/b’<1.2t/bであり、この計算ではウエブ
を低剛性と仮定して行った。図11をみると、表1の供
試材(t/b=0.052)に近いt/b=0.050
の場合の計算結果と実測値は略一致している。
【0031】さらに、上記と同じ4パターンの幅厚比
(t/b)につき、εt及びδと曲げ中心半径Rとの関
係を算出し、これを実測値と比較した。なお、この計算
でもウエブを低剛性と仮定した。結果を図12及び図1
3に示す。ここで、曲げ中心半径Rは、ウエブの曲げ内
側壁から曲げ中立軸までの距離H/2(外寸)で除して
無次元化している。この2R/Hを無次元曲げ半径と呼
ぶ。
【0032】図12は、曲げ外側壁の歪み量εtと無次
元曲げ半径2R/Hとの関係を示すものである。ε
tは、t/bにほぼ影響を受けず、t/bに無関係にほ
ぼ一本の曲線にまとめられ、実測値とも良好に一致す
る。(なお、曲げ中立軸がウエブ幅の中心にない場合で
も、一般に、εtとH2/R(H2:図4参照)の関係を
とれば、t/bに無関係にほぼ一本の曲線にまとめられ
る。) 図12をみれば、実用的な範囲で、曲げ外側壁の歪み量
εtを2R/H(あるいはH2/R)で決定しても問題が
ないといえる。
【0033】図13は、しわの深さδを曲げ加工内側壁
の幅bで除したδ/b(無次元しわ深さという)と無次
元曲げ半径2R/Hの関係を示す。実験値としては、表
2に示す供試材の実測値に加えて、6N01−T1の供
試材と耐力、加工硬化特性が類似していると考えられる
アルミ合金6061−O材の正方形□型断面形材(外寸
40mm×40mm、肉厚一定)に関する公知のしわ深
さデータA及びBも図13に併記した。ここで、データ
Aは、第44回塑性加工春期講演論文集(1993)、
P.475のうち、板厚比(t/b)が0.040、
0.056、0.088、曲げ中心半径R=150の値
を用い、データBは、同論文集、P.481のうち、t
/bが0.088、R=170、220、270、32
0のデータから、引張曲げであるため張力が最も小さい
場合(19.6MPa)の値を用いた。
【0034】図13をみると、t/bを0.050とし
た計算値と、t/bがこれに近い実測値(図中○、△、
□)は、比較的よく一致している。また、t/bを0.
075とした計算値と、t/bがこれに近い実測値(図
中の×、+)は、比較的よく一致している。従って、こ
の図13は、アルミ軟質合金の矩形断面一般でしわ深さ
δの予測図として十分に使用可能であり、しわ深さの簡
易予測図として利用できる。また、図13で示した曲げ
加工時のしわ深さδを調査した実験結果は、曲げ中立軸
がウエブ中心上となる断面形状をした中空形材を曲げ加
工した際に得られるものであるため、横軸を2R/Hで
整理しているが、前記一般式(10)−2、(14)−
2を用いて計算し、2R/Hの代わりに曲げ中心軸から
曲げ内側壁までの距離H1を用いてR/H1とすること
で、図5に示すような形材のしわ深さδの予測図として
利用可能となる。
【0035】また、曲げ外側壁の歪量εtについても、
同様に前記一般式(10)−2を用いて計算し、図12
の2R/Hの代わりに曲げ中心軸から曲げ外側壁までの
距離H2を用いてR/H2とすることで、図5に示すよう
な形材の曲げ外側壁の歪量εtの予測図として利用可能
となる。
【0036】以上の計算及び試験とも心金は使用してい
ないが、心金の使用を想定した座屈限界曲げ半径Rcr
びしわ形状(深さδ、波長λ’)の予測も可能である。
例えば、図14に、ドローベンダーで周知のナイフ型の
心金を使用して曲げ加工試験を行ったときの実測値と、
心金を使用しないで曲げ加工試験を行ったときの実測値
を、無次元しわ深さδ/bと無次元曲げ半径R/H1
関係として示す。なお、試験に用いた供試材は図15
(d)〜(f)及び図16(j)に示す断面形状をもつ
6N01−T1アルミ押出形材である。
【0037】図14をみると、心金を使用した場合に発
生するしわの深さδは、心金を使用しない場合の約15
〜20%となっている。前記のとおり、心金を使用しな
い場合のしわ深さの計算値は実測値に比較的よく一致す
るのであるから、心金を使用した場合のしわ深さの予測
値については、心金を使用しないことを前提とした計算
値の約15〜20%になると予測できる。
【0038】また、図17には、心金を使用した場合と
使用しない場合の曲げ外側壁の歪量εt(最大値)の実
測値とR/H2の関係を示す。なお、試験に用いた供試
材は図15及び図16に示す断面形状をもつ6N01−
T1アルミ押出形材である。図17をみると、心金を使
用した場合に曲げ外壁側に発生する歪量εtは、心金を
使用しない場合の約1.2〜1.5倍となっている。前
記のとおり、心金を使用しない場合の歪量εtの計算値
は実測値によく一致するのであるから、心金を使用した
場合の曲げ外壁側歪量εtの予測値については、心金を
使用しないことを前提とした計算値の約1.2〜1.5
倍になると予測できる。
【0039】
【発明の効果】本発明によれば、曲げ中立軸に対して平
行となる曲げ内側壁をもつ中空形材の曲げ加工に際し、
曲げ内側壁における座屈限界としわ形状を曲げ加工前に
予測することができ、適切な曲げ加工条件の設定、評
価、また、しわの発生予測から形材断面設計を有利に進
めることができる等の効果がある。
【図面の簡単な説明】
【図1】 解析対象の形材の形状を説明する図である。
【図2】 しわの波形を模式的に示すもので、(a)は
低剛性ウエブ、(b)は高剛性ウエブの場合である。
【図3】 曲げ加工時における曲げ内側壁、ウエブ及び
曲げ外側壁のひずみ分布を示す図である。
【図4】 解析対象の形材の形状(フランジとウエブの
肉厚が同一でない場合)を説明する図である。
【図5】 本発明方法を適用可能な形材の断面形状の例
である。(斜線部が曲げ内側壁の座屈部位。)
【図6】 座屈係数kと幅厚比(α)の関係を解析した
結果を示す図である。
【図7】 その解析に用いたモデルの形状を示す図であ
る。
【図8】 本発明方法のフローチャートである。
【図9】 本発明方法のフローチャート(続き)であ
る。
【図10】 実験に用いた供試材の公称応力−公称歪み
曲線と計算に用いた応力−歪み曲線を示す図である。
【図11】 曲げ半径Rと無次元化したしわの波長
(λ’/b)の関係(計算結果と実測値)を示す図であ
る。
【図12】 無次元曲げ半径(2R/H)と曲げ外側壁
の歪み量εtの関係(計算結果と実測値)を示す図であ
る。
【図13】 無次元曲げ半径(2R/H)と無次元しわ
深さ(δ/b)の関係(計算結果と実測値)を示す図で
ある。
【図14】 心金を使用した場合としなかった場合の曲
げ加工において、無次元曲げ半径(R/H1)と無次元
しわ深さ(δ/b)の関係(実測値)を示す図である。
【図15】 曲げ加工に使用した形材の断面形状である
(いずれも左辺が曲げ内側壁)。
【図16】 曲げ加工に使用した形材の断面形状である
(同上)。
【図17】 心金を使用した場合としなかった場合の曲
げ加工において、R/H2と曲げ外側壁の歪み量εtの関
係(実測値)を示す図である。
【図18】 代表的な曲げ加工方法を示す図である。
【符号の説明】
b ウエブにより支持される曲げ内側壁の幅(内寸) t その板厚 H ウエブの幅(外寸) R 曲げ中心半径 εt 曲げ外側壁歪み量 λ’しわ波長 δ しわ深さ 2R/H 無次元曲げ半径 δ/b 無次元しわ深さ

Claims (6)

    【特許請求の範囲】
  1. 【請求項1】 曲げ中立軸に対して平行となる曲げ内側
    壁をもつ中空形材において、該曲げ内側壁を一枚の板で
    あると仮定して、該曲げ内側壁の座屈限界応力を求め、
    該座屈限界応力に基づき曲げ加工における座屈限界曲げ
    半径を予測する中空形材の曲げ加工の座屈限界予測方法
  2. 【請求項2】 曲げ中立軸に対して平行となる曲げ内側
    壁をもつ中空形材において、該曲げ内側壁を一枚の板で
    あると仮定して、該曲げ内側壁の座屈限界応力を求め、
    該座屈限界応力に基づき形材の座屈限界曲げ半径を求
    め、該座屈限界曲げ半径より小なる曲げ半径では、曲げ
    中立軸に対して平行となる曲げ内側壁中心線上では面内
    歪みは増加せず、変形は全てしわにより吸収されると仮
    定して、曲げ内側壁に発生するしわ形状を求める中空形
    材の曲げ加工の座屈限界及びしわ形状予測方法。
  3. 【請求項3】 前記しわ形状を正弦波の関数とした請求
    項2に記載の中空形材の曲げ加工の座屈限界及びしわ形
    状予測方法。
  4. 【請求項4】 前記しわ形状を、曲げ内側壁を支持する
    壁の幅厚比(肉厚t’/形材長手方向に対して直角方向
    の板幅b’)が曲げ内側壁の幅厚比(t/b)の1.2
    倍以上であれば形材長手方向に正弦波、幅方向に1波長
    の正弦波、1.2倍未満であれば形材長手方向に正弦
    波、幅方向に半波長の正弦波の関数として表現した請求
    項2又は3に記載の中空形材の曲げ加工の座屈限界及び
    しわ形状予測法。
  5. 【請求項5】 第1ステップとして、形材の断面形状を
    規定するパラメータ及び材料特性で決まるパラメータに
    基づいて、座屈限界応力σcr及び座屈開始時のしわの波
    長λを算出し、第2ステップとして、該σcrに基づき座
    屈限界曲げ半径Rcrを算出し、第3ステップとして、曲
    げ半径Rが座屈限界曲げ半径Rcr以下の場合は、座屈限
    界歪み量εcrを算出し、第4ステップとして、曲げ中立
    軸に対して平行となる曲げ内側壁中心線上では面内歪み
    は増加せず、変形は全てしわにより吸収されると仮定し
    て、Bernoulliの仮定による歪みの釣り合い式
    と、曲げ中立軸から内側に発生する圧縮力と外側に発生
    する引張力の総計は零となる応力の釣り合い式が成立す
    るように、曲げ外側壁に発生する歪み量εtを求め、第
    5ステップとして、前記εcr、前記εt、前記座屈開始
    時のしわ波長λ及び断面形状を規定する前記パラメータ
    に基づいてしわ波長λ’を算出し、第6ステップとし
    て、前記εcr、前記εt及び断面形状を規定する前記パ
    ラメータに加えて、該λ’に基づいてしわ深さδを算出
    する中空形材の曲げ加工の座屈限界及びしわ形状予測方
    法。
  6. 【請求項6】前記中空形材は、中空矩形断面を有する中
    空形材である請求項1〜5のいずれか1つに記載の中空
    形材の曲げ加工の座屈限界及びしわ形状予測方法。
JP11030397A 1997-04-11 1997-04-11 中空形材の曲げ加工の座屈限界及びしわ形状予測方法 Expired - Lifetime JP3783746B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11030397A JP3783746B2 (ja) 1997-04-11 1997-04-11 中空形材の曲げ加工の座屈限界及びしわ形状予測方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11030397A JP3783746B2 (ja) 1997-04-11 1997-04-11 中空形材の曲げ加工の座屈限界及びしわ形状予測方法

Publications (2)

Publication Number Publication Date
JPH10286632A true JPH10286632A (ja) 1998-10-27
JP3783746B2 JP3783746B2 (ja) 2006-06-07

Family

ID=14532289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11030397A Expired - Lifetime JP3783746B2 (ja) 1997-04-11 1997-04-11 中空形材の曲げ加工の座屈限界及びしわ形状予測方法

Country Status (1)

Country Link
JP (1) JP3783746B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016006707A1 (ja) * 2014-07-11 2016-01-14 倉敷紡績株式会社 曲げ加工品
JP2018169372A (ja) * 2017-03-30 2018-11-01 リンテック株式会社 算出システム、算出方法、巻取り方法、及び巻取りロール体
WO2020043824A1 (de) * 2018-08-29 2020-03-05 Greiner Extrusion Group Gmbh Extrusionsvorrichtung und extrusionsverfahren
CN113465476A (zh) * 2021-06-15 2021-10-01 太原理工大学 一种多层金属轧制复合板变形协调性的评价方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016006707A1 (ja) * 2014-07-11 2016-01-14 倉敷紡績株式会社 曲げ加工品
JPWO2016006707A1 (ja) * 2014-07-11 2017-04-27 倉敷紡績株式会社 曲げ加工品
CN106660096A (zh) * 2014-07-11 2017-05-10 仓敷纺绩株式会社 弯曲加工品
US10309558B2 (en) 2014-07-11 2019-06-04 Kurashiki Boseki Kabushiki Kaisha Bent product
CN106660096B (zh) * 2014-07-11 2019-08-02 仓敷纺绩株式会社 弯曲加工品
JP2018169372A (ja) * 2017-03-30 2018-11-01 リンテック株式会社 算出システム、算出方法、巻取り方法、及び巻取りロール体
WO2020043824A1 (de) * 2018-08-29 2020-03-05 Greiner Extrusion Group Gmbh Extrusionsvorrichtung und extrusionsverfahren
CN112672870A (zh) * 2018-08-29 2021-04-16 格瑞纳挤出集团股份有限公司 挤出设备和挤出方法
CN113465476A (zh) * 2021-06-15 2021-10-01 太原理工大学 一种多层金属轧制复合板变形协调性的评价方法
CN113465476B (zh) * 2021-06-15 2022-09-06 太原理工大学 一种多层金属轧制复合板变形协调性的评价方法

Also Published As

Publication number Publication date
JP3783746B2 (ja) 2006-06-07

Similar Documents

Publication Publication Date Title
Li et al. Simulation of springback
JP5445381B2 (ja) 材料の曲げ破断予測方法および装置、ならびにプログラムおよび記録媒体
EP1985989B1 (en) Fracture prediction method
JP6229718B2 (ja) 金属板の曲げ破断判定方法、プログラム及び記憶媒体
KR102645598B1 (ko) 재료의 굽힘 응답을 특성화하기 위한 방법 및 컴퓨터 프로그램 제품
Daxin et al. Springback and time-dependent springback of 1Cr18Ni9Ti stainless steel tubes under bending
JP6558515B2 (ja) 金属板のせん断加工面での変形限界の評価方法、割れ予測方法およびプレス金型の設計方法
EP3275565B1 (en) Blank shape determining method, press molding method, computer program, and recording medium
Komori Simulation of chevron crack formation and evolution in drawing
Cha et al. Quantification of micro-cracks on the bending surface of roll formed products using the GTN model
Souto et al. Determination of manufacturing residual stresses in cold-formed thin-walled steel profiles
JPH10286632A (ja) 中空形材の曲げ加工の座屈限界及びしわ形状予測方法
Forcellese et al. Computer aided engineering of the sheet bending process
Ozsoy et al. Springback predictions of a dual-phase steel considering elasticity evolution in stamping process
Lin et al. A computational design-of-experiments study of hemming processes for automotive aluminium alloys
JP6246074B2 (ja) 高張力鋼板の引張圧縮試験方法
Makinouchi et al. Finite element simulation of bending process of steel-plastic laminate sheets
Zhu et al. Modeling and closed-loop control of stretch bending of aluminum rectangular tubes
JP3773735B2 (ja) 中空形材の曲げ加工によるスプリングバック角度の予測方法、中空形材の曲げ加工方法、金型の設計方法および記録媒体
Liu et al. Shape error prediction and compensation of three-dimensional surface in flexibly-reconfigurable roll forming
Hamouda et al. Springback in V-bending: A finite element approach
JP3773736B2 (ja) アルミニウム合金形材の曲げ加工における座屈限界曲げ半径の予測方法、座屈限界幅厚比の予測方法、アルミニウム合金形材の曲げ加工方法および記録媒体
JP2920372B2 (ja) エイジフォーミング成形方法
Bardelcik et al. The effect of element formulation on the prediction of boost effects in numerical tube bending
JPH1128523A (ja) 中空形材の曲げ加工時の座屈限界曲げ半径予測方法及び中空形材の断面形状

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040223

A977 Report on retrieval

Effective date: 20060209

Free format text: JAPANESE INTERMEDIATE CODE: A971007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20060307

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20060307

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20100324

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20100324

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120324

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20130324