JPH10270754A - Semiconductor light-emitting device and light-emitting lamp - Google Patents

Semiconductor light-emitting device and light-emitting lamp

Info

Publication number
JPH10270754A
JPH10270754A JP6942197A JP6942197A JPH10270754A JP H10270754 A JPH10270754 A JP H10270754A JP 6942197 A JP6942197 A JP 6942197A JP 6942197 A JP6942197 A JP 6942197A JP H10270754 A JPH10270754 A JP H10270754A
Authority
JP
Japan
Prior art keywords
light
layer
light emitting
emitting diode
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6942197A
Other languages
Japanese (ja)
Other versions
JP3439063B2 (en
Inventor
Katsumi Yagi
克己 八木
Yasuhiro Ueda
康博 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP06942197A priority Critical patent/JP3439063B2/en
Publication of JPH10270754A publication Critical patent/JPH10270754A/en
Application granted granted Critical
Publication of JP3439063B2 publication Critical patent/JP3439063B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor light-emitting device having improved optical output. SOLUTION: There are formed on a sapphire substrate 1, in the following order, an AlGaN buffer layer 21, an n-type GaN clad layer 2 which also serves as an n-side contact layer, an n-type InGaN active layer 3, a p-type AlGaN clad layer 4 and a p-type GaN contact layer 5. A portion of layers covering from the p-type GaN contact layer 5 to a predetermined depth of the n-type GaN clad layer 2 is removed to permit the n-type GaN clad layer 2 to be exposed. An n-side electrode 6 is formed on the exposed n-type GaN clad layer 2, while a p-side electrode 7 is formed on the p-type GaN contact layer 5. Then, a metal reflection film 8 is formed on the reverse side of the sapphire substrate 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体発光素子お
よびそれを用いた発光ランプに関する。
The present invention relates to a semiconductor light emitting device and a light emitting lamp using the same.

【0002】[0002]

【従来の技術】直接遷移型のバンド構造を有する窒化ガ
リウム(GaN)は、青色あるいは紫色の光を発生する
発光ダイオード、半導体レーザ素子等の半導体発光素子
の材料として注目されている。しかしながら、GaNか
らなる基板が存在しないため、GaN系半導体発光素子
を作製する際には、サファイヤ(Al2 3 )等の絶縁
性基板上に各層をエピタキシャル成長させている。
2. Description of the Related Art Gallium nitride (GaN) having a direct transition type band structure has attracted attention as a material for semiconductor light emitting devices such as light emitting diodes and semiconductor laser devices that emit blue or violet light. However, since there is no GaN substrate, when fabricating a GaN-based semiconductor light emitting device, each layer is epitaxially grown on an insulating substrate such as sapphire (Al 2 O 3 ).

【0003】図12は従来のGaN系発光ダイオードの
構造を示す模式的断面図である。図12において、サフ
ァイヤ基板1上に、AlGaNバッファ層1a、n側コ
ンタクト層を兼ねるn型GaNクラッド層2、n型In
GaN活性層(発光層)3、p型AlGaNクラッド層
4およびp型GaNコンタクト層5が順に形成されてい
る。p型GaNコンタクト層5からn型GaNクラッド
層2の所定深さまでの一部領域が除去され、n型GaN
クラッド層2が露出している。露出したn型GaNクラ
ッド層2上にn側電極6が形成され、p型GaNコンタ
クト5上にp側電極7が形成されている。
FIG. 12 is a schematic sectional view showing the structure of a conventional GaN-based light emitting diode. In FIG. 12, an AlGaN buffer layer 1a, an n-type GaN cladding layer 2 also serving as an n-side contact layer, an n-type In
A GaN active layer (light emitting layer) 3, a p-type AlGaN cladding layer 4, and a p-type GaN contact layer 5 are sequentially formed. Part of the region from the p-type GaN contact layer 5 to a predetermined depth of the n-type GaN cladding layer 2 is removed, and the n-type GaN
The cladding layer 2 is exposed. An n-side electrode 6 is formed on the exposed n-type GaN cladding layer 2, and a p-side electrode 7 is formed on the p-type GaN contact 5.

【0004】図13は図12の発光ダイオードを用いた
LEDランプの構造を示す概略断面図である。図13の
LEDランプでは、発光ダイオードチップ10aのサフ
ァイヤ基板1の裏面が銀ペーストや樹脂等の接着剤11
でリードフレーム12上に接着され、n側電極6がワイ
ヤ13でリードフレーム12に接続されるとともに、p
側電極7がワイヤ14で正極端子15に接続されてい
る。さらに、発光ダイオードチップ10a、リードフレ
ーム12および正極端子15が樹脂レンズ16で封入さ
れている。
FIG. 13 is a schematic sectional view showing the structure of an LED lamp using the light emitting diode of FIG. In the LED lamp of FIG. 13, the back surface of the sapphire substrate 1 of the light emitting diode chip 10a is formed of an adhesive 11 such as a silver paste or a resin.
And the n-side electrode 6 is connected to the lead frame 12 by a wire 13 and
The side electrode 7 is connected to the positive terminal 15 by a wire 14. Further, the light emitting diode chip 10a, the lead frame 12, and the positive terminal 15 are sealed with a resin lens 16.

【0005】[0005]

【発明が解決しようとする課題】図12の従来の発光ダ
イオードでは、n型GaNクラッド層2上にn側電極6
を設けるために、n型GaNクラッド層2よりも上の層
の面積をサファイヤ基板1の面積に比べて小さくする必
要がある。そのため、n型InGaN活性層3の面積が
小さくなるので発光面積が小さく、光出力が低くなる。
それにより、図12の発光ダイオードを用いたLEDラ
ンプでは、高い発光強度が得られない。
In the conventional light emitting diode shown in FIG. 12, an n-side electrode 6 is formed on an n-type GaN cladding layer 2.
Therefore, the area of the layer above the n-type GaN cladding layer 2 needs to be smaller than the area of the sapphire substrate 1. Therefore, the area of the n-type InGaN active layer 3 is reduced, so that the light emitting area is small and the light output is low.
Therefore, the LED lamp using the light emitting diode of FIG. 12 cannot obtain high light emission intensity.

【0006】また、n型InGaN活性層3で発光した
光のうちサファイヤ基板1の側へ出射される光は、接着
剤11で吸収されるために有効に利用されない。
Further, of the light emitted from the n-type InGaN active layer 3, the light emitted toward the sapphire substrate 1 is not effectively used because it is absorbed by the adhesive 11.

【0007】本発明の目的は、光出力が向上された半導
体発光素子を提供することである。本発明の他の目的
は、発光強度が向上された発光ランプを提供することで
ある。
An object of the present invention is to provide a semiconductor light emitting device having an improved light output. Another object of the present invention is to provide a light emitting lamp having an improved light emission intensity.

【0008】[0008]

【課題を解決するための手段および発明の効果】第1の
発明に係る半導体発光素子は、透光性基板上に発光層を
含む複数の半導体層が積層され、透光性基板の裏面に発
光層により発生された光を反射する反射層が形成された
ものである。
According to a first aspect of the present invention, there is provided a semiconductor light emitting device in which a plurality of semiconductor layers including a light emitting layer are laminated on a light transmitting substrate, and light is emitted on the back surface of the light transmitting substrate. A reflection layer for reflecting light generated by the layer is formed.

【0009】本発明に係る半導体発光素子においては、
発光層により発生された光のうち透光性基板を透過した
光が反射層で反射される。それにより、発光層により発
光された光が効率良く上方に出射されるので、光出力が
向上する。
In the semiconductor light emitting device according to the present invention,
Of the light generated by the light emitting layer, light transmitted through the light transmitting substrate is reflected by the reflective layer. Thereby, the light emitted by the light emitting layer is efficiently emitted upward, so that the light output is improved.

【0010】発光層はガリウムおよび窒素を含んでもよ
い。この場合、発光層から紫色から緑色の光が発生され
る。したがって、高い光出力の紫色から緑色の光が得ら
れる。
[0010] The light emitting layer may contain gallium and nitrogen. In this case, purple to green light is generated from the light emitting layer. Therefore, purple to green light with high light output is obtained.

【0011】反射層は金属膜からなってもよい。あるい
は反射層は、複数の誘電体層が積層されてなる誘電体反
射膜からなってもよい。誘電体反射膜は、第1の屈折率
を有する第1の誘電体層と第1の屈折率よりも大きい第
2の屈折率を有する第2の誘電体層とが交互に積層され
てなる。それにより、発光層から発生された光が効率良
く反射される。
[0011] The reflection layer may be made of a metal film. Alternatively, the reflection layer may be formed of a dielectric reflection film formed by laminating a plurality of dielectric layers. The dielectric reflection film is formed by alternately stacking first dielectric layers having a first refractive index and second dielectric layers having a second refractive index larger than the first refractive index. Thereby, light generated from the light emitting layer is efficiently reflected.

【0012】また、反射層が凹凸形状を有してもよい。
この場合、発光層により発生された光が種々の方向に反
射されるので、発光面積が大きくなるとともに、上面か
ら出射される光の量が多くなり、光出力が高くなる。
Further, the reflection layer may have an uneven shape.
In this case, since the light generated by the light emitting layer is reflected in various directions, the light emitting area increases, the amount of light emitted from the upper surface increases, and the light output increases.

【0013】第2の発明に係る発光ランプは、リードフ
レーム上に半導体発光素子が接着されてなる発光ランプ
において、半導体発光素子は、透光性基板上に発光層を
含む複数の半導体層が積層されるとともに、透光性基板
の裏面に発光層により発生される光を反射する反射層が
形成されたものである。
A light-emitting lamp according to a second aspect of the present invention is a light-emitting lamp in which a semiconductor light-emitting element is adhered on a lead frame. The semiconductor light-emitting element has a plurality of semiconductor layers including a light-emitting layer laminated on a light-transmitting substrate. In addition, a reflection layer that reflects light generated by the light emitting layer is formed on the back surface of the light transmitting substrate.

【0014】この場合、発光層により発生された光のう
ち透光性基板を透過した光が反射層により反射される。
それにより、発光層により発生された光が効率良く上方
に出射されるので、光ランプの発光強度が向上する。
In this case, of the light generated by the light emitting layer, the light transmitted through the light transmitting substrate is reflected by the reflective layer.
Thereby, the light generated by the light emitting layer is efficiently emitted upward, so that the light emission intensity of the light lamp is improved.

【0015】[0015]

【発明の実施の形態】図1は本発明の第1の実施例にお
けるGaN系発光ダイオードの構造を示す模式的断面図
である。
FIG. 1 is a schematic sectional view showing the structure of a GaN-based light emitting diode according to a first embodiment of the present invention.

【0016】図1において、層厚300μmのサファイ
ヤ基板1上に、層厚約200ÅのAlGaNバッファ層
1a、層厚4μmのn側コンタクト層を兼ねるn型Ga
Nクラッド層2、層厚0.1μmのn型InGaN活性
層(発光層)3、層厚0.15μmのp型AlGaNク
ラッド層4および層厚0.3μmのp型GaNコンタク
ト層5が順に形成されている。p型GaNコンタクト層
5からn型GaNクラッド層2の所定深さまでの一部領
域が除去され、n型GaNクラッド層2が露出してい
る。露出したn型GaNクラッド層2上にAlからなる
n側電極6が形成され、p型GaNコンタクト層5上に
Auからなるp側電極7が形成されている。
In FIG. 1, on a sapphire substrate 1 having a thickness of 300 μm, an AlGaN buffer layer 1 a having a thickness of about 200 ° and an n-type Ga serving also as an n-side contact layer having a thickness of 4 μm.
An N-clad layer 2, an n-type InGaN active layer (light-emitting layer) 3 having a thickness of 0.1 μm, a p-type AlGaN cladding layer 4 having a thickness of 0.15 μm, and a p-type GaN contact layer 5 having a thickness of 0.3 μm are formed in this order. Have been. Part of the region from the p-type GaN contact layer 5 to a predetermined depth of the n-type GaN cladding layer 2 is removed, exposing the n-type GaN cladding layer 2. An n-side electrode 6 made of Al is formed on the exposed n-type GaN cladding layer 2, and a p-side electrode 7 made of Au is formed on the p-type GaN contact layer 5.

【0017】また、サファイヤ基板1上の裏面にAlか
らなる金属反射膜8が形成されている。金属反射膜8の
形成方法としては、真空蒸着法またはスパッタ法を用い
る。真空蒸着法を用いる場合には、真空度を2×10-6
Torr程度とし、スパッタ法を用いる場合には、真空
度を1×10-3〜1×10-2Torr程度とする。
On the back surface of the sapphire substrate 1, a metal reflection film 8 made of Al is formed. As a method for forming the metal reflection film 8, a vacuum evaporation method or a sputtering method is used. When using the vacuum deposition method, the degree of vacuum is set to 2 × 10 −6.
When the sputtering method is used, the degree of vacuum is set to about 1 × 10 −3 to 1 × 10 −2 Torr.

【0018】金属反射膜8の膜厚は1000Å以上10
μm以下が好ましい。これにより、金属反射膜8を光が
ほどんど透過せず、かつ金属反射膜8の剥離が生じな
い。
The thickness of the metal reflection film 8 is not less than 1000.degree.
μm or less is preferred. Accordingly, light hardly transmits through the metal reflection film 8 and the metal reflection film 8 does not peel off.

【0019】本実施例の発光ダイオードでは、n型In
GaN活性層3により発生された光のうち下方に進む光
がサファイヤ基板1を透過し、金属反射膜8で上方に反
射される。それにより、発光ダイオードの上面から光が
効率良く出射され、光出力が向上する。
In the light emitting diode of this embodiment, the n-type In
Of the light generated by the GaN active layer 3, the light traveling downward passes through the sapphire substrate 1 and is reflected upward by the metal reflection film 8. Thereby, light is efficiently emitted from the upper surface of the light emitting diode, and the light output is improved.

【0020】図2は図1の発光ダイオードを用いたLE
Dランプの構造を示す概略断面図である。
FIG. 2 shows an LE using the light emitting diode of FIG.
It is a schematic sectional drawing which shows the structure of D lamp.

【0021】図2のLEDランプでは、発光ダイオード
チップ10の金属反射膜8の裏面が銀ペーストからなる
接着剤11でリードフレーム12上に接着されている。
また、n側電極6がワイヤ13でリードフレーム12に
接続され、p側電極7がワイヤ14で正極端子15に接
続されている。さらに、発光ダイオードチップ10、リ
ードフレーム12および正極端子15が樹脂レンズ16
で封入されている。
In the LED lamp of FIG. 2, the back surface of the metal reflection film 8 of the light emitting diode chip 10 is adhered to the lead frame 12 with an adhesive 11 made of silver paste.
The n-side electrode 6 is connected to the lead frame 12 by a wire 13, and the p-side electrode 7 is connected to a positive terminal 15 by a wire 14. Further, the light emitting diode chip 10, the lead frame 12, and the positive terminal 15 are
Enclosed.

【0022】図2のLEDランプでは、発光ダイオード
チップ10の上面から光が効率良く出射されるので、高
い発光強度が得られる。
In the LED lamp of FIG. 2, since light is efficiently emitted from the upper surface of the light emitting diode chip 10, high light emission intensity is obtained.

【0023】ここで、図1の構造を有する実施例の発光
ダイオードおよび図12の構造を有する比較例の発光ダ
イオードを作製し、光出力を測定した。実施例の発光ダ
イオードでは、金属反射膜8の膜厚を3000Åとし
た。比較例の発光ダイオードでは、サファイヤ基板1の
裏面に処理を行っていない。実施例および比較例の発光
ダイオードの光出力の測定結果を表1に示す。
Here, the light emitting diode of the example having the structure of FIG. 1 and the light emitting diode of the comparative example having the structure of FIG. 12 were manufactured, and the light output was measured. In the light-emitting diode of the example, the thickness of the metal reflection film 8 was 3000 °. In the light emitting diode of the comparative example, no treatment was performed on the back surface of the sapphire substrate 1. Table 1 shows the measurement results of the light output of the light emitting diodes of the example and the comparative example.

【0024】[0024]

【表1】 [Table 1]

【0025】表1に示すように、実施例の発光ダイオー
ドでは、比較例の発光ダイオードに比べて光出力が50
〜60%向上した。
As shown in Table 1, the light emitting diode of the embodiment has a light output of 50 times that of the light emitting diode of the comparative example.
Up to 60%.

【0026】次に、図2の構造を有する実施例のLED
ランプおよび図13の構造を有する比較例のLEDラン
プを作製し、発光強度を測定した。実施例のLEDラン
プでは、膜厚3000Åの金属反射膜8を有する発光ダ
イオードチップ10を銀ペースト11でリードフレーム
12上に接着した。比較例のLEDランプでは、発光ダ
イオードチップ10aを銀ペースト11でリードフレー
ム12上に接着した。実施例および比較例のLEDラン
プの発光強度の測定結果を表2に示す。
Next, the LED of the embodiment having the structure of FIG.
A lamp and an LED lamp of a comparative example having the structure of FIG. 13 were produced, and the light emission intensity was measured. In the LED lamp of the embodiment, a light emitting diode chip 10 having a metal reflection film 8 having a thickness of 3000 ° was bonded onto a lead frame 12 with a silver paste 11. In the LED lamp of the comparative example, the light emitting diode chip 10 a was bonded on the lead frame 12 with the silver paste 11. Table 2 shows the measurement results of the emission intensity of the LED lamps of the examples and the comparative examples.

【0027】[0027]

【表2】 [Table 2]

【0028】表2に示すように、実施例のLEDランプ
では、比較例のLEDランプに比べて発光強度が30〜
40%向上した。比較例のLEDランプの発光強度が実
施例のLEDランプに比べて低い理由としては、n型I
nGaN活性層3からの光を銀ペーストでは有効に反射
できないためである。これに対して、本実施例のLED
ランプでは、サファイヤ基板1の裏面に膜状の金属反射
膜8を備えているので有効に光を反射できる。
As shown in Table 2, the LED lamp of the embodiment has an emission intensity of 30 to 30 compared with the LED lamp of the comparative example.
40% improvement. The reason why the emission intensity of the LED lamp of the comparative example is lower than that of the LED lamp of the embodiment is that the n-type I
This is because light from the nGaN active layer 3 cannot be effectively reflected by the silver paste. In contrast, the LED of the present embodiment
Since the lamp has the film-shaped metal reflective film 8 on the back surface of the sapphire substrate 1, light can be reflected effectively.

【0029】なお、金属反射膜8の材料としては、Al
の他、Na、Au、Ag、K、Cu、Cr、Rb、M
g、Pd、Al、Ni、Ti等の金属を用いることもで
きる。
The material of the metal reflection film 8 is Al
And Na, Au, Ag, K, Cu, Cr, Rb, M
Metals such as g, Pd, Al, Ni, and Ti can also be used.

【0030】図3(a)は本発明の第2の実施例におけ
るGaN系発光ダイオードの模式的断面図である。図3
の発光ダイオードが図1の発光ダイオードと異なるの
は、サファイヤ基板1の裏面に金属反射膜8の代わりに
多層構造の誘電体反射膜9が形成されている点である。
FIG. 3A is a schematic sectional view of a GaN-based light emitting diode according to a second embodiment of the present invention. FIG.
1 is different from the light emitting diode of FIG. 1 in that a dielectric reflection film 9 having a multilayer structure is formed on the back surface of the sapphire substrate 1 instead of the metal reflection film 8.

【0031】図3(b)に示すように、誘電体反射膜9
は、SiO2 からなる第1の誘電体層9aとTiO2
らなる第2の誘電体層9bとが複数組交互に積層されて
なる。本実施例では、10組の第1の誘電体層9aおよ
び第2の誘電体層9bが用いられている。誘電体反射膜
9の形成方法としては、蒸着法、CVD法(化学的気相
成長法)、スパッタ法等を用いる。
As shown in FIG. 3B, the dielectric reflection film 9
It includes a second dielectric layer 9b made of a first dielectric layer 9a and TiO 2 of SiO 2 is laminated on the plurality of sets alternately. In this embodiment, ten pairs of first dielectric layers 9a and second dielectric layers 9b are used. As a method for forming the dielectric reflection film 9, an evaporation method, a CVD method (chemical vapor deposition), a sputtering method, or the like is used.

【0032】図4は誘電体反射膜9における光の反射の
原理を説明するための図である。図4(a)はサファイ
ア基板1および誘電体反射膜9を示し、図4(b)はn
型InGaN活性層3により発生される光を示す。ま
た、図4(c)は誘電体反射膜9によりサファイア基板
1の側に反射される光を示し、図4(d)は誘電体反射
膜9を透過する光を示す。
FIG. 4 is a view for explaining the principle of light reflection on the dielectric reflection film 9. FIG. 4A shows the sapphire substrate 1 and the dielectric reflection film 9, and FIG.
2 shows light generated by a type InGaN active layer 3. FIG. 4C shows light reflected by the dielectric reflection film 9 toward the sapphire substrate 1, and FIG. 4D shows light transmitted through the dielectric reflection film 9.

【0033】図4(a)に示すように、サファイヤ基板
1の屈折率をns とし、第1の誘電体層9aの屈折率を
a とし、第2の誘電体層9bの屈折率をnb とする。
ここでns >na 、nb >na である。また、λをn型
InGaN活性層3による発光波長とし、第1の誘電体
層9aの層厚をλ/4とし、第2の誘電体層9bの層厚
をλ/4とする。
As shown in FIG. 4 (a), the refractive index of the sapphire substrate 1 and n s, a refractive index of the first dielectric layer 9a and n a, the refractive index of the second dielectric layer 9b and n b.
Here, n s > n a and n b > n a . Further, λ is the emission wavelength of the n-type InGaN active layer 3, the thickness of the first dielectric layer 9a is λ / 4, and the thickness of the second dielectric layer 9b is λ / 4.

【0034】屈折率の小さい領域を進行する光は、屈折
率の大きい領域との界面で反射されるときに位相がλ/
2ずれる。逆に、屈折率の大きい領域を進行する光は、
屈折率の小さい領域との界面で反射されるときに位相が
ずれない。
Light traveling in a region having a small refractive index has a phase of λ / λ when reflected at an interface with a region having a large refractive index.
2 off. Conversely, light traveling in a region with a large refractive index is
The phase does not shift when reflected at the interface with the region having a small refractive index.

【0035】図4(c)において、サファイア基板1を
透過した光L1が界面91で反射される場合、位相がず
れないため、反射光の位相は0となる。サファイア基板
1および第1の誘電体層9aを透過した光L2が界面9
2で反射される場合、位相がλ/2ずれるため、反射光
の位相は界面92で(3λ)/4となり、界面91でλ
となる。サファイア基板1、第1の誘電体層9aおよび
第2の誘電体層9bを透過した光L3が界面93で反射
される場合、位相がずれないため、反射光の位相は界面
93でλ/2となり、界面92で(3λ)/4となり、
界面91でλとなる。このように、サファイヤ基板1の
側に反射される光の位相は0またはλであり、常に同位
相となる。
In FIG. 4C, when the light L1 transmitted through the sapphire substrate 1 is reflected at the interface 91, the phase of the reflected light is 0 because the phase is not shifted. The light L2 transmitted through the sapphire substrate 1 and the first dielectric layer 9a
2, the phase of the reflected light is (3λ) / 4 at the interface 92 and λ at the interface 91 because the phase is shifted by λ / 2.
Becomes When the light L3 transmitted through the sapphire substrate 1, the first dielectric layer 9a, and the second dielectric layer 9b is reflected at the interface 93, the phase does not shift. Therefore, the phase of the reflected light is λ / 2 at the interface 93. And (3λ) / 4 at the interface 92,
It becomes λ at the interface 91. Thus, the phase of the light reflected on the sapphire substrate 1 is 0 or λ, and is always the same.

【0036】図4(d)おいて、サファイヤ基板1、第
1の誘電体層9aおよび第2の誘電体層9bを透過した
光L4の位相は、界面93でλ/2となる。サファイヤ
基板1および第1の誘電体層9aを透過した光L5が界
面92で反射されると、位相がλ/2ずれるため、反射
光の位相は界面92で(3λ)/4となり、その反射光
が界面91で反射されると、位相がλ/2ずれるため、
その反射光の位相は界面91で(3λ)/2となり、界
面92で(7λ)/4となる。その光がさらに第2の誘
電体層9bを透過すると、その位相は界面93で2λと
なる。この場合、光L4および光L5が互いに打ち消し
合い、誘電体反射膜9を透過する光がなくなる。
In FIG. 4D, the phase of the light L4 transmitted through the sapphire substrate 1, the first dielectric layer 9a and the second dielectric layer 9b becomes λ / 2 at the interface 93. When the light L5 transmitted through the sapphire substrate 1 and the first dielectric layer 9a is reflected at the interface 92, the phase shifts by λ / 2, so that the phase of the reflected light becomes (3λ) / 4 at the interface 92, and the reflection When the light is reflected at the interface 91, the phase is shifted by λ / 2.
The phase of the reflected light is (3λ) / 2 at the interface 91 and (7λ) / 4 at the interface 92. When the light further passes through the second dielectric layer 9b, its phase becomes 2λ at the interface 93. In this case, the light L4 and the light L5 cancel each other, and no light passes through the dielectric reflection film 9.

【0037】したがって、第1の誘電体層9aおよび第
2の誘電体層9bの屈折率を考慮しない場合には、第1
の誘電体層9aおよび第2の誘電体層9bの層厚をn型
InGaN活性層3により発生された光の波長λの4分
の1に設定することにより、その光を誘電体反射膜9で
反射させることができる。
Therefore, if the refractive indices of the first dielectric layer 9a and the second dielectric layer 9b are not considered,
By setting the thicknesses of the dielectric layer 9a and the second dielectric layer 9b to 4 of the wavelength λ of the light generated by the n-type InGaN active layer 3, the light is converted to the dielectric reflection film 9 Can be reflected.

【0038】第1の誘電体層9aの屈折率na および第
2の誘電体層9bの屈折率nb を考慮した場合、第1の
誘電体層9aの層厚da および第2の誘電体層9bの層
厚d b は次式を満足するように設定する。
The refractive index n of the first dielectric layer 9aaAnd the first
Refractive index n of the second dielectric layer 9bbIs considered, the first
Layer thickness d of dielectric layer 9aaAnd the layer of the second dielectric layer 9b
Thickness d bIs set to satisfy the following equation.

【0039】da =λ/(4na ) ・・・(1) db =λ/(4nb ) ・・・(2) n型InGaN活性層3による発光波長λが470n
m、サファイヤ基板1の屈折率ns が1.78、第1の
誘電体層9aの屈折率na が1.47、第2の誘電体層
9bの屈折率nb が2.36である場合、上式(1),
(2)から、第1の誘電体層9aの層厚da は約800
Åとなり、第2の誘電体層9bの層厚dbは約500Å
となる。
[0039] d a = λ / (4n a ) ··· (1) d b = λ / (4n b) ··· (2) the emission wavelength due to n-type InGaN active layer 3 lambda is 470n
m, the refractive index n s of the sapphire substrate 1 is 1.78, the refractive index n a of the first dielectric layer 9a is 1.47, the refractive index n b of the second dielectric layer 9b is a 2.36 In the case, the above equation (1),
(2), the layer thickness d a of the first dielectric layer 9a is approximately 800
Å, and the layer thickness d b of the second dielectric layer 9b about 500Å
Becomes

【0040】図5は上記の誘電体反射膜9における反射
率の計算結果を示す図である。図5に示すように、第1
の誘電体層9aおよび第2の誘電体層9bが1組の場合
には、反射率が約41%となり、2組の場合には71%
となり、3組の場合には88%となり、4組の場合には
95%となる。すなわち、第1の誘電体層9aおよび第
2の誘電体層9bを3組または4組設けることにより、
Alからなる金属反射膜8とほぼ同等の反射率が得られ
る。このように、第1の誘電体層9aおよび第2の誘電
体層9bの組数を増加させるに従って、サファイヤ基板
1から誘電体反射膜9へ伝搬する光の反射率が増加す
る。
FIG. 5 is a diagram showing a calculation result of the reflectance of the dielectric reflection film 9 described above. As shown in FIG.
When one set of the dielectric layer 9a and the second dielectric layer 9b is one set, the reflectance is about 41%, and when two sets, the reflectance is 71%.
It becomes 88% in the case of three sets, and becomes 95% in the case of four sets. That is, by providing three or four sets of the first dielectric layer 9a and the second dielectric layer 9b,
Almost the same reflectance as the metal reflective film 8 made of Al can be obtained. As described above, as the number of sets of the first dielectric layer 9a and the second dielectric layer 9b increases, the reflectance of light propagating from the sapphire substrate 1 to the dielectric reflection film 9 increases.

【0041】なお、上記実施例では、第1の誘電体層9
aとして屈折率1.47のSiO2を用い、第2の誘電
体層9bとして屈折率2.36のTiO2 を用いている
が、第1の誘電体層9aとして、屈折率1.39のMg
O、屈折率1.63のAl23 を用いてもよく、第2
の誘電体層9bとして、屈折率2.1のZnOを用いて
もよい。また、第1の誘電体層9aとして、MgF2
LaF3 、NdF3 、CeF3 、BaF2 、CaF2
LiFを用いることもでき、第2の誘電体層9bとし
て、ZrO2 、CeO2 、TiO2 、ZnS、Bi2
3 、LiNbO3、LiTaO3 、BaTiO3 、Sr
TiO3 、KTaO3 を用いることもできる。
In the above embodiment, the first dielectric layer 9
As a, SiO 2 having a refractive index of 1.47 is used, and TiO 2 having a refractive index of 2.36 is used as the second dielectric layer 9b. However, as the first dielectric layer 9a, a refractive index of 1.39 is used. Mg
O, Al 2 O 3 having a refractive index of 1.63 may be used.
As the dielectric layer 9b, ZnO having a refractive index of 2.1 may be used. Further, as the first dielectric layer 9a, MgF 2 ,
LaF 3 , NdF 3 , CeF 3 , BaF 2 , CaF 2 ,
LiF can also be used, and as the second dielectric layer 9b, ZrO 2 , CeO 2 , TiO 2 , ZnS, Bi 2 O
3 , LiNbO 3 , LiTaO 3 , BaTiO 3 , Sr
TiO 3 and KTaO 3 can also be used.

【0042】図6(a)は本発明の第3の実施例におけ
るGaN系発光ダイオードの模式的断面図である。図6
(a)の発光ダイオードが図1の発光ダイオードと異な
るのは、サファイヤ基板1の裏面が対称な三角波状(の
こぎり刃波状)の凹凸形状に加工され、サファイヤ基板
1の裏面に金属反射膜18が凹凸形状に形成されている
点である。
FIG. 6A is a schematic sectional view of a GaN-based light emitting diode according to a third embodiment of the present invention. FIG.
1A is different from the light emitting diode of FIG. 1 in that the back surface of the sapphire substrate 1 is processed into a symmetrical triangular wave (sawtooth wave) uneven shape, and a metal reflection film 18 is formed on the back surface of the sapphire substrate 1. This is a point formed in an uneven shape.

【0043】サファイヤ基板1の裏面を凹凸形状に加工
するためには、CF4 ガスを用いたドライエッチング、
燐酸系のエッチング液を用いたウェットエッチング等の
化学的加工法またはダイシング用の切削工具を用いた機
械的加工法を用いる。
In order to process the back surface of the sapphire substrate 1 into an irregular shape, dry etching using CF 4 gas,
A chemical processing method such as wet etching using a phosphoric acid-based etching solution or a mechanical processing method using a cutting tool for dicing is used.

【0044】本実施例の発光ダイオードでは、n型In
GaN活性層3により発生された光のうちサファイア基
板1を透過した光が凹凸形状に形成された金属反射膜8
で種々の方向に反射される。これにより、発光面積が大
きくなり、かつ発光ダイオードの側面から出射される光
の量が減少し、上面から出射される光の量が増加する。
その結果、光出力が向上する。
In the light emitting diode of this embodiment, the n-type In
Among the light generated by the GaN active layer 3, the light transmitted through the sapphire substrate 1 is a metal reflection film 8 formed in an uneven shape.
Are reflected in various directions. Accordingly, the light emitting area increases, the amount of light emitted from the side surface of the light emitting diode decreases, and the amount of light emitted from the upper surface increases.
As a result, the light output is improved.

【0045】ここで、図6(a)の発光ダイオードの光
出力を図1の発光ダイオードの光出力と比較した。本実
施例の発光ダイオードでは、サファイヤ基板1の裏面を
図6(b)に示すように、対称な三角波状の凹凸形状に
加工した。溝の角度θを45°とし、溝の幅Wを40μ
mとした。また、図1および図6(a)の発光ダイオー
ドの幅Dは400μmとした。その結果、図6(a)の
発光ダイオードでは、図1の発光ダイオードに比べて光
出力が20%向上した。
Here, the light output of the light emitting diode of FIG. 6A was compared with the light output of the light emitting diode of FIG. In the light emitting diode of the present example, the back surface of the sapphire substrate 1 was processed into a symmetrical triangular wave-shaped unevenness as shown in FIG. The groove angle θ is 45 ° and the groove width W is 40μ.
m. The width D of the light emitting diode in FIGS. 1 and 6A was 400 μm. As a result, the light output of the light emitting diode of FIG. 6A was improved by 20% as compared with the light emitting diode of FIG.

【0046】なお、サファイヤ基板1の裏面の凹凸形状
は図7(a)に示すように、複数の溝が1方向に形成さ
れた形状であってもよい。また、図7(b)に示すよう
に、ピラミッド形状の突起が2次元的に配列されてもよ
い。さらに、図7(c)に示すように、六角錐形状の突
起が2次元的に配列されてもよい。
The concave and convex shape on the back surface of the sapphire substrate 1 may be a shape in which a plurality of grooves are formed in one direction, as shown in FIG. In addition, as shown in FIG. 7B, pyramid-shaped projections may be two-dimensionally arranged. Further, as shown in FIG. 7C, hexagonal pyramid-shaped projections may be two-dimensionally arranged.

【0047】図8は本発明の第4の実施例におけるGa
N系発光ダイオードの模式的断面図である。図8の発光
ダイオードが図6の発光ダイオードと異なるのは、サフ
ァイヤ基板1の裏面に形成された金属反射膜8が非対称
な三角波状(のこぎり刃状)となっている点である。
FIG. 8 shows Ga in the fourth embodiment of the present invention.
FIG. 3 is a schematic sectional view of an N-based light emitting diode. The light emitting diode of FIG. 8 differs from the light emitting diode of FIG. 6 in that the metal reflection film 8 formed on the back surface of the sapphire substrate 1 has an asymmetric triangular wave shape (saw blade shape).

【0048】本実施例の発光ダイオードでは、図8に矢
印で示すように、n型InGaN活性層3から発生され
た光のうちサファイヤ基板1を透過した光が金属反射膜
8で反射される。この場合、n側電極6の方向に反射さ
れる光の量が多くなる。これにより、従来の発光ダイオ
ードで非発光領域であったn側電極の領域が発光領域と
なり、発光ダイオードの上面の全体から光が均一に出射
される。
In the light emitting diode of this embodiment, as shown by arrows in FIG. 8, of the light generated from the n-type InGaN active layer 3, the light transmitted through the sapphire substrate 1 is reflected by the metal reflection film 8. In this case, the amount of light reflected in the direction of the n-side electrode 6 increases. Thereby, the region of the n-side electrode, which was a non-light emitting region in the conventional light emitting diode, becomes a light emitting region, and light is uniformly emitted from the entire upper surface of the light emitting diode.

【0049】図9は図8の発光ダイオードを用いたLE
Dランプの概略断面図である。また図10は図9のLE
Dランプの指向特性を示す図である。
FIG. 9 shows an LE using the light emitting diode of FIG.
It is a schematic sectional drawing of D lamp. FIG. 10 shows the LE of FIG.
It is a figure showing the directivity of a D lamp.

【0050】図9に示すように、発光ダイオードチップ
10は樹脂レンズ16の内部の中心部に配置される。図
8の発光ダイオードを用いた場合には、発光ダイオード
チップ10の上面の全体から光が均一に出射されるの
で、出射光の分布が中心軸Sに対して対称になる。それ
により、図10に実線で示すように、発光ダイオードチ
ップ10からの発光が中心軸に対して対称となる。これ
に対して、従来の発光ダイオードを用いた場合には、発
光ダイオードチップ10aのn側電極6の部分からは光
が出射されないので、図10に破線で示すように、発光
が中心軸Sに関して対称とならない。
As shown in FIG. 9, the light emitting diode chip 10 is disposed at the center inside the resin lens 16. When the light emitting diode of FIG. 8 is used, the light is uniformly emitted from the entire upper surface of the light emitting diode chip 10, and the distribution of the emitted light is symmetric with respect to the central axis S. Thereby, as shown by a solid line in FIG. 10, light emission from the light emitting diode chip 10 becomes symmetric with respect to the central axis. On the other hand, when a conventional light emitting diode is used, no light is emitted from the n-side electrode 6 of the light emitting diode chip 10a. Not symmetric.

【0051】図11は本発明の第5の実施例におけるG
aN系発光ダイオードの模式的断面図である。図11の
発光ダイオードが図6の発光ダイオードと異なるのは、
サファイヤ基板1の裏面に形成される金属反射膜8が凹
レンズ形状となっている点である。
FIG. 11 shows G in the fifth embodiment of the present invention.
FIG. 2 is a schematic sectional view of an aN-based light emitting diode. The difference between the light emitting diode of FIG. 11 and the light emitting diode of FIG.
The point is that the metal reflection film 8 formed on the back surface of the sapphire substrate 1 has a concave lens shape.

【0052】本実施例の発光ダイオードでは、n型In
GaN活性層3により発生される光のうちサファイヤ基
板1を透過した光が、金属反射膜8で上方に反射され
る。この場合、金属反射膜8が凹レンズ形状となってい
るので、反射される光の大部分が発光ダイオードの上面
に集中し、側面から出射する光の量が少なくなる。それ
により、発光ダイオードの光出力が向上する。
In the light emitting diode of this embodiment, the n-type In
Of the light generated by the GaN active layer 3, the light transmitted through the sapphire substrate 1 is reflected upward by the metal reflection film 8. In this case, since the metal reflection film 8 has a concave lens shape, most of the reflected light is concentrated on the upper surface of the light emitting diode, and the amount of light emitted from the side surface is reduced. Thereby, the light output of the light emitting diode is improved.

【0053】図11の発光ダイオードの光出力を図1の
発光ダイオードの光出力と比較した。図11の発光ダイ
オードでは、図1の発光ダイオードに比べて光出力が4
0%向上した。
The light output of the light emitting diode of FIG. 11 was compared with the light output of the light emitting diode of FIG. The light emitting diode of FIG. 11 has a light output of 4 compared to the light emitting diode of FIG.
0% improvement.

【0054】上記実施例では、本発明をGaN系発光ダ
イオードに適用した場合を説明したが、本発明は、透光
性基板上に形成された他の材料系の発光ダイオード、半
導体レーザ素子等の半導体発光素子にも適用することが
できる。
In the above embodiment, the case where the present invention is applied to a GaN-based light-emitting diode has been described. However, the present invention is applicable to a light-emitting diode and a semiconductor laser device of another material formed on a light-transmitting substrate. The present invention can be applied to a semiconductor light emitting device.

【0055】また、透過性基板としては、サファイア基
板の他、SiC基板、MgO基板を用いてもよい。
As the transparent substrate, an SiC substrate or an MgO substrate may be used in addition to the sapphire substrate.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例におけるGaN系発光ダ
イオードの模式的断面図である。
FIG. 1 is a schematic sectional view of a GaN-based light emitting diode according to a first embodiment of the present invention.

【図2】図1の発光ダイオードを用いたLEDランプの
概略断面図である。
FIG. 2 is a schematic sectional view of an LED lamp using the light emitting diode of FIG.

【図3】本発明の第2の実施例におけるGaN系発光ダ
イオードの模式的断面図である。
FIG. 3 is a schematic sectional view of a GaN-based light emitting diode according to a second embodiment of the present invention.

【図4】誘電体反射膜における光の反射の原理を説明す
るための図である。
FIG. 4 is a diagram for explaining the principle of light reflection on a dielectric reflection film.

【図5】誘電体反射膜における光の反射率の計算結果を
示す図である。
FIG. 5 is a diagram showing a calculation result of light reflectance of a dielectric reflection film.

【図6】本発明の第3の実施例におけるGaN系発光ダ
イオードの模式的断面図およびサファイヤ基板の裏面の
凹凸形状を示す図である。
FIG. 6 is a schematic cross-sectional view of a GaN-based light-emitting diode and a diagram showing an uneven shape on the back surface of a sapphire substrate according to a third embodiment of the present invention.

【図7】図6の発光ダイオードにおける金属反射膜の凹
凸形状の例を示す平面図である。
FIG. 7 is a plan view showing an example of an uneven shape of a metal reflection film in the light emitting diode of FIG.

【図8】本発明の第4の実施例におけるGaN系発光ダ
イオードの模式的断面図である。
FIG. 8 is a schematic sectional view of a GaN-based light emitting diode according to a fourth embodiment of the present invention.

【図9】図8の発光ダイオードを用いたLEDランプの
概略断面図である。
FIG. 9 is a schematic sectional view of an LED lamp using the light emitting diode of FIG.

【図10】図9のLEDランプの指向特性を示す図であ
る。
FIG. 10 is a diagram showing the directional characteristics of the LED lamp of FIG. 9;

【図11】本発明の第5の実施例におけるGaN系発光
ダイオードの模式的断面図である。
FIG. 11 is a schematic sectional view of a GaN-based light emitting diode according to a fifth embodiment of the present invention.

【図12】従来のGaN系発光ダイオードの模式的断面
図である。
FIG. 12 is a schematic sectional view of a conventional GaN-based light emitting diode.

【図13】図12の発光ダイオードを用いたLEDラン
プの概略断面図である。
FIG. 13 is a schematic sectional view of an LED lamp using the light emitting diode of FIG.

【符号の説明】[Explanation of symbols]

1 サファイヤ基板 1a AlGaNバッファ層 2 n型GaNクラッド層 3 n型InGaN活性層 4 p型AlGaNクラッド層 5 p型GaNコンタクト層 6 n側電極 7 p側電極 8 金属反射膜 9 誘電体反射膜 9a 第1の誘電体層 9b 第2の誘電体層 10 発光ダイオードチップ 11 銀ペースト 12 リードフレーム 15 正極端子 16 樹脂レンズ Reference Signs List 1 sapphire substrate 1a AlGaN buffer layer 2 n-type GaN cladding layer 3 n-type InGaN active layer 4 p-type AlGaN cladding layer 5 p-type GaN contact layer 6 n-side electrode 7 p-side electrode 8 metal reflection film 9 dielectric reflection film 9a 1 dielectric layer 9b 2nd dielectric layer 10 Light emitting diode chip 11 Silver paste 12 Lead frame 15 Positive terminal 16 Resin lens

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 透光性基板上に発光層を含む複数の半導
体層が積層されるとともに、前記透光性基板の裏面に前
記発光層により発生された光を反射する反射層が形成さ
れたことを特徴とする半導体発光素子。
1. A plurality of semiconductor layers including a light-emitting layer are laminated on a light-transmitting substrate, and a reflection layer for reflecting light generated by the light-emitting layer is formed on a back surface of the light-transmitting substrate. A semiconductor light emitting device characterized by the above-mentioned.
【請求項2】 前記発光層はガリウムおよび窒素を含む
ことを特徴とする請求項1記載の半導体発光素子。
2. The semiconductor light emitting device according to claim 1, wherein said light emitting layer contains gallium and nitrogen.
【請求項3】 前記反射層は金属膜であることを特徴と
する請求項1または2記載の半導体発光素子。
3. The semiconductor light emitting device according to claim 1, wherein said reflection layer is a metal film.
【請求項4】 前記反射層は、複数の誘電体層が積層さ
れてなる誘電体反射膜であることを特徴とする請求項1
または2記載の半導体発光素子。
4. The reflection layer according to claim 1, wherein the reflection layer is a dielectric reflection film formed by laminating a plurality of dielectric layers.
Or the semiconductor light emitting device according to 2.
【請求項5】 前記誘電体反射膜は、第1の屈折率を有
する第1の誘電体層と前記第1の屈折率よりも大きい第
2の屈折率を有する第2の誘電体層とが交互に積層され
てなることを特徴とする請求項4記載の半導体発光素
子。
5. The dielectric reflection film includes a first dielectric layer having a first refractive index and a second dielectric layer having a second refractive index larger than the first refractive index. The semiconductor light emitting device according to claim 4, wherein the semiconductor light emitting device is alternately stacked.
【請求項6】 前記反射層が凹凸形状を有することを特
徴とする請求項1〜5のいずれかに記載の半導体発光素
子。
6. The semiconductor light emitting device according to claim 1, wherein said reflection layer has an uneven shape.
【請求項7】 リードフレーム上に半導体発光素子が接
着されてなる発光ランプにおいて、前記半導体発光素子
は、透光性基板上に発光層を含む複数の半導体層が積層
されるとともに、前記透光性基板の裏面に前記発光層に
より発生される光を反射する反射層が形成されてなるこ
とを特徴とする発光ランプ。
7. A light-emitting lamp in which a semiconductor light-emitting element is adhered on a lead frame, wherein the semiconductor light-emitting element has a structure in which a plurality of semiconductor layers including a light-emitting layer are laminated on a light-transmitting substrate, and A light-emitting lamp, wherein a reflective layer for reflecting light generated by the light-emitting layer is formed on a back surface of the conductive substrate.
JP06942197A 1997-03-24 1997-03-24 Semiconductor light emitting device and light emitting lamp Expired - Fee Related JP3439063B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06942197A JP3439063B2 (en) 1997-03-24 1997-03-24 Semiconductor light emitting device and light emitting lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06942197A JP3439063B2 (en) 1997-03-24 1997-03-24 Semiconductor light emitting device and light emitting lamp

Publications (2)

Publication Number Publication Date
JPH10270754A true JPH10270754A (en) 1998-10-09
JP3439063B2 JP3439063B2 (en) 2003-08-25

Family

ID=13402144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06942197A Expired - Fee Related JP3439063B2 (en) 1997-03-24 1997-03-24 Semiconductor light emitting device and light emitting lamp

Country Status (1)

Country Link
JP (1) JP3439063B2 (en)

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10308532A (en) * 1997-05-06 1998-11-17 Sony Corp Semiconductor light-emitting element
JP2002280611A (en) * 2001-03-21 2002-09-27 Mitsubishi Cable Ind Ltd Semiconductor light-emitting element
JP2003078167A (en) * 2001-08-31 2003-03-14 Abel Systems Inc Light emitting diode and its manufacturing method
EP1323215A1 (en) * 2000-07-26 2003-07-02 American Xtal Technology, Inc. Improved transparent substrate light emitting diode
JP2004056088A (en) * 2002-05-31 2004-02-19 Toyoda Gosei Co Ltd Iii nitride compound semiconductor light-emitting element
JP2004511080A (en) * 1999-12-03 2004-04-08 クリー インコーポレイテッド Light-emitting diodes with improved light extraction by internal and external optical elements
JP2004128507A (en) * 2002-09-30 2004-04-22 Osram Opto Semiconductors Gmbh Semiconductor chip for emitting electromagnetic beam and its manufacturing method
WO2004057682A1 (en) * 2002-12-20 2004-07-08 Showa Denko K.K. Light-emitting device, method for manufacturing same, and led lamp
JP2004221112A (en) * 2003-01-09 2004-08-05 Sharp Corp Oxide semiconductor light emitting element
JP2004260111A (en) * 2003-02-27 2004-09-16 Sharp Corp Semiconductor light-emitting element and semiconductor light-emitting device using the same
JP2004281445A (en) * 2003-03-12 2004-10-07 Sanyo Electric Co Ltd Laminated light emitting diode element
JP2004296459A (en) * 2003-03-25 2004-10-21 Sharp Corp Oxide semiconductor light-emitting device and manufacturing method thereof
JP2004335559A (en) * 2003-04-30 2004-11-25 Nichia Chem Ind Ltd Semiconductor element using group iii nitride substrate
JP2005047718A (en) * 2003-07-28 2005-02-24 Kyocera Corp Single crystal sapphire substrate for semiconductor element, its manufacturing method, and semiconductor light-emitting device
WO2005050748A1 (en) * 2003-11-19 2005-06-02 Nichia Corporation Semiconductor device and method for manufacturing same
JP2005183911A (en) * 2003-12-23 2005-07-07 Samsung Electro Mech Co Ltd Nitride semiconductor light-emitting element and method of manufacturing the same
US6960485B2 (en) 2000-03-31 2005-11-01 Toyoda Gosei Co., Ltd. Light-emitting device using a group III nitride compound semiconductor and a method of manufacture
JP2005354020A (en) * 2004-05-10 2005-12-22 Univ Meijo Semiconductor light-emitting device manufacturing method and semiconductor light-emitting device
US7053420B2 (en) 2001-03-21 2006-05-30 Mitsubishi Cable Industries, Ltd. GaN group semiconductor light-emitting element with concave and convex structures on the substrate and a production method thereof
JP2006191103A (en) * 2005-01-03 2006-07-20 Samsung Electro Mech Co Ltd Nitride semiconductor light-emitting device
US7161301B2 (en) * 2003-01-30 2007-01-09 Epistar Corporation Nitride light-emitting device having an adhesive reflecting layer
JP2007096300A (en) * 2005-09-26 2007-04-12 Samsung Electro Mech Co Ltd Gallium nitride based semiconductor light emitting device and method of manufacturing same
JP2007123449A (en) * 2005-10-26 2007-05-17 Matsushita Electric Works Ltd Manufacturing method of optic, and light-emitting device
JP2007531302A (en) * 2004-03-30 2007-11-01 ゴールデンアイ、インコーポレイテッド Lighting system using light emitting diodes and light recycling to increase output radiance
JP2008004948A (en) * 2006-06-09 2008-01-10 Philips Lumileds Lightng Co Llc Low profile side emitting led
JP2009004625A (en) * 2007-06-22 2009-01-08 Sanken Electric Co Ltd Semiconductor light emitting device
WO2009099187A1 (en) * 2008-02-07 2009-08-13 Showa Denko K.K. Compound semiconductor light-emitting diode
JP2009533883A (en) * 2006-04-21 2009-09-17 ウエイブニクス インク. High efficiency light emitting diode having multilayer reflector structure and manufacturing method thereof
JP2009289918A (en) * 2008-05-28 2009-12-10 Alps Electric Co Ltd Semiconductor light-emitting device
WO2011027679A1 (en) * 2009-09-07 2011-03-10 エルシード株式会社 Semiconductor light emitting element
JP2011082248A (en) * 2009-10-05 2011-04-21 Showa Denko Kk Semiconductor light emitting element and method of manufacturing the same, and lamp
KR101047792B1 (en) 2010-04-23 2011-07-07 엘지이노텍 주식회사 Light emitting device, method of fabricating the light emitting device and light emitting device package
CN102130255A (en) * 2010-09-28 2011-07-20 映瑞光电科技(上海)有限公司 Light-emitting diode (LED), light emitting device and LED manufacturing method
JP2011199290A (en) * 2010-03-22 2011-10-06 Lg Innotek Co Ltd Light emitting device, light emitting package and illumination system
WO2011145504A1 (en) * 2010-05-21 2011-11-24 日本電気株式会社 Light source unit and image display device
CN102610711A (en) * 2011-01-25 2012-07-25 三星钻石工业股份有限公司 Method for manufacturing LED chip
JP2013501374A (en) * 2009-08-03 2013-01-10 ニューポート コーポレーション High power LED device architecture and manufacturing method using dielectric coating
JP2013516761A (en) * 2009-12-30 2013-05-13 ニューポート コーポレーション LED device architecture and manufacturing method using a novel optical coating
KR20130105798A (en) * 2013-09-02 2013-09-26 서울바이오시스 주식회사 Light emitting diode chip and method of fabricating the same
JP2014500629A (en) * 2010-12-24 2014-01-09 ソウル バイオシス カンパニー リミテッド Light emitting diode chip and method of manufacturing the same
US8878218B2 (en) 2012-10-17 2014-11-04 Nichia Corporation Semiconductor light-emitting device and method for manufacturing the same
US9000468B2 (en) 2001-10-26 2015-04-07 Lg Innotek Co., Ltd. Diode having vertical structure
US9136424B2 (en) 2001-07-17 2015-09-15 Lg Innotek Co., Ltd. Diode having high brightness and method thereof
US9406837B2 (en) 2001-10-22 2016-08-02 Lg Innotek Co., Ltd Method of making diode having reflective layer
JP2017085081A (en) * 2015-10-23 2017-05-18 ソウル バイオシス カンパニー リミテッドSeoul Viosys Co.,Ltd. Light emitting diode chip having distributed bragg reflector
WO2018025805A1 (en) * 2016-08-02 2018-02-08 スタンレー電気株式会社 Semiconductor light emitting element and method for producing same
JP2019145568A (en) * 2018-02-16 2019-08-29 京セラ株式会社 Package for light emitting element storage, light emitting device, and light emitting module
JP2020035934A (en) * 2018-08-30 2020-03-05 日亜化学工業株式会社 Light-emitting device
JP2020181995A (en) * 2020-07-21 2020-11-05 日亜化学工業株式会社 Light-emitting device, method for manufacturing the same, and display device

Cited By (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10308532A (en) * 1997-05-06 1998-11-17 Sony Corp Semiconductor light-emitting element
EP1234344B1 (en) * 1999-12-03 2020-12-02 Cree, Inc. Enhanced light extraction in leds through the use of internal and external optical elements
JP2004511080A (en) * 1999-12-03 2004-04-08 クリー インコーポレイテッド Light-emitting diodes with improved light extraction by internal and external optical elements
US6960485B2 (en) 2000-03-31 2005-11-01 Toyoda Gosei Co., Ltd. Light-emitting device using a group III nitride compound semiconductor and a method of manufacture
EP1323215A1 (en) * 2000-07-26 2003-07-02 American Xtal Technology, Inc. Improved transparent substrate light emitting diode
EP1323215A4 (en) * 2000-07-26 2006-11-15 Lumei Optoelectronics Corp Improved transparent substrate light emitting diode
JP2002280611A (en) * 2001-03-21 2002-09-27 Mitsubishi Cable Ind Ltd Semiconductor light-emitting element
US7053420B2 (en) 2001-03-21 2006-05-30 Mitsubishi Cable Industries, Ltd. GaN group semiconductor light-emitting element with concave and convex structures on the substrate and a production method thereof
US10147841B2 (en) 2001-07-17 2018-12-04 Lg Innotek Co., Ltd. Diode having high brightness and method thereof
US9640713B2 (en) 2001-07-17 2017-05-02 Lg Innotek Co., Ltd. Diode having high brightness and method thereof
US10553744B2 (en) 2001-07-17 2020-02-04 Lg Innotek Co., Ltd. Diode having high brightness and method thereof
US9136424B2 (en) 2001-07-17 2015-09-15 Lg Innotek Co., Ltd. Diode having high brightness and method thereof
JP4704628B2 (en) * 2001-08-31 2011-06-15 アーベル・システムズ株式会社 Light emitting diode
JP2003078167A (en) * 2001-08-31 2003-03-14 Abel Systems Inc Light emitting diode and its manufacturing method
US9406837B2 (en) 2001-10-22 2016-08-02 Lg Innotek Co., Ltd Method of making diode having reflective layer
US9620677B2 (en) 2001-10-26 2017-04-11 Lg Innotek Co., Ltd. Diode having vertical structure
US10032959B2 (en) 2001-10-26 2018-07-24 Lg Innotek Co., Ltd. Diode having vertical structure
US9000468B2 (en) 2001-10-26 2015-04-07 Lg Innotek Co., Ltd. Diode having vertical structure
US10326055B2 (en) 2001-10-26 2019-06-18 Lg Innotek Co., Ltd. Diode having vertical structure
JP2004056088A (en) * 2002-05-31 2004-02-19 Toyoda Gosei Co Ltd Iii nitride compound semiconductor light-emitting element
JP2004128507A (en) * 2002-09-30 2004-04-22 Osram Opto Semiconductors Gmbh Semiconductor chip for emitting electromagnetic beam and its manufacturing method
US7655488B2 (en) 2002-09-30 2010-02-02 Osram Gmbh Method for fabricating a plurality of electromagnetic radiation emitting semiconductor chips
WO2004057682A1 (en) * 2002-12-20 2004-07-08 Showa Denko K.K. Light-emitting device, method for manufacturing same, and led lamp
CN100361322C (en) * 2002-12-20 2008-01-09 昭和电工株式会社 Light-emitting device, method of fabricating the device, and LED lamp using the device
JP2004221112A (en) * 2003-01-09 2004-08-05 Sharp Corp Oxide semiconductor light emitting element
US7161301B2 (en) * 2003-01-30 2007-01-09 Epistar Corporation Nitride light-emitting device having an adhesive reflecting layer
JP2004260111A (en) * 2003-02-27 2004-09-16 Sharp Corp Semiconductor light-emitting element and semiconductor light-emitting device using the same
JP2004281445A (en) * 2003-03-12 2004-10-07 Sanyo Electric Co Ltd Laminated light emitting diode element
JP2004296459A (en) * 2003-03-25 2004-10-21 Sharp Corp Oxide semiconductor light-emitting device and manufacturing method thereof
JP2004335559A (en) * 2003-04-30 2004-11-25 Nichia Chem Ind Ltd Semiconductor element using group iii nitride substrate
JP2005047718A (en) * 2003-07-28 2005-02-24 Kyocera Corp Single crystal sapphire substrate for semiconductor element, its manufacturing method, and semiconductor light-emitting device
JP4593890B2 (en) * 2003-07-28 2010-12-08 京セラ株式会社 Manufacturing method of semiconductor light emitting device
CN100459189C (en) * 2003-11-19 2009-02-04 日亚化学工业株式会社 Semiconductor element and manufacturing method for the same
WO2005050748A1 (en) * 2003-11-19 2005-06-02 Nichia Corporation Semiconductor device and method for manufacturing same
US7183586B2 (en) 2003-11-19 2007-02-27 Nichia Corporation Semiconductor element and manufacturing method for the same
JP2005183911A (en) * 2003-12-23 2005-07-07 Samsung Electro Mech Co Ltd Nitride semiconductor light-emitting element and method of manufacturing the same
JP2007531302A (en) * 2004-03-30 2007-11-01 ゴールデンアイ、インコーポレイテッド Lighting system using light emitting diodes and light recycling to increase output radiance
JP2005354020A (en) * 2004-05-10 2005-12-22 Univ Meijo Semiconductor light-emitting device manufacturing method and semiconductor light-emitting device
JP2006191103A (en) * 2005-01-03 2006-07-20 Samsung Electro Mech Co Ltd Nitride semiconductor light-emitting device
JP2007096300A (en) * 2005-09-26 2007-04-12 Samsung Electro Mech Co Ltd Gallium nitride based semiconductor light emitting device and method of manufacturing same
JP2009278139A (en) * 2005-09-26 2009-11-26 Samsung Electro Mech Co Ltd Gallium nitride-based semiconductor light emitting device and method of manufacturing the same
JP2007123449A (en) * 2005-10-26 2007-05-17 Matsushita Electric Works Ltd Manufacturing method of optic, and light-emitting device
JP2009533883A (en) * 2006-04-21 2009-09-17 ウエイブニクス インク. High efficiency light emitting diode having multilayer reflector structure and manufacturing method thereof
JP2008004948A (en) * 2006-06-09 2008-01-10 Philips Lumileds Lightng Co Llc Low profile side emitting led
JP2009004625A (en) * 2007-06-22 2009-01-08 Sanken Electric Co Ltd Semiconductor light emitting device
WO2009099187A1 (en) * 2008-02-07 2009-08-13 Showa Denko K.K. Compound semiconductor light-emitting diode
JP2009212500A (en) * 2008-02-07 2009-09-17 Showa Denko Kk Compound semiconductor light-emitting diode
JP2009289918A (en) * 2008-05-28 2009-12-10 Alps Electric Co Ltd Semiconductor light-emitting device
JP2013501374A (en) * 2009-08-03 2013-01-10 ニューポート コーポレーション High power LED device architecture and manufacturing method using dielectric coating
WO2011027679A1 (en) * 2009-09-07 2011-03-10 エルシード株式会社 Semiconductor light emitting element
JPWO2011027679A1 (en) * 2009-09-07 2013-02-04 エルシード株式会社 Semiconductor light emitting device
JP2013042162A (en) * 2009-09-07 2013-02-28 El-Seed Corp Semiconductor light emitting element
US8941136B2 (en) 2009-09-07 2015-01-27 El-Seed Corporation Semiconductor light emitting element
JP2016146502A (en) * 2009-09-07 2016-08-12 エルシード株式会社 Semiconductor light-emitting element
CN102484183A (en) * 2009-09-07 2012-05-30 崇高种子公司 Semiconductor light emitting element
JP2011176379A (en) * 2009-09-07 2011-09-08 El-Seed Corp Semiconductor light emitting element
JP4768894B2 (en) * 2009-09-07 2011-09-07 エルシード株式会社 Semiconductor light emitting device
JP2011082248A (en) * 2009-10-05 2011-04-21 Showa Denko Kk Semiconductor light emitting element and method of manufacturing the same, and lamp
JP2013516761A (en) * 2009-12-30 2013-05-13 ニューポート コーポレーション LED device architecture and manufacturing method using a novel optical coating
JP2011199290A (en) * 2010-03-22 2011-10-06 Lg Innotek Co Ltd Light emitting device, light emitting package and illumination system
KR101047792B1 (en) 2010-04-23 2011-07-07 엘지이노텍 주식회사 Light emitting device, method of fabricating the light emitting device and light emitting device package
US8431945B2 (en) 2010-04-23 2013-04-30 Lg Innotek Co., Ltd. Light emitting device, light emitting device package, and lighting system
WO2011145504A1 (en) * 2010-05-21 2011-11-24 日本電気株式会社 Light source unit and image display device
CN102130255A (en) * 2010-09-28 2011-07-20 映瑞光电科技(上海)有限公司 Light-emitting diode (LED), light emitting device and LED manufacturing method
JP2014500629A (en) * 2010-12-24 2014-01-09 ソウル バイオシス カンパニー リミテッド Light emitting diode chip and method of manufacturing the same
JP2017028305A (en) * 2010-12-24 2017-02-02 ソウル バイオシス カンパニー リミテッドSeoul Viosys Co.,Ltd. Light-emitting diode chip and method of manufacturing the same
JP2015179856A (en) * 2010-12-24 2015-10-08 ソウル バイオシス カンパニー リミテッドSeoul Viosys Co.,Ltd. Light emitting diode chip and method of fabricating the same
JP2018101814A (en) * 2010-12-24 2018-06-28 ソウル バイオシス カンパニー リミテッドSeoul Viosys Co.,Ltd. Light emitting diode package
JP2018170524A (en) * 2010-12-24 2018-11-01 ソウル バイオシス カンパニー リミテッドSeoul Viosys Co.,Ltd. Light emitting diode package
JP2012156217A (en) * 2011-01-25 2012-08-16 Mitsuboshi Diamond Industrial Co Ltd Led chip manufacturing method
KR101390115B1 (en) * 2011-01-25 2014-04-28 미쓰보시 다이야몬도 고교 가부시키가이샤 Manufacturing method of led chip
CN102610711A (en) * 2011-01-25 2012-07-25 三星钻石工业股份有限公司 Method for manufacturing LED chip
US8878218B2 (en) 2012-10-17 2014-11-04 Nichia Corporation Semiconductor light-emitting device and method for manufacturing the same
KR20130105798A (en) * 2013-09-02 2013-09-26 서울바이오시스 주식회사 Light emitting diode chip and method of fabricating the same
JP2017085081A (en) * 2015-10-23 2017-05-18 ソウル バイオシス カンパニー リミテッドSeoul Viosys Co.,Ltd. Light emitting diode chip having distributed bragg reflector
JP2018088535A (en) * 2015-10-23 2018-06-07 ソウル バイオシス カンパニー リミテッドSeoul Viosys Co.,Ltd. Light-emitting diode chip with distributed Bragg reflector
US10727371B2 (en) 2016-08-02 2020-07-28 Stanley Electric Co., Ltd. Semiconductor light-emitting element and method for producing same
WO2018025805A1 (en) * 2016-08-02 2018-02-08 スタンレー電気株式会社 Semiconductor light emitting element and method for producing same
JP2019145568A (en) * 2018-02-16 2019-08-29 京セラ株式会社 Package for light emitting element storage, light emitting device, and light emitting module
JP2020035934A (en) * 2018-08-30 2020-03-05 日亜化学工業株式会社 Light-emitting device
JP2020181995A (en) * 2020-07-21 2020-11-05 日亜化学工業株式会社 Light-emitting device, method for manufacturing the same, and display device

Also Published As

Publication number Publication date
JP3439063B2 (en) 2003-08-25

Similar Documents

Publication Publication Date Title
JP3439063B2 (en) Semiconductor light emitting device and light emitting lamp
TWI819258B (en) Light emitting diode chip
JP3326545B2 (en) Semiconductor light emitting device
US6369506B1 (en) Light emitting apparatus and method for mounting light emitting device
KR101647150B1 (en) Luminescence diode chip with an angle filter element
JP2008182110A (en) Nitride semiconductor light-emitting device
JPWO2006006555A1 (en) Semiconductor light emitting device
JP2005183911A (en) Nitride semiconductor light-emitting element and method of manufacturing the same
KR20080017180A (en) Semiconductor light emitting device
JPH11330559A (en) Light emitting element
JP4849866B2 (en) Lighting device
US20110272727A1 (en) Light-emitting diode and method for manufacturing the same
JP2006128659A (en) Nitride series semiconductor light emitting element and manufacturing method of the same
JP4817629B2 (en) LIGHT EMITTING ELEMENT AND LIGHTING DEVICE USING THE LIGHT EMITTING ELEMENT
JP4066681B2 (en) Light emitting device and method for manufacturing light emitting device
KR102440222B1 (en) Light emitting diode
JP5523277B2 (en) Light emitting semiconductor device and method for manufacturing light emitting semiconductor device
KR20120001434A (en) Light emitting diode and method of fabricating the same
JP5191937B2 (en) Light emitting device and manufacturing method thereof
JP2005197650A (en) Light emitting element
KR100550846B1 (en) GaN Light Emitting Diode of flip-chip bonding type
JP2022543941A (en) light emitting diode
JP5286641B2 (en) Semiconductor light emitting device and semiconductor light emitting device
JP2006128296A (en) Light-emitting element and illuminator using the same
JP2018006657A (en) Light-emitting device and manufacturing method of light-emitting device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080613

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090613

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090613

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100613

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees