JPH10284817A - Circuit connecting structure - Google Patents

Circuit connecting structure

Info

Publication number
JPH10284817A
JPH10284817A JP8475197A JP8475197A JPH10284817A JP H10284817 A JPH10284817 A JP H10284817A JP 8475197 A JP8475197 A JP 8475197A JP 8475197 A JP8475197 A JP 8475197A JP H10284817 A JPH10284817 A JP H10284817A
Authority
JP
Japan
Prior art keywords
circuit
layer
connection
conductive particles
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8475197A
Other languages
Japanese (ja)
Other versions
JP3944794B2 (en
Inventor
Naoki Fukushima
直樹 福嶋
Isao Tsukagoshi
功 塚越
Koji Kobayashi
宏治 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP8475197A priority Critical patent/JP3944794B2/en
Publication of JPH10284817A publication Critical patent/JPH10284817A/en
Application granted granted Critical
Publication of JP3944794B2 publication Critical patent/JP3944794B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/36Assembling printed circuits with other printed circuits
    • H05K3/368Assembling printed circuits with other printed circuits parallel to each other
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4614Manufacturing multilayer circuits by laminating two or more circuit boards the electrical connections between the circuit boards being made during lamination

Abstract

PROBLEM TO BE SOLVED: To provide a multilayered structure having a migration resistance and a high current resistance by constituting a circuit on a hard substrate in such a connecting structure that the surface layer of a multilayered circuit consisting of a plurality of layers is harder than the next layer and at least conductive particles which are harder than those pushed in the next layer are partially pushed in a multilayered circuit layer on the hard substrate. SOLUTION: A circuit connecting structure is composed of a hard substrate 1 and a multilayered circuit of a surface-layer circuit 2 and a next-layer circuit 3, a wiring board 8 composed of a circuit 6 and a substrate 7, and a connecting member 9 composed of conductive particles and a bonding agent 5. The surface- layer circuit 2 is relatively harder than the send-layer circuit 3 and part of the conductive particles 4 are pushed in both the circuits 2 and 3 which are provided on the substrate 1. In the multilayered circuit, the end face of the next-layer circuit 3 is exposed, but the occurrence of migration can be prevented, because the surface of the circuit 3 is coated with the surface-layer circuit 2. The circuit formed on the substrate 1 can be formed in a high multilayered structure so that the resistance of the circuit may be reduced and the circuit may resist a large current and a high voltage.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、導電粒子と接着剤
から成る接続部材を用いた電気、電子回路基板等に用い
られる回路の接続構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a connection structure of a circuit used for an electric or electronic circuit board using a connection member made of conductive particles and an adhesive.

【0002】[0002]

【従来の技術】近年、電子部品の小型薄型化に伴い、こ
れらに用いる回路は高密度、高精細化している。このよ
うな電子部品の電極と微細回路の接続は、従来のはんだ
やゴムコネクタ等では対応が困難であることから、最近
では分解能に優れた異方導電性の接着剤や膜状物(以下
接続部材という)が多用されている。この接続部材は、
導電粒子等の導電材料を所定量含有した接着剤からなる
もので、この接続部材を電子部品と基板間あるいは電極
や回路間に設け、加熱または加熱加圧手段を構じる事に
よって、両者の電極同士が電気的に接続されると共に、
電極に隣接して形成されている電極同士には絶縁性を付
与して、電子部品と回路とが接着固定されるものであ
る。
2. Description of the Related Art In recent years, as electronic components have become smaller and thinner, circuits used for them have become higher in density and higher in definition. Since it is difficult to connect electrodes of such electronic components to microcircuits using conventional solder or rubber connectors, recently, anisotropic conductive adhesives or films (hereinafter referred to as “connections”) having excellent resolution are used. Members) are frequently used. This connection member
It is made of an adhesive containing a predetermined amount of conductive material such as conductive particles, and this connecting member is provided between an electronic component and a substrate or between an electrode or a circuit, and by heating or heating / pressing means, the two members are connected. The electrodes are electrically connected,
The electrodes formed adjacent to the electrodes are provided with insulating properties, and the electronic component and the circuit are bonded and fixed.

【0003】上記接続部材を高分解能化するための基本
的な考え方は、導電粒子の粒径を隣接電極間の間隙より
も小さくすることで隣接電極間における絶縁性を確保
し、併せて導電粒子の含有量をこの粒子同士が接触しな
い程度とし、かつ電極上に確実に存在させることによ
り、接続部分における導通性を得ることである。
[0003] The basic idea for increasing the resolution of the connection member is to make the particle size of the conductive particles smaller than the gap between the adjacent electrodes to ensure insulation between the adjacent electrodes, and at the same time, to make the conductive particles smaller. By ensuring that the particles do not come into contact with each other, and by ensuring that the particles are present on the electrodes, conductivity at the connection portion is obtained.

【0004】一方で近年、例えば、エレクトロルミネッ
センスやプラズマディスプレイ用途等において、電子、
電子回路基板に、高電流、高電圧を流すことが必要にな
ってきた。これまでは、このような電極や回路にはAg
及びAl電極が多用され、接続にはクリップによる圧接
およびはんだ接続が採用されてきた。
On the other hand, in recent years, for example, in electroluminescence and plasma display applications, electronic
It has become necessary to supply a high current and a high voltage to the electronic circuit board. Until now, such electrodes and circuits have used Ag
And an Al electrode are often used, and pressure connection by a clip and solder connection have been adopted for connection.

【0005】[0005]

【発明が解決しようとする課題】上記したような回路の
接続構造には幾つかの問題点がある。例えば、Al電極
や表面を酸化性金属で形成した場合、電極表面の酸化が
発生し易く、高電流、高電圧に耐える低抵抗接続が得ら
れない。また、電極の高さがない薄膜電極の場合には、
同様に低抵抗が得ることが出来ない。最近の電極等の高
密度高精細化に伴い、電極の微細化が要求されている
為、従来のクリップによる圧接方式及びはんだでは微細
化に対応できない。さらに、Ag回路電極は通電時にマ
イグレーションの発生があり、耐久性に問題があること
である。したがって、本発明は高電流、高電圧、微細化
及び耐マイグレーション性を満足する為の回路の接続構
造を確立することが課題である。
There are several problems with the above-described circuit connection structure. For example, when the Al electrode or the surface is formed of an oxidizing metal, the surface of the electrode is easily oxidized, and a low-resistance connection enduring a high current and a high voltage cannot be obtained. In the case of a thin-film electrode with no electrode height,
Similarly, a low resistance cannot be obtained. With the recent trend toward higher density and higher definition of electrodes and the like, miniaturization of the electrodes is required, and therefore, it is not possible to cope with the miniaturization by the conventional pressure welding method using a clip and soldering. Furthermore, the Ag circuit electrode has migration when energized, and has a problem in durability. Accordingly, an object of the present invention is to establish a circuit connection structure for satisfying high current, high voltage, miniaturization, and migration resistance.

【0006】[0006]

【課題を解決するための手段】本発明は、硬質基板と配
線基板上に設けられた対峙する回路を導電粒子と接着剤
から成る接続部材で接続してなる回路の接続構造におい
て、前記硬質基板上の回路が2層以上で構成された多層
回路であり、これら多層回路は表層が次層に比べ相対的
に硬質であり、導電粒子が次層より硬質であり、硬質基
板上の多層回路層に少なくともその一部が押し込められ
てなる回路の接続構造である。また、この実施態様とし
て、多層回路において、表面層がMohsカタサ基準に規定
された3.5以上、次層が3.5未満であり、多層回路
の厚みが0.5μm以上である回路の接続構造に関す
る。
According to the present invention, there is provided a circuit connection structure in which opposing circuits provided on a hard substrate and a wiring substrate are connected by a connection member made of conductive particles and an adhesive. The upper circuit is a multi-layer circuit composed of two or more layers, the multi-layer circuit having a surface layer that is relatively harder than the next layer, conductive particles being harder than the next layer, and a multi-layer circuit layer on a hard substrate. Is a connection structure of a circuit in which at least a part thereof is pressed. Further, as this embodiment, in a multilayer circuit, connection of a circuit in which the surface layer is 3.5 or more specified by the Mohs Katasa standard, the next layer is less than 3.5, and the thickness of the multilayer circuit is 0.5 μm or more Regarding the structure.

【0007】[0007]

【発明の実施の形態】本発明を図面を参照しながら説明
する。図1及び2は本発明の一実施例を説明する回路の
接続構造である。本発明の回路の接続構造は硬質基板1
とその上に設けた表層2及び次層3から成る2層の回
路、回路6及び基板7よりなる配線基板8、及び導電粒
子4と接着剤5から成る接続部材9により構成される。
この時、本発明においては、表層回路2が次層回路3に
比べ相対的に硬質であり、これらの表層回路2及び次層
回路3の双方(図1)、若しくは表層回路2を突き破り
次層回路3だけ(図2)が、導電粒子4の一部が押し込
められて成ることを特徴とする。図3のように硬質基板
1上の表層回路2及び次層回路3に加えて他の回路10
より成る3層構造、あるいはそれ以上の多層構造であっ
てもよい。図1〜3においては、多層回路においては、
次層回路の端面がむき出し上になっているが、図4のよ
うに次層回路の表面を表層回路2で覆うことにより、マ
イグレーション防止などに有効であり好ましい。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described with reference to the drawings. 1 and 2 show a circuit connection structure for explaining an embodiment of the present invention. The connection structure of the circuit of the present invention is a rigid substrate 1
And a two-layer circuit composed of a surface layer 2 and a next layer 3 provided thereon, a wiring substrate 8 composed of a circuit 6 and a substrate 7, and a connection member 9 composed of conductive particles 4 and an adhesive 5.
At this time, in the present invention, the surface circuit 2 is relatively harder than the next layer circuit 3, and both the surface circuit 2 and the next layer circuit 3 (FIG. Only the circuit 3 (FIG. 2) is characterized in that a part of the conductive particles 4 is pressed. As shown in FIG. 3, in addition to the surface layer circuit 2 and the next layer circuit 3 on the hard substrate 1, another circuit 10 is provided.
It may have a three-layer structure or a multilayer structure of more layers. In FIGS. 1-3, in the multilayer circuit,
Although the end face of the next layer circuit is exposed, covering the surface of the next layer circuit with the surface layer circuit 2 as shown in FIG.

【0008】図1〜3において硬質基板1上の回路は低
抵抗化や高電流、高電圧に耐えるように、多層構造にな
っている。本発明においては、表層回路2の材料にはMo
hsカタサ基準に規定された3.5以上で、導電性に優れ
るCr(Mohsカタサ;9.0、比抵抗20℃;18.9
μΩ・cm)、以下同様に例示するとNi(3.8、
6.9μΩ・cm)、 Pt(4.3、10.6μΩ・
cm)、W(6、5.5μΩ・cm)Fe(4.5、
9.8μΩ・cm)などが適用可能である。次層回路3
の材料にはMohsカタサ基準に規定された3.5未満で、
導電性に優れるAu(Mohsカタサ;2.5、比抵抗20
℃;2.4μΩ・cm)、以下同様に例示するとAl
(2.7、1.62μΩ・cm)、Cu(3.0、1.
72μΩ・cm)等がある。また、硬質基板上の多層回
路の厚みは0.5μm以上であり、低抵抗化と貴金属の
省資源化のため0.5〜15μmが好ましく、1〜7μ
mが更に好ましい。本発明でいうMohsカタサ基準とは日
本化学会編丸善(株)発行化学便覧で規定されている。こ
の例として、Na(0.4)、S(2.0)、Mn
(5.0)、B(9.5)がある。
In FIGS. 1 to 3, the circuit on the hard substrate 1 has a multilayer structure so as to withstand low resistance, withstand high current and high voltage. In the present invention, the material of the surface layer circuit 2 is Mo.
Cr (Mohs Katasa; 9.0, specific resistance 20 ° C .; 18.9) which is 3.5 or more specified in hs Katasa standard and has excellent conductivity
μΩ · cm), and Ni (3.8,
6.9 μΩ · cm), Pt (4.3, 10.6 μΩ ·
cm), W (6, 5.5 μΩ · cm) Fe (4.5,
9.8 μΩ · cm) can be applied. Next layer circuit 3
For materials of less than 3.5 specified in Mohs Katasa standard,
Au (Mohs Katasa; 2.5, specific resistance 20) with excellent conductivity
° C; 2.4 µΩ · cm).
(2.7, 1.62 μΩ · cm), Cu (3.0, 1.
72 μΩ · cm). In addition, the thickness of the multilayer circuit on the hard substrate is 0.5 μm or more, and is preferably 0.5 to 15 μm, and
m is more preferred. The Mohs Katasa standard referred to in the present invention is specified in the Chemical Handbook issued by Maruzen Co., Ltd. edited by The Chemical Society of Japan. For example, Na (0.4), S (2.0), Mn
(5.0) and B (9.5).

【0009】3層回路の場合には他回路10の材料はカ
タサによって規定されず、上記に示すように表層回路2
及び次層回路3に用いられるような導電性に優れたもの
がよい。導電粒子としては、導電粒子のカタサが硬質基
板1上の回路より硬質のものが望ましいが、多層回路は
カタサの異なる材料から形成されている為、多層回路中
に導電粒子よりカタサの小さい層が少なくとも1層が存
在するが必要である。すなわち、導電粒子のカタサは次
層回路3あるいは他回路10より大きいことが好適であ
る。導電粒子の押し込みを考慮すると、導電粒子のカタ
サが次層回路3より大きいことがより好ましい。導電粒
子の材料はNi、Pt,W,Cr,Sb等の金属粒子や
それらの合金、複合体及び炭素粉等があり、また、より
導電性向上させる為に、これらを核体とするか、あるい
は非絶縁性のガラス、プラスチックあるいはセラミック
のような高分子等から成る材料を核体にして、導電性の
良いもので被覆した導電性被覆粒子が好ましい。導電粒
子の粒径は、硬質基板上の回路に押し込まれ易いこと
や、導電粒子の粒径を隣接電極間の絶縁部分よりも小さ
くして回路の微細化に対応する為に30μm以下が適用
可能であり、接続信頼性も考慮すると、平均粒子径2〜
25μmが好ましく、3〜15μmがより好ましい。粒
子の形状は球状であることが接続時の加圧力を回路に直
接伝えるので好ましい。このとき、表面に凹凸があると
表層回路に食い込みやすい。
[0009] In the case of a three-layer circuit, the material of the other circuit 10 is not specified by Katasa, and as shown above, the surface circuit 2
Also, those having excellent conductivity as used in the next layer circuit 3 are preferable. As the conductive particles, it is preferable that the conductive particles are harder than the circuit on the hard substrate 1. However, since the multilayer circuit is formed from a different material, the layer having a smaller size than the conductive particles is formed in the multilayer circuit. At least one layer is present but required. That is, it is preferable that the length of the conductive particles is larger than that of the next layer circuit 3 or another circuit 10. In consideration of the pushing of the conductive particles, it is more preferable that the length of the conductive particles is larger than that of the next layer circuit 3. Materials for the conductive particles include metal particles such as Ni, Pt, W, Cr, and Sb, alloys thereof, composites, and carbon powders. In order to further improve conductivity, these may be used as cores, Alternatively, conductive coated particles obtained by using a material made of a polymer such as non-insulating glass, plastic, or ceramic as a core and coating with a material having good conductivity are preferable. Applicable particle size of conductive particles is 30μm or less in order to be easily pushed into the circuit on the hard substrate, and to make the particle size of the conductive particles smaller than the insulating part between adjacent electrodes to cope with miniaturization of the circuit. In consideration of connection reliability, the average particle diameter is 2 to 2.
25 μm is preferable, and 3 to 15 μm is more preferable. It is preferable that the shape of the particles is spherical because the pressing force at the time of connection is directly transmitted to the circuit. At this time, if the surface has irregularities, it is easy to cut into the surface layer circuit.

【0010】接続部材は接着剤組成物もしくはフィルム
状接着剤に対し、導電粒子を0.1〜20体積%含む接
着剤によりなる。この接着剤は熱、光あるいは放射線な
どのエネルギーを与えることによって硬化を示す材料が
広く適応でき、接着性を有することが好ましい。これら
は接続後、耐熱及び耐湿性に優れることから、硬化系の
材料が好ましい。また、接着剤の熱的変極点であるガラ
ス転移点Tgは回路接続において長期信頼性が必要な
為、耐熱性に優れる130℃以上であることが好まし
い。
The connecting member is made of an adhesive containing 0.1 to 20% by volume of conductive particles based on the adhesive composition or the film adhesive. As the adhesive, a material that shows curing by applying energy such as heat, light, or radiation can be widely applied, and preferably has adhesiveness. Since these are excellent in heat resistance and moisture resistance after connection, cured materials are preferable. Further, the glass transition point Tg, which is the thermal inflection point of the adhesive, is preferably 130 ° C. or more, which is excellent in heat resistance, because long-term reliability is required for circuit connection.

【0011】本発明において、硬質基板上の回路のカタ
サと導電粒子のカタサを規定することにより、接続時の
加熱加圧により、粒子が回路に押し込まれて食い込みや
すくなり、接続部の接触面積が増加するので低抵抗化が
可能である。これらにより、回路を2層以上に構成し回
路の厚みが厚くなった場合においても良好な低い接続抵
抗が得られるので、高電流、高電圧に絶えることが可能
である。また、Agのみの単層を用いた場合に発生し易
いマイグレーションの発生を、多層回路とし、表面をイ
オン化の少ない金属とすることにより防止できるので、
耐久性が著しく向上する。本発明においては、導電粒子
径を30μm以下にすることで微細回路の接続を可能と
なる。また、粒子径は硬質基板上回路である回路3の高
さよりも大きくすることで、回路に押し込める措置がし
やすい。さらに、配線板の回路のカタサを導電粒子と同
等以上にすることで、本発明の接続構造が達成しやすく
なる。
In the present invention, by defining the shape of the circuit on the rigid substrate and the shape of the conductive particles, the particles are easily pushed into the circuit by heating and pressurizing at the time of connection, and the contact area of the connection portion is reduced. Since it increases, resistance can be reduced. As a result, even when the circuit is composed of two or more layers and the thickness of the circuit is increased, a good low connection resistance can be obtained, so that high current and high voltage can be maintained. In addition, since the occurrence of migration, which is likely to occur when a single layer of Ag alone is used, can be prevented by forming a multilayer circuit and using a metal with low ionization on the surface,
The durability is significantly improved. In the present invention, a fine circuit can be connected by setting the conductive particle diameter to 30 μm or less. Further, by making the particle diameter larger than the height of the circuit 3, which is a circuit on a hard substrate, it is easy to take measures to push the circuit into the circuit. Further, by setting the length of the circuit of the wiring board equal to or more than that of the conductive particles, the connection structure of the present invention can be easily achieved.

【0012】[0012]

【実施例】次に実施例を説明するが、本発明はこの実施
例に限定されるものではない。
EXAMPLES Next, examples will be described, but the present invention is not limited to these examples.

【0013】実施例1 (1)硬質基板上回路 硬質基板として厚さ1.7mmガラス上に、表層からC
r(厚さ;0.2μm)、Cu(2μm)及びCr
(0.2μm)回路を有する高さ2.4μmの硬質基板
上回路を用いる。
Example 1 (1) Circuit on Hard Substrate On a 1.7 mm thick glass as a hard substrate, C
r (thickness: 0.2 μm), Cu (2 μm) and Cr
(0.2 μm) A circuit on a hard substrate having a height of 2.4 μm and having a circuit is used.

【0014】(2)接続部材の作成 フィルム形成材としてフェノキシ樹脂(高分子量エポキ
シ樹脂)とマイクロカプセル型潜在性硬化剤を含有する
液状エポキシ樹脂(エポキシ当量185)の比率を30
/70とし、酢酸エチルの30%溶液を得た。この溶液
に、平均粒径8μm、最大粒径15μm、最少粒径3μ
mのNi粒子表面に0.01μm以上のNiより導電性
に優れたAu被覆を形成した導電性粒子を1体積%を添
加し混合分散した。この分散液をセパレータ(シリコン
処理ポリエチレンテレフタレートフィルム、厚み50μ
m)にロールコータで塗布し、厚み35μmのシートを
得た。
(2) Preparation of connection member The ratio of a phenoxy resin (high molecular weight epoxy resin) to a liquid epoxy resin containing a microcapsule type latent curing agent (epoxy equivalent 185) as a film forming material is 30.
/ 70 to give a 30% solution of ethyl acetate. This solution has an average particle diameter of 8 μm, a maximum particle diameter of 15 μm, and a minimum particle diameter of 3 μm.
1% by volume of conductive particles having Au coatings having better conductivity than Ni of 0.01 μm or more formed on the surface of the Ni particles of m were mixed and dispersed. This dispersion is separated with a separator (silicon-treated polyethylene terephthalate film, thickness 50 μm).
m) with a roll coater to obtain a 35 μm thick sheet.

【0015】(3)接続 ガラス基板上にCr/Cu/Cr回路を有する高さ5μ
mの硬質基板上回路(回路ピッチは330μm、電極幅
115μmの平行回路の電極)とポリイミドフィルム上
に高さ40μmの銅にNiメッキ(厚み;2μm)、さ
らにAuメッキ(厚み;0.5μm)を施したの回路を
有するFPC(回路ピッチは330μm、電極幅150
μmの平行回路の電極)との接続を行った。前記の接続
部材を硬質基板上に2mm幅で載置し、セパレータを剥
離した後貼り付けした。硬質基板上の回路側に仮接続し
たので張り付けが容易で、この後のセパレータ剥離も簡
単であった。次に他の回路板と上下回路を位置合わせ
し、150℃、20kgf/cm2、15秒の加熱加圧
により接続体を得た。
(3) Connection 5 μm high with Cr / Cu / Cr circuit on glass substrate
m on a rigid substrate (electrodes of a parallel circuit with a circuit pitch of 330 μm and an electrode width of 115 μm) and 40 μm high copper on a polyimide film with Ni plating (thickness: 2 μm) and further Au plating (thickness: 0.5 μm) FPC (circuit pitch: 330 μm, electrode width: 150)
(electrodes of a parallel circuit of μm). The connecting member was placed on a hard substrate with a width of 2 mm, and the separator was peeled off and attached. Since it was temporarily connected to the circuit side on the hard substrate, it was easy to attach it, and the subsequent separation of the separator was also easy. Next, the upper and lower circuits were aligned with another circuit board, and a connection was obtained by heating and pressing at 150 ° C., 20 kgf / cm 2, and 15 seconds.

【0016】(4)評価 この接続体の断面を研磨し、電子顕微鏡観察したとこ
ろ、図3相当の接続構造であった。電極上の導電粒子は
硬質基板上の表層及び次層を変形させ、0.1μm以上
押し込められていた。隣接電極間のスペースは気泡が無
く、導電粒子が分散されており、電極間の絶縁性は保た
れていた。相対峙する電極間を接続抵抗、隣接する電極
間を絶縁抵抗として評価したところ、接続抵抗は10m
Ω以下、絶縁抵抗は108Ω以上であった。接着剤のT
gを130℃以上にした事により、これらは85℃、8
5%RH1000時間処理及びヒートサイクル(−55
℃〜125℃)処理後も変化がほとんど無く、マイグレ
ーションを防止でき、良好な長期信頼性を示した。
(4) Evaluation The cross section of this connection body was polished and observed with an electron microscope. As a result, the connection structure was equivalent to that of FIG. The conductive particles on the electrode deformed the surface layer and the next layer on the hard substrate, and were pressed by 0.1 μm or more. The space between the adjacent electrodes had no bubbles, the conductive particles were dispersed, and the insulation between the electrodes was maintained. The connection resistance between the opposing electrodes was evaluated as the connection resistance, and the insulation between the adjacent electrodes was evaluated as the insulation resistance.
Ω or less, and the insulation resistance was 108 Ω or more. Adhesive T
g at 130 ° C. or higher, these are 85 ° C., 8
5% RH 1000 hours treatment and heat cycle (-55
(° C. to 125 ° C.) Even after the treatment, there was almost no change, migration could be prevented, and good long-term reliability was exhibited.

【0017】実施例2 実施例1と同様がであるが、硬質基板上回路の構成をC
r/Al/Cr(厚み;0.2μm/2μm/0.2μ
m)に変えた。実施例1と同様に評価したところ、絶縁
性及び接続抵抗において、良好な長期信頼性を示した。
接続断面は図3相当であり、表層及び次層に粒子が食い
込んでいた。
Embodiment 2 Same as Embodiment 1, except that the circuit on the rigid substrate is
r / Al / Cr (thickness: 0.2 μm / 2 μm / 0.2 μ
m). The evaluation was performed in the same manner as in Example 1. As a result, good long-term reliability was exhibited in the insulating property and the connection resistance.
The connection cross section was equivalent to FIG. 3, and particles penetrated into the surface layer and the next layer.

【0018】実施例3 実施例1と同様がであるが、硬質基板上回路の構成をC
r/Cu/Al(厚さ;0.2μm/2μm/0.2μ
m)に変えた。実施例1と同様に評価したところ、絶縁
性及び接続抵抗において、良好な長期信頼性を示した。
接続断面は図3相当であり、表層及び次層に粒子が食い
込んでいた。
Embodiment 3 Same as Embodiment 1, except that the circuit on the rigid substrate is
r / Cu / Al (thickness: 0.2 μm / 2 μm / 0.2 μ
m). The evaluation was performed in the same manner as in Example 1. As a result, good long-term reliability was exhibited in the insulating property and the connection resistance.
The connection cross section was equivalent to FIG. 3, and particles penetrated into the surface layer and the next layer.

【0019】実施例4 実施例1と同様がであるが、図4相当に、硬質基板上回
路の構成をCr/Ag(厚さ;0.2μm/2μm)に
変え、表層回路により次層を被覆した。実施例1と同様
に評価したところ、Agが表層である場合に発生するマ
イグレーションが起こらず、絶縁性及び接続抵抗におい
て、良好な長期信頼性を示した。接続断面は図4相当で
あり、表層及び次層に粒子が食い込んでいた。
Example 4 Same as Example 1, except that the configuration of the circuit on the hard substrate was changed to Cr / Ag (thickness: 0.2 μm / 2 μm), and the next layer was formed by the surface layer circuit. Coated. When evaluated in the same manner as in Example 1, no migration occurred when Ag was the surface layer, and good long-term reliability was exhibited in insulation and connection resistance. The connection cross section was equivalent to FIG. 4, and particles penetrated into the surface layer and the next layer.

【0020】実施例5 実施例1と同様がであるが、硬質基板上回路の構成をC
r/Al(厚み;0.2μm/2μm)の2層構造に変
えた。実施例1と同様に評価したところ、絶縁性及び接
続抵抗において、良好な長期信頼性を示した。接続断面
は図1相当であり、表層及び次層に粒子が食い込んでい
た。
Fifth Embodiment The same as the first embodiment, except that the configuration of the circuit on the rigid substrate is C
The structure was changed to a two-layer structure of r / Al (thickness: 0.2 μm / 2 μm). The evaluation was performed in the same manner as in Example 1. As a result, good long-term reliability was exhibited in the insulating property and the connection resistance. The connection cross section was equivalent to FIG. 1, and particles penetrated into the surface layer and the next layer.

【0021】実施例6 実施例1と同様がであるが、硬質基板上回路の構成をP
t/Cu(厚さ;0.2μm/2μm)に変えた。実施
例1と同様に評価したところ、絶縁性及び接続抵抗にお
いて、良好な長期信頼性を示した。接続断面は図2相当
であり、粒子が表層を突き破り、次層を変形させ、食い
込んでいた。
Embodiment 6 The same as embodiment 1 except that the circuit on the hard substrate is
t / Cu (thickness: 0.2 μm / 2 μm). The evaluation was performed in the same manner as in Example 1. As a result, good long-term reliability was exhibited in the insulating property and the connection resistance. The connection cross section is equivalent to FIG. 2, and the particles pierced the surface layer, deformed the next layer, and digged.

【0022】実施例7 実施例1と同様がであるが、平均粒径10μm、最大粒
径15μm、最少粒径5μmのW粒子表面に0.01μ
m以上のWより導電性に優れたAu被覆を形成した導電
粒子を用い、硬質基板上回路の構成をCr/Cu/Al
(厚さ;0.2μm/2μm/0.2μm)に変えた。
実施例1と同様に評価したところ、絶縁性及び接続抵抗
において、良好な長期信頼性を示した。接続断面は図3
相当であり、表層及び次層に粒子が食い込んでいた。
Example 7 The same as Example 1 except that the average particle size of the W particles having a particle size of 10 μm, the maximum particle size of 15 μm, and the minimum particle size of 5 μm was 0.01 μm.
The structure of the circuit on the hard substrate is Cr / Cu / Al using conductive particles formed with Au coating which is more conductive than W
(Thickness: 0.2 μm / 2 μm / 0.2 μm).
The evaluation was performed in the same manner as in Example 1. As a result, good long-term reliability was exhibited in the insulating property and the connection resistance. Figure 3 shows the connection section
It was considerable, and the particles penetrated into the surface layer and the next layer.

【0023】[0023]

【発明の効果】以上詳述したように本発明によれば、高
電流、高電圧、微細化及び耐マイグレーションに優れた
回路の接続構造を提供できる。
As described above in detail, according to the present invention, it is possible to provide a circuit connection structure excellent in high current, high voltage, miniaturization and migration resistance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を説明する回路接続部の断面
模式図である。
FIG. 1 is a schematic cross-sectional view of a circuit connecting portion for explaining an embodiment of the present invention.

【図2】本発明の別の実施例を説明する回路接続部の断
面模式図である。
FIG. 2 is a schematic cross-sectional view of a circuit connecting portion for explaining another embodiment of the present invention.

【図3】本発明の別の実施例を説明する回路接続部の断
面模式図である。
FIG. 3 is a schematic cross-sectional view of a circuit connecting portion for explaining another embodiment of the present invention.

【図4】本発明の別の実施例を説明する回路接続部の断
面模式図である。
FIG. 4 is a schematic cross-sectional view of a circuit connection section for explaining another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1硬質基板 2表層回路 3次層回路 4導電粒子 5接着剤 6回路 7基板 8配線基板 9接続部材 10他回路 1 Hard board 2 Surface layer circuit Tertiary layer circuit 4 Conductive particles 5 Adhesive 6 Circuit 7 Board 8 Wiring board 9 Connection member 10 Other circuit

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成9年4月11日[Submission date] April 11, 1997

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0015[Correction target item name] 0015

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0015】(3)接続 ガラス基板上にCr/Cu/Cr回路を有する高さ5μ
mの硬質基板上回路(回路ピッチは330μm、電極幅
115μmの平行回路の電極)とポリイミドフィルム上
に高さ40μmの銅にNiメッキ(厚み;2μm)、さ
らにAuメッキ(厚み;0.5μm)を施したの回路を
有するFPC(回路ピッチは330μm、電極幅150
μmの平行回路の電極)との接続を行った。前記の接続
部材を硬質基板上に2mm幅で載置し、セパレータを剥
離した後貼り付けした。硬質基板上の回路側に仮接続し
たので張り付けが容易で、この後のセパレータ剥離も簡
単であった。次に他の回路板と上下回路を位置合わせ
し、150℃、20kgf/cm2、15秒の加熱加圧
により接続体を得た。
(3) Connection 5 μm high with Cr / Cu / Cr circuit on glass substrate
m on a rigid substrate (electrodes of a parallel circuit with a circuit pitch of 330 μm and an electrode width of 115 μm) and 40 μm high copper on a polyimide film with Ni plating (thickness: 2 μm) and further Au plating (thickness: 0.5 μm) FPC (circuit pitch: 330 μm, electrode width: 150)
(electrodes of a parallel circuit of μm). The connecting member was placed on a hard substrate with a width of 2 mm, and the separator was peeled off and attached. Since it was temporarily connected to the circuit side on the hard substrate, it was easy to attach it, and the subsequent separation of the separator was also easy. Next, the upper and lower circuits were aligned with another circuit board, and a connection was obtained by heating and pressing at 150 ° C., 20 kgf / cm 2 , and 15 seconds.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0016[Correction target item name] 0016

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0016】(4)評価 この接続体の断面を研磨し、電子顕微鏡観察したとこ
ろ、図3相当の接続構造であった。電極上の導電粒子は
硬質基板上の表層及び次層を変形させ、0.1μm以上
押し込められていた。隣接電極間のスペースは気泡が無
く、導電粒子が分散されており、電極間の絶縁性は保た
れていた。相対峙する電極間を接続抵抗、隣接する電極
間を絶縁抵抗として評価したところ、接続抵抗は10m
Ω以下、絶縁抵抗は108Ω以上であった。接着剤のT
gを130℃以上にした事により、これらは85℃、8
5%RH1000時間処理及びヒートサイクル(−55
℃〜125℃)処理後も変化がほとんど無く、マイグレ
ーションを防止でき、良好な長期信頼性を示した。
(4) Evaluation The cross section of this connection body was polished and observed with an electron microscope. As a result, the connection structure was equivalent to that of FIG. The conductive particles on the electrode deformed the surface layer and the next layer on the hard substrate, and were pressed by 0.1 μm or more. The space between the adjacent electrodes had no bubbles, the conductive particles were dispersed, and the insulation between the electrodes was maintained. The connection resistance between the opposing electrodes was evaluated as the connection resistance, and the insulation between the adjacent electrodes was evaluated as the insulation resistance.
Ω or less, and the insulation resistance was 10 8 Ω or more. Adhesive T
g at 130 ° C. or higher, these are 85 ° C., 8
5% RH 1000 hours treatment and heat cycle (-55
(° C. to 125 ° C.) Even after the treatment, there was almost no change, migration could be prevented, and good long-term reliability was exhibited.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 硬質基板と配線基板上に設けられた相対
峙する回路を導電粒子と接着剤から成る接続部材で接続
してなる回路の接続構造において、前記硬質基板上の回
路が2層以上で構成された多層回路であり、これら多層
回路は表層が次層に比べ相対的に硬質であり、導電粒子
が次層より硬質であり、硬質基板上の多層回路層に少な
くともその一部が押し込められてなる回路の接続構造。
1. A circuit connection structure in which opposing circuits provided on a hard substrate and a wiring substrate are connected by a connection member made of conductive particles and an adhesive, wherein the circuit on the hard substrate has two or more layers. In these multilayer circuits, the surface layer is relatively harder than the next layer, the conductive particles are harder than the next layer, and at least a part of the multilayer circuit is pressed into the multilayer circuit layer on the rigid substrate. The connection structure of the circuit.
【請求項2】 請求項1の多層回路において、表層がMoh
sカタサ基準に規定された3.5以上、次層が3.5未
満であり、多層回路の厚みが0.5μm以上である回路
の接続構造。
2. The multilayer circuit according to claim 1, wherein the surface layer is Moh.
s A connection structure of a circuit in which the thickness of a multilayer circuit is not less than 3.5 and the thickness of a multilayer circuit is not less than 3.5, and the thickness of a multilayer circuit is not less than 3.5 specified in the Katasa standard.
JP8475197A 1997-04-03 1997-04-03 Circuit connection structure Expired - Fee Related JP3944794B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8475197A JP3944794B2 (en) 1997-04-03 1997-04-03 Circuit connection structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8475197A JP3944794B2 (en) 1997-04-03 1997-04-03 Circuit connection structure

Publications (2)

Publication Number Publication Date
JPH10284817A true JPH10284817A (en) 1998-10-23
JP3944794B2 JP3944794B2 (en) 2007-07-18

Family

ID=13839402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8475197A Expired - Fee Related JP3944794B2 (en) 1997-04-03 1997-04-03 Circuit connection structure

Country Status (1)

Country Link
JP (1) JP3944794B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006066506A (en) * 2004-08-25 2006-03-09 Fujikura Ltd Compound substrate and manufacturing method thereof
JP2011053651A (en) * 2009-09-02 2011-03-17 Samsung Mobile Display Co Ltd Display device
JP2013131605A (en) * 2011-12-21 2013-07-04 Cmk Corp Multilayer printed wiring board including anisotropic conductive film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006066506A (en) * 2004-08-25 2006-03-09 Fujikura Ltd Compound substrate and manufacturing method thereof
JP2011053651A (en) * 2009-09-02 2011-03-17 Samsung Mobile Display Co Ltd Display device
US8466470B2 (en) 2009-09-02 2013-06-18 Samsung Display Co., Ltd. Display device
JP2013131605A (en) * 2011-12-21 2013-07-04 Cmk Corp Multilayer printed wiring board including anisotropic conductive film

Also Published As

Publication number Publication date
JP3944794B2 (en) 2007-07-18

Similar Documents

Publication Publication Date Title
JP4974803B2 (en) Shield film for printed wiring board and printed wiring board
WO2007052584A1 (en) Method for fabricating multilayer circuit board, circuit plate, and method for fabricating the circuit plate
WO2009081929A1 (en) Mounted board and method for manufacturing the same
JPH08148213A (en) Connection member and structure and method for connecting electrode using the same
JP2011049175A (en) Connection method and connection structure for electronic component
JPS63310581A (en) Film body for electric connection
JP3622792B2 (en) Connection member and electrode connection structure and connection method using the connection member
JPS61231066A (en) Anisotropically conductive hot-melt adhesive
JP2001352171A (en) Adhesive sheet and circuit board using the same and method for manufacturing the same
JP3944794B2 (en) Circuit connection structure
JP2004006417A (en) Connecting element and connection structure of electrode using this
JP2008124029A (en) Connecting member
JP5082296B2 (en) Adhesive with wiring and circuit connection structure
JPH09147928A (en) Connecting member
JP5143329B2 (en) Manufacturing method of circuit connection body
JP4181239B2 (en) Connecting member
JP2007035716A (en) Manufacturing method of printed circuit board
JP4155470B2 (en) Electrode connection method using connecting members
JP2003017855A (en) Manufacturing method of multilayer printed-wiring board
JP2008112732A (en) Connecting method of electrode
KR101227795B1 (en) Connection structure
JP4670859B2 (en) Connection member and electrode connection structure using the same
JP4572929B2 (en) Connection member and electrode connection structure using the same
JP2007134509A (en) Multilayer printed wiring board and method of manufacturing same
JP4670857B2 (en) Repair property imparting method and connecting member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070329

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110420

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120420

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120420

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140420

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees