JPH10275788A - Manufacture of semiconductor device and equipment for manufacturing semiconductor device - Google Patents

Manufacture of semiconductor device and equipment for manufacturing semiconductor device

Info

Publication number
JPH10275788A
JPH10275788A JP9080097A JP8009797A JPH10275788A JP H10275788 A JPH10275788 A JP H10275788A JP 9080097 A JP9080097 A JP 9080097A JP 8009797 A JP8009797 A JP 8009797A JP H10275788 A JPH10275788 A JP H10275788A
Authority
JP
Japan
Prior art keywords
polishing
particles
film
particle
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9080097A
Other languages
Japanese (ja)
Inventor
Masayuki Takashima
正之 高島
Kenichi Sarara
憲一 讃良
篤 ▲すくも▼田
Atsushi Sukumoda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP9080097A priority Critical patent/JPH10275788A/en
Publication of JPH10275788A publication Critical patent/JPH10275788A/en
Pending legal-status Critical Current

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and equipment for manufacturing a semiconductor device for downsizing the equipment by integrating the polishing process with the particle removal processes without damaging a surface to be polished in polishing and causing the center part to be recessed and without reducing the reliability in a semiconductor and a manufacturing yield due to the retention of polishing particles since adhered particles can be easily remored after polishing is completed. SOLUTION: When an Al alloy film, an Si film, an Si oxide film, and a nitride film are polished (CMP), a particle consisting of an organic macromolecular compound or a particle with carbon as a main constituent is used as a polishing particle. A resin that can polish a surface to be polished and can be ashed and decomposed by active rays containing ultraviolet rays may preferably be used but a methacrylic resin and polystyrene resin have spherical particles and have improved dispersion property and can be stored for a long term so that they are especially effective. After polishing using the above resin particle, active rays containing a main wavelength of 254 nm from a low-pressure mercury lamp are applied to a film to be polished and an optimum time is determined from light source output and a distance to a substrate. The rays are preferably applied in air at 50-200 deg.C. The removal of particles by decomposition under the presence of ozone proceeds.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、超LSI等の半導
体装置の製造方法及び半導体装置の製造装置に関するも
のである。更に詳しくは、本発明は、研磨の際に被加工
面の表面に傷をつけたり、ディッシングを発生させるこ
とがなく、研磨終了後に付着している粒子を極めて容易
に除去することが可能であるため、研磨粒子の残留によ
る半導体の信頼性の低下や、製品歩留まりの低下等の半
導体製造における不良を引き起こすことがなく、しかも
研磨工程と粒子除去工程の一体化が容易であり、かつ実
施のための装置が小型化されることにより、次の工程と
切り離すためのクリーンルームそのものの巨大化を抑制
することができるという優れた特徴を有する半導体装置
の製造方法及び半導体装置の製造装置に関するものであ
る。
[0001] 1. Field of the Invention [0002] The present invention relates to a method for manufacturing a semiconductor device such as an VLSI and a device for manufacturing a semiconductor device. More specifically, the present invention makes it possible to extremely easily remove particles adhering after completion of polishing without damaging the surface of the surface to be processed during polishing or causing dishing. It does not cause a defect in semiconductor manufacturing such as a decrease in semiconductor reliability due to the remaining abrasive particles or a decrease in product yield, and furthermore, the polishing step and the particle removing step are easy to integrate, and The present invention relates to a method for manufacturing a semiconductor device and an apparatus for manufacturing a semiconductor device, which have an excellent feature that the size of the device can be suppressed from increasing the size of a clean room itself for separation from the next process.

【0002】[0002]

【従来の技術】近年、LSIの高集積化、高性能化のた
めに様々な微細加工技術が研究開発されている。このな
かで化学的機械研磨方法(ケミカルメカニカルポリッシ
ング、以下CMPと省略する)が注目されている。CM
Pは研磨剤と被研磨体の間の化学的作用と研磨中の研磨
粒子の機械的作用とを複合化させた技術であり、特に多
層配線形成工程における層間絶縁膜の平坦化、金属プラ
グ形成、埋め込み金属配線形成において必須の技術とな
っている。
2. Description of the Related Art In recent years, various microfabrication techniques have been researched and developed for high integration and high performance of LSI. Among them, a chemical mechanical polishing method (Chemical Mechanical Polishing, hereinafter abbreviated as CMP) has attracted attention. CM
P is a technique in which the chemical action between the abrasive and the object to be polished is combined with the mechanical action of the abrasive particles during polishing. In particular, flattening of an interlayer insulating film and formation of metal plugs in a multilayer wiring forming step are performed. This is an indispensable technique in forming a buried metal wiring.

【0003】CMPの工程は被加工膜の凹凸を研磨剤ス
ラリーと研磨用パッドを用いて表面を平坦化することか
ら、大量の微粒子が発生することは明らかである。従っ
てCMPの工程は他の製造工程とは切り離したクリーン
ルームで行うことはもちろん、発生した微粒子を次の工
程に持ち込まないように洗浄処理も行わなければいけな
い。 CMPの工程は基本的に1枚ずつ研磨処理する枚
葉式であることから、1枚の被加工膜研磨処理中にその
前に研磨した被加工膜を洗浄する工程を具備し、装置全
体の小型化、処理時間の短縮を計ろうとする研磨洗浄一
体型の装置が主流となってきている。
It is clear that a large amount of fine particles are generated in the CMP process because the surface of the film to be processed is flattened using an abrasive slurry and a polishing pad. Therefore, the CMP process must be performed not only in a clean room separated from other manufacturing processes but also in a cleaning process so that the generated fine particles are not carried into the next process. Since the CMP process is basically a single-wafer process in which the polishing process is performed one by one, the process includes a step of cleaning the polished work film during the polishing process of one work film. A polishing-cleaning integrated type apparatus for reducing the size and processing time is becoming mainstream.

【0004】一方LSIの高速化の観点から、今後の金
属配線に使用される金属には低い抵抗を有するAlやC
uが主流になると思われ、これらの金属を用いた金属プ
ラグ形成や埋め込み配線形成にCMPを利用しようとす
る検討が活発に行われている。一般にAlやCuのCM
Pでは、アルミナ等の無機性の粒子と硝酸鉄や過酸化水
素水などの酸化剤との混合物からなる研磨剤スラリーが
主に検討されている。
On the other hand, from the viewpoint of increasing the speed of LSI, metals used for future metal wiring include Al and C having low resistance.
u is expected to be the mainstream, and studies are actively being conducted on using CMP for forming metal plugs and buried wirings using these metals. Generally, CM of Al or Cu
In P, an abrasive slurry composed of a mixture of inorganic particles such as alumina and an oxidizing agent such as iron nitrate and hydrogen peroxide is mainly studied.

【0005】しかしながらAlやCuの金属は硬度が低
いため、アルミナやシリカ等の硬度の高い無機性の粒子
で研磨すると金属膜表面に傷がついて表面が粗くなった
り、配線用金属膜に研磨粒子が埋め込まれたりする。
However, since metals such as Al and Cu have low hardness, polishing with inorganic particles having high hardness such as alumina or silica may damage the surface of the metal film and cause the surface to become rough. Is embedded.

【0006】また溝や開口部に埋め込まれた配線用金属
膜の幅が広い領域では、中心部の厚さが薄くなるディッ
シング(dishing)が発生する。ディッシングが生じる
と、その部分に研磨粒子が残留しやすくなる。特にAl
やCuのように硬度が低い金属ではその傾向が顕著に現
れる。配線用金属膜表面の傷やディッシングの発生、あ
るいは研磨粒子の残留等は、配線抵抗を増加させたり、
断線を引き起こして、信頼性の低下や製品の歩留まりの
低下を招く。
[0006] In a region where the width of the wiring metal film embedded in the groove or the opening is large, dishing in which the thickness of the central portion is small occurs. When dishing occurs, abrasive particles tend to remain at that portion. Especially Al
This tendency is remarkable in metals having low hardness such as copper and Cu. Occurrence of scratches or dishing on the surface of the metal film for wiring or residual abrasive particles increases wiring resistance,
This causes disconnection, leading to a decrease in reliability and a decrease in product yield.

【0007】また、無機性のスラリーは凝集、沈殿しや
すく、特に比重の大きなアルミナを研磨粒子に用いた場
合は保管中に容器底部に沈降してしまう。凝集したスラ
リーをそのまま研磨に用いた場合、凝集によって粒径の
大きくなった粒子は金属膜表面を傷つけ、スラリー濃度
が不均一になることから研磨の安定性に問題が生じる。
[0007] In addition, the inorganic slurry easily aggregates and precipitates, and particularly when alumina having a large specific gravity is used as abrasive particles, it settles at the bottom of the container during storage. When the agglomerated slurry is used for polishing as it is, particles having a large particle size due to agglomeration damage the surface of the metal film, and the concentration of the slurry becomes non-uniform, which causes a problem in polishing stability.

【0008】さらには、こうして研磨された金属膜は研
磨処理時に付着したスラリーを除去するために、超純水
を吹き付けながらナイロン製又はポリビニルアルコール
製ブラシでブラッシング洗浄を行うことが一般的である
が、無機性の粒子は洗浄前に表面が乾燥すると、その後
の洗浄で容易に除去することができないという問題があ
る。そのため、研磨処理を行った被加工膜は洗浄処理が
終了するまで超純水中で保管していなければならないと
いう問題がある。
Further, the metal film polished in this manner is generally brushed and washed with a nylon or polyvinyl alcohol brush while spraying ultrapure water in order to remove a slurry attached during the polishing process. In addition, if the surface of the inorganic particles is dried before washing, there is a problem that it cannot be easily removed by the subsequent washing. For this reason, there is a problem that the film to be processed after the polishing process must be stored in ultrapure water until the cleaning process is completed.

【0009】このような不具合を改良する方法として、
近年、特開平7−86216号公報に記されるように、
有機高分子化合物を主成分とする粒子を研磨粒子として
使用する方法が提案されている。この方法では、PMM
Aなどのメタクリル樹脂、フェノール樹脂、メラミン樹
脂、ポリスチレン樹脂、ポリカーボネート樹脂等の有機
高分子化合物あるいはカーボンブラック等の研磨粒子を
分散剤とともに水に分散させて研磨に供する。また本方
法に記載される研磨粒子は、研磨膜表面に残存しても、
酸素プラズマ等で燃焼させることにより完全に除去でき
ることが特徴であると記載されている。
As a method of improving such a problem,
In recent years, as described in JP-A-7-86216,
There has been proposed a method of using particles mainly composed of an organic polymer compound as abrasive particles. In this method, the PMM
A polishing particle such as an organic polymer compound such as methacryl resin, phenol resin, melamine resin, polystyrene resin and polycarbonate resin such as A, or carbon black is dispersed in water together with a dispersant, and then subjected to polishing. The abrasive particles described in the present method, even if remaining on the polishing film surface,
It is described that it can be completely removed by burning with oxygen plasma or the like.

【0010】しかしながら本方法では、アルミナやシリ
カ等の硬度の高い無機性の粒子で研磨する時のような、
金属膜表面への傷の発生や、配線用金属膜に研磨粒子が
埋め込まれたりするといった問題は解決できるが、研磨
膜表面に残存した研磨粒子を酸素プラズマ等で燃焼させ
るために、酸素プラズマ発生のためには処理装置内を真
空にする必要があり、研磨工程との一体化に対応できな
いという問題、及び真空処理のために装置は大型化し、
高価な設備が必要であるばかりか、次の工程と切り離す
ためのクリーンルームそのものも巨大化するという問題
がある。
However, in this method, when polishing with inorganic particles having high hardness such as alumina or silica,
Although the problems of scratches on the metal film surface and embedding of abrasive particles in the metal film for wiring can be solved, oxygen plasma is generated because the abrasive particles remaining on the polishing film surface are burned by oxygen plasma or the like. For this purpose, it is necessary to evacuate the inside of the processing equipment, and it is not possible to cope with the integration with the polishing process.
In addition to the need for expensive equipment, there is a problem that the clean room itself for separating from the next process becomes huge.

【0011】[0011]

【発明が解決しようとする課題】かかる状況のもと、本
発明が解決しようとする課題は、研磨の際に被加工面の
表面に傷をつけたり、ディッシングを発生させることが
なく、研磨終了後に付着している粒子を極めて容易に除
去することが可能であるため、研磨粒子の残留による半
導体の信頼性の低下や、製品歩留まりの低下等の半導体
製造における不良を引き起こすことがなく、しかも研磨
工程と粒子除去工程の一体化が容易であり、かつ実施の
ための装置が小型化されることにより、次の工程と切り
離すためのクリーンルームそのものの巨大化を抑制する
ことができるという優れた特徴を有する半導体装置の製
造方法及び半導体装置の製造装置を提供する点に存す
る。
Under such circumstances, the problem to be solved by the present invention is to prevent the surface of the work surface from being scratched or to cause dishing during polishing, and Since the attached particles can be removed very easily, there is no occurrence of defects in semiconductor manufacturing such as a decrease in semiconductor reliability due to residual abrasive particles and a decrease in product yield. It has an excellent feature that the integration of the particle removal process is easy, and the size of the apparatus for performing the process is reduced, so that the size of the clean room itself to be separated from the next process can be suppressed. It is to provide a method for manufacturing a semiconductor device and an apparatus for manufacturing a semiconductor device.

【0012】[0012]

【課題を解決するための手段】すなわち、本発明のうち
一の発明は、下記(A)研磨工程及び(B)洗浄工程を
含む半導体装置の製造方法に係るものである。 (A)研磨工程:有機高分子化合物からなる粒子又は少
なくとも炭素を主成分とする粒子を研磨粒子として用い
て被加工膜を研磨する工程 (B)洗浄工程:研磨工程で得られた研磨後の被加工膜
に、主波長光線として紫外線を含む活性光線を照射し
て、研磨に用いた磨粒子を洗浄除去する工程
That is, one aspect of the present invention relates to a method of manufacturing a semiconductor device including the following (A) polishing step and (B) cleaning step. (A) Polishing step: a step of polishing a film to be processed using particles composed of an organic polymer compound or particles containing at least carbon as a main component (B) Cleaning step: After polishing obtained in the polishing step A step of irradiating the film to be processed with actinic rays containing ultraviolet rays as a main wavelength ray to wash and remove abrasive particles used for polishing.

【0013】また、本発明のうち他の発明は、上記の研
磨工程を実施する手段及び洗浄工程を実施する手段を具
備する半導体装置の製造装置に係るものである。
Further, another aspect of the present invention relates to an apparatus for manufacturing a semiconductor device comprising a means for performing the above-mentioned polishing step and a means for performing the cleaning step.

【0014】[0014]

【発明の実施の形態】本発明の(A)研磨工程は、有機
高分子化合物からなる粒子又は少なくとも炭素を主成分
とする粒子を研磨粒子として用いて被加工膜を研磨する
工程である。
BEST MODE FOR CARRYING OUT THE INVENTION The polishing step (A) of the present invention is a step of polishing a film to be processed using particles composed of an organic polymer compound or particles containing at least carbon as a main component.

【0015】被加工膜としては、純Al膜、AlSiC
u合金、AlCu合金等のAlを主成分とする合金から
なる膜、シリコン酸化膜、シリコン窒化膜、アモルファ
スシリコン膜、多結晶シリコン膜、単結晶シリコン膜等
があげられる。
The film to be processed is a pure Al film, AlSiC
Examples thereof include a film made of an alloy containing Al as a main component such as a u alloy and an AlCu alloy, a silicon oxide film, a silicon nitride film, an amorphous silicon film, a polycrystalline silicon film, and a single crystal silicon film.

【0016】有機高分子化合物からなる粒子又は少なく
とも炭素を主成分とする粒子としては、被研磨加工面の
研磨が可能で、紫外線を含む活性光線によって分解され
る樹脂であれば特に限定されるものではなく、メタクリ
ル樹脂やフェノール樹脂、ユリア樹脂、メラニン樹脂、
ポリスチレン樹脂、ポリアセタール樹脂、ポリカーボネ
ート樹脂等を用いることができる。中でも乳化重合法で
得られるPMMA等のメタクリル樹脂やポリスチレン樹
脂は粒子形状が球形で、粒子としての分散性が極めて良
好で、長期間保管しても凝集、沈降がないため特に有効
である。これらの樹脂は他のビニル化合物と共重合した
ものでも有効である。また、少なくとも炭素を主成分と
する粒子としては、非晶質炭素、カーボンブラック等を
用いることができる。
The particles made of an organic polymer compound or particles containing at least carbon as a main component are not particularly limited as long as the resin can polish the surface to be polished and can be decomposed by actinic rays including ultraviolet rays. Instead, methacrylic resin, phenolic resin, urea resin, melanin resin,
Polystyrene resin, polyacetal resin, polycarbonate resin and the like can be used. Above all, methacrylic resins such as PMMA and polystyrene resins obtained by emulsion polymerization are particularly effective because they have a spherical particle shape, have extremely good dispersibility as particles, and do not undergo aggregation or sedimentation even when stored for a long period of time. Those resins copolymerized with other vinyl compounds are also effective. In addition, as the particles containing at least carbon as a main component, amorphous carbon, carbon black, or the like can be used.

【0017】上記有機高分子化合物からなる粒子又は少
なくとも炭素を主成分とする粒子を用いた研磨は、CM
P工程で使用される研磨方法による研磨処理により行う
ことができる。
The polishing using the particles composed of the above-mentioned organic polymer compound or particles containing at least carbon as a main component is carried out by using CM.
The polishing can be performed by a polishing process using the polishing method used in the P step.

【0018】本発明の(B)洗浄工程は、研磨工程で得
られた研磨後の被加工膜に、主波長光線として紫外線を
含む活性光線を照射して、研磨に用いた研磨粒子を洗浄
除去する工程である。
In the cleaning step (B) of the present invention, the polished film to be processed obtained in the polishing step is irradiated with actinic rays containing ultraviolet rays as the principal wavelength light to wash and remove the abrasive particles used in the polishing. This is the step of performing

【0019】ここでいう活性光線とは、有機高分子化合
物からなる粒子又は少なくとも炭素を主成分とする粒子
の化学結合を切断するエネルギーを有する光線で、粒子
を灰化、分解させる作用をもつものである。具体的には
主波長光線として紫外線を含むもので、一般的には主波
長300nm以下を含む活性光線が用いられる。これら
の活性光線は低圧水銀灯、エキシマレーザー等任意の光
源から得られることができる。例えば低圧水銀灯を用い
た場合は、主波長254nmを含む活性光線が得られ
る。
The actinic ray as used herein is a ray having energy to break a chemical bond between a particle composed of an organic polymer compound or at least a particle mainly composed of carbon, and has an action of ashing and decomposing particles. It is. Specifically, ultraviolet rays are used as the main wavelength light, and generally, active rays having a main wavelength of 300 nm or less are used. These actinic rays can be obtained from any light source such as a low-pressure mercury lamp and an excimer laser. For example, when a low-pressure mercury lamp is used, an actinic ray having a main wavelength of 254 nm can be obtained.

【0020】活性光線の照射量は強度と照射時間の積に
比例し、使用する光源の出力と光源から基板までの距離
によって最適時間は決定される。また、基板を加熱する
ことによっても効果は加速されるので、最適時間は変化
する。
The irradiation amount of the actinic ray is proportional to the product of the intensity and the irradiation time, and the optimum time is determined by the output of the light source used and the distance from the light source to the substrate. The effect is also accelerated by heating the substrate, so that the optimum time changes.

【0021】処理温度は室温から300℃以下が好まし
く、50℃から200℃が特に好ましい。例えば150
Wの低圧水銀灯を用いて基板から5cmの距離で照射し
た場合、200℃に加熱すると1分から10分の照射が
好ましく、100℃の場合は2分から15分が好まし
い。
The treatment temperature is preferably from room temperature to 300 ° C. or less, particularly preferably from 50 ° C. to 200 ° C. For example, 150
When irradiation is performed at a distance of 5 cm from the substrate using a low-pressure mercury lamp of W, the irradiation is preferably performed for 1 minute to 10 minutes when heated to 200 ° C, and for 2 minutes to 15 minutes at 100 ° C.

【0022】活性光線照射時の雰囲気は酸素を含む気体
中が好ましく、空気中で照射できる。また、処理効果を
高めるためにオゾン存在下で照射することもできる。オ
ゾンの生成はオゾン発生装置で酸素ガスに高圧放電する
ことにより発生させる。オゾンの含有量は0.1〜3容
量%程度で十分である。
The atmosphere upon irradiation with actinic rays is preferably in a gas containing oxygen, and irradiation can be performed in air. Irradiation can also be performed in the presence of ozone to enhance the treatment effect. Ozone is generated by high-pressure discharge to oxygen gas in an ozone generator. About 0.1 to 3% by volume of ozone is sufficient.

【0023】上記のように活性光線あるいはオゾン存在
下での活性光線の照射により、有機高分子化合物からな
る粒子又は少なくとも炭素を主成分とする粒子とする研
磨剤で被研磨膜を研磨した後に付着している粒子を容易
に除去することができる。
As described above, the film to be polished is polished with an abrasive containing particles of an organic polymer compound or particles containing at least carbon as a main component by irradiation with actinic rays or actinic rays in the presence of ozone, and then adheres. Particles can be easily removed.

【0024】本発明による(A)研磨工程及び(B)洗
浄工程は、各々独立して実施してもよいが、研磨工程を
実施する手段及び洗浄工程を実施する手段の両方を具備
する半導体装置の製造装置を用いることにより、最適に
実施され得る。また、活性光線による付着粒子除去工程
の前、あるいは後ろに、研磨処理中に発生する研磨布
(以後パッドと省略する)の屑や環境から混入する無機
系汚染物、研磨粒子中に含まれる微量金族不純物を除去
するため、CMP用のブラシ洗浄処理や浸漬式洗浄処理
を行ってもよい。
The (A) polishing step and (B) cleaning step according to the present invention may be performed independently, but a semiconductor device having both means for performing the polishing step and means for performing the cleaning step. By using the manufacturing apparatus of (1), it can be optimally implemented. In addition, before or after the step of removing adhered particles by actinic rays, debris of polishing cloth (hereinafter abbreviated as “pad”) generated during polishing processing, inorganic contaminants mixed in from the environment, and trace amounts contained in polishing particles. In order to remove metallic impurities, brush cleaning for CMP or immersion cleaning may be performed.

【0025】[0025]

【実施例】本発明を実施例により更に詳細に説明する
が、本発明はこれら実施例に限定されるものではない。
なお、以下の実施例で述べる樹脂エマルジョンは、乳化
重合で得られる樹脂粒子が分散した溶液のことを指す。
EXAMPLES The present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
The resin emulsion described in the following examples indicates a solution in which resin particles obtained by emulsion polymerization are dispersed.

【0026】実施例1 <樹脂エマルジョンの調製>乳化剤としてラウリル硫酸
アンモニウム30g、純水500g、ビニル化合物とし
てスチレン500g及びメタクリル酸メチル500gを
攪拌混合し、これらのビニル化合物のモノマー乳化液を
調製した。つぎに温度調節器、攪拌機を有する5リット
ルのステンレス製反応器に、ラウリル硫酸アンモニウム
0.9gと純水1750gを入れ、75℃に昇温した
後、反応器内を窒素ガスで置換した。その後、反応器に
重合開始剤として4重量パーセントの過硫酸アンモニウ
ム水溶液100gを供給し、続いて先に調製したモノマ
ー乳化液を4時間かけて一定速度で供給してスチレンと
メタクリル酸メチルの共重合体粒子が分散した樹脂エマ
ルジョンを得た。得られたエマルジョン中のスチレン・
メタクリル酸メチル共重合体の粒子濃度は30.2重量
%であった。顕微鏡観察により、この樹脂粒子は平均粒
径が0.1ミクロンの球状で、樹脂粒子の凝集物は観察
されなかった。またこの樹脂エマルジョンは室温下で6
ヶ月間放置しても樹脂粒子の沈降や粒子の凝集は認めら
れなかった。
Example 1 <Preparation of resin emulsion> 30 g of ammonium lauryl sulfate as an emulsifier, 500 g of pure water, 500 g of styrene and 500 g of methyl methacrylate as a vinyl compound were stirred and mixed to prepare a monomer emulsion of these vinyl compounds. Next, 0.9 g of ammonium lauryl sulfate and 1750 g of pure water were placed in a 5-liter stainless steel reactor having a temperature controller and a stirrer, and the temperature was raised to 75 ° C., and the inside of the reactor was replaced with nitrogen gas. Thereafter, 100 g of a 4% by weight aqueous solution of ammonium persulfate was supplied as a polymerization initiator to the reactor, and then the previously prepared monomer emulsion was supplied at a constant rate over 4 hours to obtain a copolymer of styrene and methyl methacrylate. A resin emulsion in which particles were dispersed was obtained. Styrene in the obtained emulsion
The particle concentration of the methyl methacrylate copolymer was 30.2% by weight. Microscopic observation revealed that the resin particles were spherical with an average particle size of 0.1 micron, and no aggregate of the resin particles was observed. This resin emulsion is 6
No sedimentation of the resin particles or aggregation of the particles was observed even after standing for a month.

【0027】<研磨工程及び洗浄工程>上記で得られた
メタアクリル樹脂エマルジョンにアンモニア水と純水を
加えてpH11のアルカリ性で、樹脂粒子濃度が10重
量%の研磨剤スラリーを調製した。この研磨剤スラリー
を用いて、スパッタリングで成膜したAl膜の付いたウ
ェハーを研磨した。研磨条件は、回転定盤の回転数50
0rpm、ウェハー保持台の回転数75rpm、研磨圧
力250g/cm2、研磨スラリー流量55ml/分、
研磨時間1分間で行った。Alの研磨速度は610オン
グストローム/分であった。
<Polishing Step and Washing Step> Aqueous ammonia and pure water were added to the methacrylic resin emulsion obtained above to prepare an alkaline slurry having a pH of 11 and a resin particle concentration of 10% by weight. Using this abrasive slurry, a wafer having an Al film formed by sputtering was polished. The polishing conditions were such that the number of rotations of the rotary platen was 50.
0 rpm, the number of rotations of the wafer holder 75 rpm, the polishing pressure 250 g / cm 2 , the polishing slurry flow rate 55 ml / min,
Polishing time was 1 minute. The polishing rate of Al was 610 Å / min.

【0028】この研磨ウエハーをスピン乾燥した結果、
表面に粒子が残存し、顕微IR分析の結果、メタアクリ
ル樹脂に由来するピークを確認した。この乾燥処理した
ウエハーを、200℃に加熱された石英板と150Wの
低圧水銀灯の間に置き、オゾン発生装置により発生した
オゾンをウエハー表面に供給しながら5分間粒子の除去
を行った。この時のオゾン濃度は2%であった。
As a result of spin-drying the polished wafer,
Particles remained on the surface, and as a result of microscopic IR analysis, a peak derived from the methacrylic resin was confirmed. The dried wafer was placed between a quartz plate heated to 200 ° C. and a 150 W low-pressure mercury lamp, and particles were removed for 5 minutes while supplying ozone generated by an ozone generator to the wafer surface. The ozone concentration at this time was 2%.

【0029】処理後の表面には粒子は残存しておらず、
顕微IR分析の結果、メタアクリル樹脂に由来するピー
クは消滅していた。その後CMP用ブラシ洗浄機におい
て樹脂粒子以外に混入してきた不純物を洗浄除去し、乾
燥処理後、ウエハー表面の粒子数を測定した結果、研磨
処理工程前の粒子レベルまで表面は清浄化されていた。
No particles remain on the surface after the treatment,
As a result of the microscopic IR analysis, the peak derived from the methacrylic resin had disappeared. After that, impurities introduced into the wafer other than the resin particles were removed by washing in a CMP brush washing machine, and after the drying treatment, the number of particles on the wafer surface was measured. As a result, the surface was cleaned to the particle level before the polishing treatment step.

【0030】[0030]

【発明の効果】以上説明したとおり、本発明により、研
磨の際に被加工面の表面に傷をつけたり、ディッシング
を発生させることがなく、研磨終了後に付着している粒
子を極めて容易に除去することが可能であるため、研磨
粒子の残留による半導体の信頼性の低下や、製品歩留ま
りの低下等の半導体製造における不良を引き起こすこと
がなく、しかも研磨工程と粒子除去工程の一体化が容易
であり、かつ実施のための装置が小型化されることによ
り、次の工程と切り離すためのクリーンルームそのもの
の巨大化を抑制することができるという優れた特徴を有
する半導体装置の製造方法及び半導体装置の製造装置を
提供することができた。
As described above, according to the present invention, it is possible to extremely easily remove particles adhering after completion of polishing without damaging the surface of the work surface or causing dishing during polishing. It is possible to reduce the reliability of the semiconductor due to the remaining abrasive particles, and to prevent defects in semiconductor manufacturing such as a decrease in product yield, and to easily integrate the polishing step and the particle removing step. In addition, a semiconductor device manufacturing method and an apparatus for manufacturing a semiconductor device having an excellent feature that the size of an apparatus for carrying out the process can be reduced, so that the size of the clean room itself to be separated from the next process can be suppressed. Could be provided.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 下記(A)研磨工程及び(B)洗浄工程
を含む半導体装置の製造方法。 (A)研磨工程:有機高分子化合物からなる粒子又は少
なくとも炭素を主成分とする粒子を研磨粒子として用い
て被加工膜を研磨する工程 (B)洗浄工程:研磨工程で得られた研磨後の被加工膜
に、主波長光線として紫外線を含む活性光線を照射し
て、研磨に用いた研磨粒子を洗浄除去する工程
1. A method for manufacturing a semiconductor device comprising the following (A) polishing step and (B) cleaning step. (A) Polishing step: a step of polishing a film to be processed using particles composed of an organic polymer compound or particles containing at least carbon as a main component (B) Cleaning step: After polishing obtained in the polishing step A step of irradiating the film to be processed with actinic rays containing ultraviolet rays as a main wavelength ray to wash and remove abrasive particles used for polishing.
【請求項2】 研磨粒子が乳化重合法で得られるメタク
リル樹脂、ポリスチレン系樹脂又はこれらと他のビニル
化合物との共重合で得られる樹脂である請求項1記載の
製造方法。
2. The method according to claim 1, wherein the abrasive particles are a methacrylic resin, a polystyrene resin obtained by an emulsion polymerization method, or a resin obtained by copolymerizing these with other vinyl compounds.
【請求項3】 活性光線をオゾンの存在下に照射するこ
とを特徴とする請求項1記載の製造方法。
3. The method according to claim 1, wherein the actinic ray is irradiated in the presence of ozone.
【請求項4】 活性光線が主波長300nm以下を含む
光線である請求項1又は2記載の製造方法。
4. The method according to claim 1, wherein the actinic ray is a ray containing a main wavelength of 300 nm or less.
【請求項5】 請求項1記載の研磨工程を実施する手段
及び洗浄工程を実施する手段を具備する半導体装置の製
造装置。
5. An apparatus for manufacturing a semiconductor device, comprising: means for performing a polishing step according to claim 1; and means for performing a cleaning step.
JP9080097A 1997-03-31 1997-03-31 Manufacture of semiconductor device and equipment for manufacturing semiconductor device Pending JPH10275788A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9080097A JPH10275788A (en) 1997-03-31 1997-03-31 Manufacture of semiconductor device and equipment for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9080097A JPH10275788A (en) 1997-03-31 1997-03-31 Manufacture of semiconductor device and equipment for manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
JPH10275788A true JPH10275788A (en) 1998-10-13

Family

ID=13708697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9080097A Pending JPH10275788A (en) 1997-03-31 1997-03-31 Manufacture of semiconductor device and equipment for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JPH10275788A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6800105B2 (en) 2000-01-11 2004-10-05 Sumitomo Chemical Company, Limited Abrasive for metal
WO2022201830A1 (en) * 2021-03-25 2022-09-29 株式会社Screenホールディングス Substrate processing method and substrate processing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6800105B2 (en) 2000-01-11 2004-10-05 Sumitomo Chemical Company, Limited Abrasive for metal
WO2022201830A1 (en) * 2021-03-25 2022-09-29 株式会社Screenホールディングス Substrate processing method and substrate processing device

Similar Documents

Publication Publication Date Title
US5348619A (en) Metal selective polymer removal
EP1044467A1 (en) Post-lapping cleaning process for silicon wafers
EP0019915B1 (en) Method for preventing the corrosion of al and al alloys
JP3172008B2 (en) Method for manufacturing semiconductor device
JPH09270402A (en) Cerium oxide abraisives and method of manufacturing substrate
JP3075352B2 (en) Method and apparatus for supplying chemical mechanical polishing liquid
WO2007048314A1 (en) A chemical mechanical polishing paste for copper
US20060094242A1 (en) Chemical mechanical polishing method, and washing/rinsing method associated therewith
TW200524031A (en) Silicon wafer reclamation method and reclaimed wafer
Song et al. Development of a novel wet cleaning solution for Post-CMP SiO2 and Si3N4 films
JP2002517090A (en) Alkali treatment after etching
JPH05326469A (en) Method of manufacturing semiconductor device
JP4482844B2 (en) Wafer cleaning method
US6312527B1 (en) Non-corrosive cleaning method for use in the manufacture of microelectronic device
JP2004307813A (en) Detergent composition for removing photoresist polymer
US5773360A (en) Reduction of surface contamination in post-CMP cleaning
WO2023218828A1 (en) Cleaning solution and wafer cleaning method
JPH10275788A (en) Manufacture of semiconductor device and equipment for manufacturing semiconductor device
US6530381B1 (en) Process for the wet-chemical surface treatment of a semiconductor wafer
JPH10275789A (en) Abrasive and polishing method
JP2003109920A (en) Slurry used for cmp and method of manufacturing semiconductor device
Wang et al. A modified multi-chemicals spray cleaning process for post-CMP cleaning application
JP4012643B2 (en) Chemical mechanical polishing aqueous dispersion for use in semiconductor device manufacture and method for manufacturing semiconductor device
JP2925751B2 (en) Method for manufacturing semiconductor device
KR100906043B1 (en) Method for cleaning a semiconductor device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20060711

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20060714

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees