JPH10267943A - Scanning type probe microscope - Google Patents

Scanning type probe microscope

Info

Publication number
JPH10267943A
JPH10267943A JP7556997A JP7556997A JPH10267943A JP H10267943 A JPH10267943 A JP H10267943A JP 7556997 A JP7556997 A JP 7556997A JP 7556997 A JP7556997 A JP 7556997A JP H10267943 A JPH10267943 A JP H10267943A
Authority
JP
Japan
Prior art keywords
sample
probe
scanning
probes
correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7556997A
Other languages
Japanese (ja)
Inventor
Ayumi Yano
歩 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP7556997A priority Critical patent/JPH10267943A/en
Publication of JPH10267943A publication Critical patent/JPH10267943A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To accurately correct a distortion of a scale of a scanning tunnel microscope(STM) image, etc., caused by a temperature change, etc., by a method wherein a plurality of probes are provided and a correcting probe out of the proves is made follow a specific position of a sample. SOLUTION: A scanning probe 4 scans a sample W surface in a two-dimensional direction to obtain data of the probe W surface. In the meantime, image correcting probes 5 to 7 are move-controlled so as to follow a specific position of a sample W, and the move amount is set as data which corrects the sample W image by the scanning probe 4. Namely, they are moved temporally in x, y directions and in a z direction only by an amount corresponding to fluctuations of a relative position relationship of the sample W and the respective correcting probes 5 to 7. Accordingly, the move amount of the correcting probes 5 to 7 indicates a temporal fluctuation amount in x, y, z directions in which the respective correcting probes 5 to 7 are relative to each specific position of the sample W initially opposing thereto. Therefore, based on each move amount of the respective correcting probes 5 to 7, it is possible to correct a relative position fluctuation of the scanning probe 4 and a scanning region of the sample W, namely a distortion of an image.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はSTM(走査型トン
ネル顕微鏡)やAFM(原子間力顕微鏡)等の走査型プ
ローブ顕微鏡に関する。
The present invention relates to a scanning probe microscope such as an STM (scanning tunnel microscope) and an AFM (atomic force microscope).

【0002】[0002]

【従来の技術】走査型プローブ顕微鏡においては、一般
に、試料表面に沿って探針をxy方向に走査させなが
ら、探針と試料表面との相互作用、例えばトンネル電流
や原子間力が一定となるように探針の試料表面からの距
離zを変化させ、そのzの変化量から試料表面の凹凸等
の情報を得るように構成されている。
2. Description of the Related Art In a scanning probe microscope, generally, the interaction between a probe and a sample surface, for example, a tunnel current and an atomic force become constant while scanning the probe in the xy directions along the sample surface. The distance z of the probe from the sample surface is changed as described above, and information such as unevenness on the sample surface is obtained from the amount of change of the z.

【0003】このような走査型プローブ顕微鏡におい
て、複数の探針とそれぞれの駆動機構を設けて、大型試
料表面の各部を同時に走査して表面分析を行うものが知
られている。
[0003] In such a scanning probe microscope, there is known a scanning probe microscope in which a plurality of probes and respective driving mechanisms are provided, and each part of a large sample surface is simultaneously scanned to perform surface analysis.

【0004】また、走査型プローブ顕微鏡における走査
探針の試料に対するxy方向への走査位置を正確に知る
手法として、試料を載置してxy方向に移動する試料台
の表面側および裏面側のそれぞれに、z方向への移動機
能を持つ探針を設けるとともに、試料台の表面側に試料
を載置し、裏面側にはスケール基準となる結晶を装着し
て、表面側の探針を通常の走査探針として用いる一方、
裏面側の探針により結晶格子の像を観察して、その結晶
格子構造の像を目盛りとして用いて、表面側の走査探針
と試料との刻々の位置情報を得るようにした技術が知ら
れている(川勝他,生産研究43巻11号,pp585
−590)。
As a method of accurately knowing the scanning position of a scanning probe with respect to a sample in an xy direction in a scanning probe microscope, a method of mounting a sample and moving the sample table in the xy direction on each of a front side and a back side is described. In addition, a probe having a function of moving in the z direction is provided, a sample is placed on the front side of the sample table, a crystal serving as a scale reference is mounted on the back side, and the probe on the front side is a normal probe. While used as a scanning probe,
A technique is known in which an image of a crystal lattice is observed with a probe on the back side, and instantaneous positional information between the scanning probe on the front side and the sample is obtained using the image of the crystal lattice structure as a scale. (Kawakatsu et al., Production Studies 43, 11, pp585
-590).

【0005】[0005]

【発明が解決しようとする課題】ところで、走査型プロ
ーブ顕微鏡による試料の観察に当たり、分析室や分析試
料が大型になるにつれて、温度変化等により、試料や試
料台と、探針の走査駆動部との相対的位置が経時的に変
化し、STM像やAMF像の尺度が歪んでしまうことが
ある。特に、大領域を時間をかけて走査する場合や、同
じ領域を繰り返し走査して動画を得る場合等において問
題となる。
By the way, when observing a sample with a scanning probe microscope, as the size of the analysis room or the analysis sample increases, the sample or sample stage and the scanning drive unit of the probe may be changed due to a temperature change or the like. May change over time, and the scale of the STM image or AMF image may be distorted. In particular, this is a problem when scanning a large area over time, or when repeatedly scanning the same area to obtain a moving image.

【0006】このような問題を解決するための一つの対
策として、前記した結晶格子を目盛りとして、走査探針
と試料台ないしは試料との位置関係を逐次に把握しつつ
画像を構築していく方法が考えられる。
As one measure for solving such a problem, a method of constructing an image while sequentially grasping the positional relationship between the scanning probe and the sample table or the sample using the above-mentioned crystal lattice as a scale. Can be considered.

【0007】しかし、このような方法によると、目盛り
に供すべく、格子のピッチが既知の結晶をあらかじめ用
意しておく必要があるばかりでなく、試料走査用の探針
と結晶格子を走査するための探針を試料台を挟んでその
両側に配置する必要があることから、これら両探針を熱
的に結合させることは困難であり、あるいは、試料と結
晶とを同一面上に配置したとしても、試料の面積等に起
因して両探針を接近させるには限度があり、結局、温度
変化等に起因する試料走査用と結晶格子走査用の探針間
の位置関係の経時的変化に伴う誤差分は解消することは
できない。
However, according to such a method, it is necessary not only to prepare a crystal having a known lattice pitch in advance in order to provide the scale, but also to use a probe for scanning a sample and a crystal lattice for scanning. It is difficult to thermally couple both tips because they need to be placed on both sides of the sample table, or if the sample and the crystal are placed on the same plane. However, there is a limit to the proximity of the two probes due to the area of the sample, etc., and eventually, the temporal change in the positional relationship between the sample scanning probe and the crystal lattice scanning probe due to temperature change, etc. The accompanying error cannot be eliminated.

【0008】本発明はこのような実情に鑑みてなされた
もので、目盛りに供する結晶等を用意することなく、温
度変化等に起因するSTM像等の尺度の歪みを正確に補
正することのできる走査型プローブ顕微鏡の提供を目的
としている。
The present invention has been made in view of such circumstances, and it is possible to accurately correct a scale distortion such as an STM image due to a temperature change or the like without preparing a crystal or the like to be used as a scale. The purpose is to provide a scanning probe microscope.

【0009】[0009]

【課題を解決するための手段】上記の目的を達成するた
め、本発明の走査型プローブ顕微鏡は、探針とそれを3
次元方向に駆動する駆動手段を複数組備えるとともに、
そのうちの少なくとも一つは走査探針として試料表面を
2次元方向に走査して試料表面の情報を得るように構成
される一方、他の探針のうちの少なくとも一つは、画像
補正用探針として、追従制御手段により試料または当該
試料を載置する試料台の特定位置を追従するように移動
制御され、その補正用探針の移動量は、上記走査探針に
よる試料像を補正するためのデータとして画像補正手段
に供給されるよう構成されていることによって特徴づけ
られる。
In order to achieve the above object, a scanning probe microscope of the present invention comprises a probe and a probe.
A plurality of driving means for driving in the dimensional direction are provided,
At least one of them is configured to scan the sample surface in a two-dimensional direction as a scanning probe to obtain information on the sample surface, while at least one of the other probes is an image correction probe. The movement control is performed by the tracking control means so as to follow a specific position of the sample or the sample table on which the sample is mounted, and the moving amount of the correction probe is used to correct the sample image by the scanning probe. It is characterized by being configured to be supplied as data to the image correction means.

【0010】本発明は、試料ないしは試料台と走査探針
の駆動部との相対的位置関係の情報を、走査用の探針と
は別の探針による試料または試料台の特定位置の追従に
より得ようとするものである。
According to the present invention, information on the relative positional relationship between a sample or a sample table and a drive unit of a scanning probe is obtained by following a specific position of the sample or the sample table using a probe different from the scanning probe. It is what we are trying to get.

【0011】すなわち、補正用の探針は、試料の特定位
置、例えば試料表面の原子スケールの凹凸の特定のピー
ク位置を追従するように制御される。従って、この補正
用の探針のx,y,z方向への移動量は、当該補正用の
探針の駆動部と試料との相対的なx,y,z方向への変
化量を表すことになる。
That is, the correction probe is controlled so as to follow a specific position of the sample, for example, a specific peak position of irregularities on the atomic scale of the sample surface. Therefore, the amount of movement of the correction probe in the x, y, and z directions indicates the relative change in the x, y, and z directions between the drive unit of the correction probe and the sample. become.

【0012】走査用の探針と補正用の探針は、いずれも
試料(場合によっては試料台)の表面に対向するもので
あり、また、補正用の探針が追従すべき特定位置は特に
限定されるものではなく任意の凹凸のピーク位置とする
ことができるため、これら両探針を極めて接近させるこ
とが可能となり、これら両探針の熱的な結合は容易とな
る。よって、補正用の探針の移動量から、走査用の探針
駆動部と試料ないしは試料台との相対的位置関係の変化
を正確に知ることが可能となり、その移動量を用いるこ
とによって、走査用の探針駆動部と試料ないしは試料台
との経時的な位置ずれを正確に補正することができる。
The scanning probe and the correction probe both face the surface of a sample (or a sample stage in some cases), and the specific position to be followed by the correction probe is particularly The present invention is not limited to this, and it can be set at any peak position of the unevenness. Therefore, these two probes can be brought very close to each other, and thermal coupling of these two probes becomes easy. Therefore, it is possible to accurately know the change in the relative positional relationship between the scanning probe drive unit and the sample or the sample stage from the amount of movement of the correction probe, and by using the amount of movement, Over time displacement between the probe drive unit for use and the sample or the sample stage can be accurately corrected.

【0013】ここで、本発明においては、補正用の探針
の数は任意であり、走査探針による試料の走査領域が比
較的狭く、その領域内部での経時的位置ずれを無視でき
る場合には、補正用探針の数を1とすることができ、こ
の場合、試料全表面中における走査領域の位置ずれを補
正することができる。また、走査領域が比較的広く、そ
の領域内での歪みの発生が予想される場合には、補正用
探針の数を例えば3個とすることにより、上記の補正に
加えてxおよびy方向への倍率の補正をすることができ
る。
Here, in the present invention, the number of correction probes is arbitrary, and when the scanning area of the sample by the scanning probe is relatively narrow, the temporal displacement within the area can be ignored. In this case, the number of correction probes can be set to one, and in this case, the positional deviation of the scanning region on the entire surface of the sample can be corrected. If the scanning area is relatively large and distortion is expected to occur in the area, the number of correction probes is set to, for example, three, so that in addition to the above-described correction, the number of correction probes in the x and y directions is increased. The magnification can be corrected.

【0014】更に、本発明においては、補正用探針のz
方向への移動量から、探針駆動部と試料ないしは試料台
のz方向への経時的な位置ずれをも補正することができ
る。なお、本発明においては、走査用の探針の数は1に
限られることなく、任意とすることができる。また、本
発明の補正用探針は、必ずしも補正用に限定する必要は
なく、その駆動手段の制御を上記のような追従制御と、
走査探針と同等の走査制御のいずれかに選択可能として
おけば、補正用探針と走査探針の双方に選択的に用いる
ことができて好適である。
Further, in the present invention, z of the correction probe
The temporal displacement of the probe drive unit and the sample or the sample stage in the z direction can be corrected from the amount of movement in the direction. In the present invention, the number of scanning probes is not limited to one, but may be arbitrary. Further, the correction probe of the present invention does not necessarily need to be limited to correction, and the control of the driving means is the following control as described above,
If it is possible to select any one of the scanning controls equivalent to the scanning probe, it can be selectively used for both the correction probe and the scanning probe, which is preferable.

【0015】[0015]

【発明の実施の形態】図1は本発明をSTMに適用した
場合の実施の形態の機械的な構造を示す模式的斜視図で
あり、図2にはその電気的構成を示すブロック図であ
る。
FIG. 1 is a schematic perspective view showing a mechanical structure of an embodiment when the present invention is applied to an STM, and FIG. 2 is a block diagram showing an electrical configuration thereof. .

【0016】架台1上に試料Wを載置するための試料台
2が設けられており、その試料台2の上方には、架台1
のコラム部1aに支持された探針駆動系支持台3が設け
られている。
A sample table 2 for mounting a sample W on the table 1 is provided. Above the sample table 2, the table 1
The probe drive system support base 3 supported by the column portion 1a is provided.

【0017】探針駆動系支持台3には、この例において
1つの走査探針4と、3つの補正用探針5,6,7、並
びにこれらの各探針の駆動部4a,5a,6aおよび7
aが支持されている。各探針4〜7の駆動部4a〜7a
は、それぞれ、x,y,z方向に伸縮する圧電素子4
x,4y,4z〜7x,7y,7zによって構成された
公知の機構を有している。そして、各探針4〜7および
その各駆動部4a〜7aは、温調回路(図示せず)によ
って制御される加熱ないしは冷却機能を有する共通の温
調室8内に収容されており、これらは相互に熱的に結合
された状態とすることができるようになっている。
In this example, one scanning probe 4, three correction probes 5, 6, 7, and driving portions 4a, 5a, 6a of these probes are provided on the probe drive system support base 3 in this example. And 7
a is supported. Drive units 4a to 7a of the probes 4 to 7
Are piezoelectric elements 4 that expand and contract in the x, y, and z directions, respectively.
It has a known mechanism constituted by x, 4y, 4z to 7x, 7y, 7z. The probes 4 to 7 and the respective driving units 4a to 7a are housed in a common temperature control chamber 8 having a heating or cooling function controlled by a temperature control circuit (not shown). Can be thermally coupled to each other.

【0018】各補正用探針5〜7の配設位置関係は、補
正用探針5に対してx方向に所定量だけずれた位置に補
正用探針6が、また、補正用探針5に対してy方向に所
定量だけずれた位置に補正用探針7が配設された関係と
なっている。
The positional relationship between the correction probes 5 to 7 is such that the correction probe 6 and the correction probe 5 are located at positions shifted from the correction probe 5 by a predetermined amount in the x direction. The correction probe 7 is arranged at a position shifted by a predetermined amount in the y direction.

【0019】各探針4〜7には試料Wとの間に所定の電
位差が与えられ、この電位差によって各探針4〜7と試
料W間に流れるトンネル電流は、それぞれトンネル電流
検出器4b〜7bによって検出され、その検出結果が各
駆動部4a〜7aのz方向の圧電素子4z〜7zを制御
するためのz方向制御回路41z〜71zに取り込まれ
る。各z方向制御回路41z〜71zは、トンネル電流
の検出結果が常に一定となるように各z方向の圧電素子
4z〜7zを制御する。
A predetermined potential difference is applied to each of the probes 4 to 7 with respect to the sample W, and a tunnel current flowing between each of the probes 4 to 7 and the sample W is caused by the potential difference. 7b, and the detection result is taken into z-direction control circuits 41z to 71z for controlling the piezoelectric elements 4z to 7z in the z-direction of the driving units 4a to 7a. The z-direction control circuits 41z to 71z control the piezoelectric elements 4z to 7z in each z-direction so that the detection result of the tunnel current is always constant.

【0020】また、各探針のうち、走査探針4のx方向
圧電素子4xとy方向圧電素子4yは、xy走査制御回
路41sから供給される制御信号により、試料Wの表面
に沿ってx,y方向に走査するように駆動される。
In each of the probes, the x-direction piezoelectric element 4x and the y-direction piezoelectric element 4y of the scanning probe 4 move along the surface of the sample W along with the control signal supplied from the xy scanning control circuit 41s. , Y.

【0021】一方、3つの補正用探針5〜7のx方向圧
電素子5x〜7xおよびy方向圧電素子5y〜7yは、
追従制御回路51f〜71fにより、試料Wの表面の特
定の凹凸のピーク位置を追従するように制御される。な
お、この制御に際しては、該当のピーク位置に対する探
針のずれの方向性を見極めるべく、各探針5〜7に対し
てx,y方向に微小な振動(ディザ)を与えることが好
ましい。
On the other hand, the x-direction piezoelectric elements 5x to 7x and the y-direction piezoelectric elements 5y to 7y of the three correction probes 5 to 7 are:
The follow-up control circuits 51f to 71f control to follow the peak position of specific irregularities on the surface of the sample W. In this control, it is preferable to apply a small vibration (dither) to each of the probes 5 to 7 in the x and y directions in order to determine the direction of the displacement of the probe with respect to the corresponding peak position.

【0022】走査探針4のz方向への移動量、つまりz
方向制御回路41zからz方向圧電素子4zに対して供
給される制御信号は、同探針4のx,y方向への走査信
号と同期して画像メモリ9に取り込まれる。この画像メ
モリ9の内容は、画像補正回路10によって補正された
うえで、CRT11によって画像化される。
The amount of movement of the scanning probe 4 in the z direction, that is, z
The control signal supplied from the direction control circuit 41z to the z-direction piezoelectric element 4z is taken into the image memory 9 in synchronization with the scanning signal of the probe 4 in the x and y directions. The contents of the image memory 9 are corrected by the image correction circuit 10 and then imaged by the CRT 11.

【0023】画像補正回路9は、3つの補正用探針5〜
7それぞれのx,y,z方向への移動量、つまり追従制
御回路51f〜71fおよびz方向制御回路51z〜7
1zから該当の圧電素子に対して供給される制御信号を
用いて、画像メモリ9の内容を以下の手法によって補正
する。
The image correction circuit 9 comprises three correction probes 5
7, the amounts of movement in the x, y, and z directions, that is, follow-up control circuits 51f to 71f and z-direction control circuits 51z to 51f.
Using the control signal supplied from 1z to the corresponding piezoelectric element, the contents of the image memory 9 are corrected by the following method.

【0024】すなわち、各補正用探針5〜7は、それぞ
れに試料Wの特定位置に追従するように制御されるた
め、試料Wと個々の補正用探針5〜7(各駆動部5a〜
7a)の相対的な位置関係の変動に応じた量だけ、x,
y方向およびz方向に経時的に移動する。従って、各補
正用探針5〜7の移動量は、それぞれの補正用探針5〜
7とこれらが当初に対向していた試料Wの各特定位置と
の経時的なx,y,z方向への相対位置の変動量を表す
ことになる。前記したように、各補正用探針5〜7は走
査探針4と熱的に結合しており、従って、この各補正用
探針5〜7のx,y,z方向への各移動量と、走査探針
4と各補正用探針5〜7の位置関係から、走査探針4お
よびその駆動部4aと、試料Wの走査領域との経時的な
相対位置変動を知ることができ、その結果に応じて画像
メモリ9内の画像を修正してCRT11に表示すれば、
温度変化等による画像の歪みを補正することができる。
具体的には、例えば補正用探針5のx,y方向への移動
量から、走査探針4と試料Wとの相対的な位置の変動量
が判明し、また、補正用探針5と6がx方向にずれてい
るため、これらのx方向への移動量の差から試料Wのx
方向への膨張/収縮量が判明し、同様に補正用探針5と
7とのy方向への移動量の差から試料Wのy方向への膨
張/収縮量が判明する。更にまた、各補正用探針5〜7
のz方向への移動量から、試料Wの該当位置における探
針駆動系支持台3に対する接近/離反量を知ることがで
きる。
That is, since each of the correction probes 5 to 7 is controlled so as to follow a specific position of the sample W, the sample W and each of the correction probes 5 to 7 (each of the drive units 5a to 5a) are controlled.
X, x, by an amount corresponding to the change in the relative positional relationship in 7a).
It moves in the y and z directions over time. Therefore, the amount of movement of each of the correction probes 5 to 7 is equal to the amount of each of the correction probes 5 to 7.
7 represents the amount of change in the relative position in the x, y, and z directions over time with respect to each of the specific positions of the sample W that initially faced the sample W. As described above, each of the correction probes 5 to 7 is thermally coupled to the scanning probe 4, and accordingly, the amount of movement of each of the correction probes 5 to 7 in the x, y, and z directions. From the positional relationship between the scanning probe 4 and each of the correction probes 5 to 7, it is possible to know the relative positional change of the scanning probe 4 and its driving unit 4a with the scanning region of the sample W over time, If the image in the image memory 9 is corrected according to the result and displayed on the CRT 11,
Image distortion due to a temperature change or the like can be corrected.
Specifically, for example, the amount of change in the relative position between the scanning probe 4 and the sample W is determined from the amount of movement of the correction probe 5 in the x and y directions. 6 are displaced in the x direction, the difference in the amount of movement in the x direction
The amount of expansion / contraction in the direction is determined, and similarly, the amount of expansion / contraction in the y direction of the sample W is determined from the difference in the amount of movement between the correction probes 5 and 7 in the y direction. Furthermore, each correction probe 5-7
From the movement amount in the z direction, the approach / separation amount of the sample W from the probe drive system support base 3 at the corresponding position can be known.

【0025】このような補正は、走査探針4による走査
時間が比較的長時間にわたる場合、あるいは、走査探針
4による走査領域を順次変更して、個々の走査領域に対
応する画像を繋げることによって試料Wの大きな領域の
画像を得る場合、あるいは、走査探針4により同じ領域
を繰り返し走査することにより、同領域の動画像を得よ
うとする場合に有効であり、走査探針4およびその駆動
部4aと試料Wとの経時的な位置ずれに起因する画像の
歪みを正確に補正することが可能となる。
Such correction is performed when the scanning time by the scanning probe 4 is relatively long, or by sequentially changing the scanning region by the scanning probe 4 and connecting the images corresponding to the individual scanning regions. This is effective in obtaining an image of a large area of the sample W by scanning, or when trying to obtain a moving image of the same area by repeatedly scanning the same area with the scanning probe 4. It is possible to accurately correct image distortion caused by a temporal displacement between the driving unit 4a and the sample W.

【0026】なお、以上の実施の形態では、3つの補正
用探針を用いたが、補正用探針は1つでもよい。この場
合、走査探針4と全体としての試料Wとの経時的な移動
のみが判明することになるが、走査領域が狭く、その領
域内での膨張/収縮データが不要な場合に有効である。
In the above embodiment, three correction probes are used. However, one correction probe may be used. In this case, only the temporal movement of the scanning probe 4 and the sample W as a whole will be known, but this is effective when the scanning area is narrow and expansion / contraction data in the area is unnecessary. .

【0027】また、以上は走査型トンネル顕微鏡(ST
M)に本発明を適用した例について述べたが、原子間力
顕微鏡(AFM)にも本発明を等しく適用し得ることは
勿論である。
The above description is based on a scanning tunneling microscope (ST).
Although the example in which the present invention is applied to M) has been described, it goes without saying that the present invention is equally applicable to an atomic force microscope (AFM).

【0028】[0028]

【発明の効果】以上のように、本発明によれば、走査探
針のほかに、試料の特定位置に追従するように制御され
る補正用探針を設け、その補正用探針の移動量から、走
査探針と試料との経時的な移動量を知り、その結果を用
いて走査探針による画像を補正するように構成している
から、温度変化等に起因して試料と走査探針ないしはそ
の駆動部とが経時的な位置ずれが生じても、その影響を
受けることのない正確な試料画像を得ることができる。
しかも、このような補正は、試料台の裏面側に設けた結
晶を探針により走査することにより得られる結晶格子像
を目盛りとして用いる従来の手法に比して、試料そのも
のもしくは試料台の任意の凹凸にピーク位置に追従する
探針の移動量を用いて行われるため、補正用探針と走査
探針とを接近配置して、これらを容易に熱的に結合する
ことができ、その補正はより正確となると同時に、基準
となる結晶を用意する必要がない、という利点がある。
As described above, according to the present invention, in addition to the scanning probe, the correction probe controlled to follow a specific position of the sample is provided, and the amount of movement of the correction probe is provided. , The amount of movement of the scanning probe and the sample over time is known, and the results are used to correct the image by the scanning probe. In addition, even if the position of the driving unit is shifted with time, an accurate sample image can be obtained without being affected by the positional deviation.
In addition, such correction is performed by using a crystal lattice image obtained by scanning a crystal provided on the back surface side of the sample table with a probe as a scale, as compared with a conventional method in which a crystal lattice image is obtained. Since the correction is performed using the movement amount of the probe that follows the peak position in the unevenness, the correction probe and the scanning probe can be arranged close to each other, and these can be easily thermally coupled, and the correction is performed. There is an advantage that it becomes more accurate and there is no need to prepare a reference crystal.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態の機械的構成を示す模式的
斜視図
FIG. 1 is a schematic perspective view showing a mechanical configuration according to an embodiment of the present invention.

【図2】同じく本発明の実施の形態の電気的構成を示す
ブロック図
FIG. 2 is a block diagram showing an electrical configuration of the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 架台 1a コラム部 2 試料台 3 探針駆動系支持台 4 走査探針 4a 駆動部 5,6,7 補正用探針 5a,6a,7a 駆動部 41s 走査制御回路 51f,61f,71f 追従制御回路 8 温調室 9 画像メモリ 10 画像補正回路 111CRT DESCRIPTION OF SYMBOLS 1 Mount 1a Column part 2 Sample stand 3 Probe drive system support stand 4 Scanning probe 4a Driving unit 5, 6, 7 Correction probe 5a, 6a, 7a Driving unit 41s Scanning control circuit 51f, 61f, 71f Tracking control circuit 8 Temperature control room 9 Image memory 10 Image correction circuit 111 CRT

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 3次元方向への独立的な駆動手段を備え
た探針により、試料表面を2次元方向に走査しつつ、探
針と試料表面との間の相互作用が一定となるように探針
の試料表面からの距離を変化させ、その変化量から試料
表面の情報を得る顕微鏡において、上記探針とその駆動
手段を複数組備えるとともに、そのうちの少なくとも一
つは走査探針として試料表面を2次元方向に走査して試
料表面の情報を得るように構成される一方、他の探針の
うちの少なくとも一つは、画像補正用探針として、追従
制御手段により試料または当該試料を載置する試料台の
特定位置を追従するように移動制御され、その補正用探
針の移動量は、上記走査探針による試料像を補正するた
めのデータとして画像補正手段に供給されるよう構成さ
れていることを特徴とする走査型プローブ顕微鏡。
1. A probe provided with independent driving means in three-dimensional directions so that the interaction between the probe and the sample surface becomes constant while scanning the sample surface in two-dimensional directions. In a microscope in which the distance of the probe from the sample surface is changed and information on the sample surface is obtained from the amount of change, at least one of the probe and its driving means is provided, at least one of which is a scanning probe as a scanning probe. Is scanned in two-dimensional directions to obtain information on the surface of the sample, while at least one of the other probes is used as an image correction probe by mounting the sample or the sample by the tracking control means. The movement of the correction probe is controlled so as to follow a specific position of the sample table to be placed, and the amount of movement of the correction probe is supplied to image correction means as data for correcting the sample image by the scanning probe. Features that Scanning probe microscope.
JP7556997A 1997-03-27 1997-03-27 Scanning type probe microscope Pending JPH10267943A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7556997A JPH10267943A (en) 1997-03-27 1997-03-27 Scanning type probe microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7556997A JPH10267943A (en) 1997-03-27 1997-03-27 Scanning type probe microscope

Publications (1)

Publication Number Publication Date
JPH10267943A true JPH10267943A (en) 1998-10-09

Family

ID=13579953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7556997A Pending JPH10267943A (en) 1997-03-27 1997-03-27 Scanning type probe microscope

Country Status (1)

Country Link
JP (1) JPH10267943A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7072103B1 (en) 2002-09-27 2006-07-04 Cypress Semiconductor Corporation Microscope with objective lens position control apparatus
US7092153B1 (en) * 2002-09-27 2006-08-15 Cypress Semiconductor Corporation Temperature-controlled gas microscope
JP2007198815A (en) * 2006-01-25 2007-08-09 Canon Inc Probe unit and atomic force microscope
JP2010002231A (en) * 2008-06-18 2010-01-07 Sii Nanotechnology Inc Microfabrication method using atomic force microscope excellent in height controllability

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7072103B1 (en) 2002-09-27 2006-07-04 Cypress Semiconductor Corporation Microscope with objective lens position control apparatus
US7092153B1 (en) * 2002-09-27 2006-08-15 Cypress Semiconductor Corporation Temperature-controlled gas microscope
JP2007198815A (en) * 2006-01-25 2007-08-09 Canon Inc Probe unit and atomic force microscope
JP2010002231A (en) * 2008-06-18 2010-01-07 Sii Nanotechnology Inc Microfabrication method using atomic force microscope excellent in height controllability

Similar Documents

Publication Publication Date Title
EP0381113B1 (en) Tunnel current data storage apparatus having separate lever bodies
KR100525521B1 (en) Exposure apparatus and exposure method
EP2881699B1 (en) System for compensating dynamic and thermal deformity errors of a linear motion single-plane gantry stage in real time
JP3450349B2 (en) Cantilever probe
CN101083151A (en) Probe position control system and method
Griffith et al. A scanning tunneling microscope with a capacitance‐based position monitor
US5075548A (en) Tunnel current probe moving mechanism having parallel cantilevers
JPH10267943A (en) Scanning type probe microscope
US8402560B2 (en) Scanning probe microscope with drift compensation
JP2002031589A (en) Scanning probe microscope
JP3132567B2 (en) Scanning probe microscope
JP4484012B2 (en) X-ray fluoroscopic equipment
JP2002022637A (en) Scanning probe microscope
JP2000035394A (en) Scanning probe microscope
JPH0926427A (en) Positioning device and media moving type memory device usingpositioning device
JP3359181B2 (en) Scanning probe microscope and image measurement method using the same
JPH09101115A (en) Image measuring device
JP4280382B2 (en) Information detecting apparatus and information detecting method having scanning probe
JP2000214175A (en) Measuring method for scanning probe microscope
JP2565392B2 (en) Measuring method of scanning tunneling microscope
JP3892184B2 (en) Scanning probe microscope
JP3671591B2 (en) Scanning probe microscope
JP2534742B2 (en) Length measuring device
JPH0625642B2 (en) Scanning tunnel microscope device
JP4050873B2 (en) Probe scanning control method and scanning probe microscope

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041012

A02 Decision of refusal

Effective date: 20050222

Free format text: JAPANESE INTERMEDIATE CODE: A02