JP3359181B2 - Scanning probe microscope and image measurement method using the same - Google Patents

Scanning probe microscope and image measurement method using the same

Info

Publication number
JP3359181B2
JP3359181B2 JP12312695A JP12312695A JP3359181B2 JP 3359181 B2 JP3359181 B2 JP 3359181B2 JP 12312695 A JP12312695 A JP 12312695A JP 12312695 A JP12312695 A JP 12312695A JP 3359181 B2 JP3359181 B2 JP 3359181B2
Authority
JP
Japan
Prior art keywords
scanning
probe
data
measurement
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12312695A
Other languages
Japanese (ja)
Other versions
JPH08292196A (en
Inventor
貴生 日下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP12312695A priority Critical patent/JP3359181B2/en
Publication of JPH08292196A publication Critical patent/JPH08292196A/en
Application granted granted Critical
Publication of JP3359181B2 publication Critical patent/JP3359181B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は探針を試料表面に接近さ
せ走査し、前記探針と前記試料表面の間に生じる物理量
を利用して前記試料表面の形状を測定する走査型プロー
ブ顕微鏡及びそれによる像測定方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a scanning probe microscope which scans a probe by approaching the surface of the sample and measures the shape of the sample surface by using a physical quantity generated between the probe and the sample surface. The present invention relates to a method for measuring an image.

【0002】[0002]

【従来の技術】原子的スケールの空間分解能を持つ表面
顕微鏡の一つとして走査型トンネル顕微鏡(STM)、
或いは、走査型原子間力顕微鏡(AFM)等の走査型プ
ローブ顕微鏡が実用化されており、これはその探針が試
料表面に原子レベルでアクセスできることから、局所領
域に情報を書き込む、情報処理装置等にも応用されてい
る。以下、このような走査型プローブ顕微鏡の1例とし
て走査型トンネル顕微鏡(STM)について説明する。
STMでは探針の軸方向(Z方向)と試料表面(X―Y
面)とは垂直になるように配置され、探針はXYZ方向
に変位する圧電素子に固定される。探針はPt−Irや
Wの様な導電性の物質で構成され、試料との間に電圧を
印加し、探針を試料に対して1[nm]程度に接近させ
たときに探針と試料間に流れるトンネル電流を測定す
る。この時トンネル電流があらかじめ設定された一定値
になるように探針の位置(Z)を制御し、この変位量か
ら試料表面のその位置座標における凹凸情報を得る。そ
して探針を試料表面の所定領域をXY方向に走査するこ
とにより、当該領域の形状像を得る。測定データはX,
Y,Zの各座標で決定され、Z座標に対する輝度変調像
や色調変調像として表示される。この画像により試料表
面における微細形状を解析することができる。その測定
時における探針の走査について説明すると、測定試料面
上(X,Y)で予め設定された間隔の測定箇所に順次探
針を移動しながら、各測定箇所で所定のトンネル電流等
の物理量が測定される位置(Z)へ探針を移動してその
変位量を記録する。そのX−Y面内の移動手順は図1に
示すように、まず探針はX+方向に所定間隔で移動し各
位置で探針の位置(Z)を測定する。所定の個数記録が
終わると探針はX−方向に同一ライン上を戻る。そして
所定間隔でY方向に移動してから再びX+方向への測定
が開始される。
2. Description of the Related Art A scanning tunneling microscope (STM) is one of surface microscopes having a spatial resolution of an atomic scale.
Alternatively, a scanning probe microscope such as a scanning atomic force microscope (AFM) has been put into practical use. This is an information processing apparatus that writes information in a local area because its probe can access a sample surface at an atomic level. And so on. Hereinafter, a scanning tunneling microscope (STM) will be described as an example of such a scanning probe microscope.
In STM, the axial direction (Z direction) of the probe and the sample surface (XY)
And the probe is fixed to a piezoelectric element displaced in the XYZ directions. The probe is made of a conductive material such as Pt-Ir or W. When a voltage is applied between the probe and the sample and the probe is brought close to the sample by about 1 [nm], the probe and the probe are connected. The tunnel current flowing between the samples is measured. At this time, the position (Z) of the probe is controlled so that the tunnel current becomes a preset constant value, and the unevenness at the position coordinates on the sample surface is obtained from the displacement amount. Then, the probe scans a predetermined area on the sample surface in the X and Y directions to obtain a shape image of the area. Measurement data is X,
It is determined by each of the Y and Z coordinates, and is displayed as a luminance modulation image or a color modulation image with respect to the Z coordinate. The fine shape on the sample surface can be analyzed from this image. The scanning of the probe at the time of the measurement will be described. The probe is sequentially moved to measurement points at preset intervals on the measurement sample surface (X, Y), and a physical quantity such as a predetermined tunnel current is measured at each measurement point. The probe is moved to the position (Z) where is measured, and the displacement is recorded. As shown in FIG. 1, the moving procedure in the XY plane first moves the probe at a predetermined interval in the X + direction, and measures the position (Z) of the probe at each position. When the recording of the predetermined number is completed, the probe returns on the same line in the X-direction. After moving in the Y direction at predetermined intervals, measurement in the X + direction is started again.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、このよ
うな、従来のものにおいては、各測定点の情報(X,
Y,Z)はX+方向の走査時に得られた情報であり、X
−方向の探針の移動における時間と情報が活かされるも
のではなかった。さらにZ軸方向の位置制御では測定位
置(X,Y)に移動後、設定されたトンネル電流等の物
理量が測定できる位置へZ方向に探針が変位する。従っ
て測定試料表面の凹凸が激しい場合、探針と試料が接触
して破損するおそれもある。また前もって走査領域の凹
凸状態を測定し、その測定データに基づいて測定対象領
域の予想データを作成し、走査の際に利用する方法も提
案されているが(特開平6−50707号公報)、この
ようなものにおいても、前もって走査領域の凹凸状態を
測定する際の探針と試料の安全性や、予想データに基づ
いて測定対象領域を観察する際の速さを考えると未だ不
十分であった。
However, in such a conventional device, the information (X,
Y, Z) are information obtained at the time of scanning in the X + direction.
Time and information in the movement of the probe in the-direction were not utilized. Further, in the position control in the Z-axis direction, after moving to the measurement position (X, Y), the probe is displaced in the Z direction to a position where a physical quantity such as a set tunnel current can be measured. Therefore, when the surface of the measurement sample has severe irregularities, the probe may come into contact with the sample and be damaged. In addition, a method has been proposed in which the unevenness of a scanning area is measured in advance, predicted data of a measurement target area is created based on the measured data, and used for scanning (Japanese Patent Laid-Open No. 6-50707). Even in this case, the safety of the probe and the sample when measuring the unevenness of the scanning area in advance and the speed of observing the measurement target area based on the expected data are still insufficient. Was.

【0004】そこで、本発明は、上記従来の問題を解決
し、高速かつ安全に像測定のできる走査型プローブ顕微
鏡及びそれによる像測定方法を提供することを目的とす
るものである。
Accordingly, an object of the present invention is to solve the above-mentioned conventional problems and to provide a scanning probe microscope capable of measuring an image at high speed and safely and an image measuring method using the same.

【0005】[0005]

【課題を解決するための手段】本発明は、上記目的を達
成するために、探針を試料表面に接近させ走査し、前記
探針と前記試料表面の間に生じる物理量を利用して前記
試料表面の形状を測定する走査型プローブ顕微鏡を、少
なくとも前記探針の往路と復路の位置情報をそれぞれ記
録する測定値格納部と、前記探針の試料表面の面方向に
おける同一X方向ラインの往路と復路の走査により得ら
れる情報を比較しその差の補正処理を行うデータ処理部
とで構成し、従来の測定手段よりも高速かつ安全に測定
できるようにしたものである。また、本発明の走査型プ
ローブ顕微鏡は、前記測定値格納部の記録データとデー
タ処理部の処理データとに基づいて、前記X方向ライン
における次の往路方向の探針の予測走査データを算出
し、このデータを格納するように構成することができ、
さらに、既に走査された領域と同一の走査領域を走査し
た際に、前記既に走査された領域の記録データと今回の
走査による測定データとの間に差が存在する場合、その
差分を修正するように構成することができる。そして、
走査型プローブ顕微鏡の像測定方法としては、前記探針
の試料表面の面方向における同一X方向ラインの走査の
往路と復路の情報からそれらが一致する演算を算出し、
該演算に基づいて補正処理を行いつつ、前記探針の試料
表面の面方向におけるY方向に1X方向ラインずつ往路
と復路を交互に測定するように構成することができる。
また、この往路と復路の情報に基づいて探針の次の往路
の走査位置を予測し、探針をその予測位置に移動させた
後測定するようにし、既に走査された領域と同一の走査
領域を走査する際には、その走査領域の測定データ通り
に探針を走査し、既に走査された領域の記録データと今
回の走査による測定データとの差を測定し、その差分を
修正するように構成することもできる。
According to the present invention, in order to achieve the above object, a probe is brought close to a sample surface and scanned, and the sample is made using a physical quantity generated between the probe and the sample surface. A scanning probe microscope for measuring the surface shape is used to record at least the forward and backward position information of the probe.
A measured value storage section to be recorded, and a data processing section for comparing information obtained by scanning the forward and backward passes of the same X-direction line in the surface direction of the probe with respect to the sample surface and correcting the difference.
, So that measurement can be performed faster and more safely than conventional measurement means. Further, the scanning probe microscope of the present invention calculates the predicted scanning data of the next forward probe in the X direction line based on the recording data of the measured value storage unit and the processing data of the data processing unit. , Can be configured to store this data,
Further, when the same scanning area as the already scanned area is scanned, if there is a difference between the recording data of the already scanned area and the measurement data by the current scanning, the difference is corrected. Can be configured. And
As a method of measuring the image of the scanning probe microscope, a calculation of matching the forward and backward information of scanning of the same X-direction line in the surface direction of the sample surface of the probe is calculated,
While performing the correction process based on the calculation, it is possible to configure so that the forward path and the return path are alternately measured by the 1X direction line in the Y direction in the plane direction of the sample surface of the probe.
Further, based on the information on the forward path and the return path, a scanning position of the next forward path of the probe is predicted, and the probe is moved to the predicted position and then measured, and the same scanning area as the already scanned area is measured. When scanning is performed, the probe is scanned in accordance with the measurement data of the scanning area, the difference between the recording data of the already scanned area and the measurement data of the current scan is measured, and the difference is corrected. It can also be configured.

【0006】[0006]

【作用】本発明は、上記したように同一X方向ラインの
復路(X+)方向および往路(X−)方向の走査をY方
向に1ライン毎に交互に使用し、前記探針のX+方向走
査による像とX−方向走査による像を比較して、その差
をなくす補正をし測定するようにしたものであるから、
従来のようなX−方向の走査が情報の測定に活用されて
いないものに比して、高速な測定ができる。また、ある
ラインのX+方向の走査データと、Y方向に設定値分移
動した後のX−方向の走査データを補正したものから、
次のX+方向の走査データを予測する。そして、設定さ
れた各測定位置での探針の制御には、予測された位置に
探針を移動後、Z方向の微修正を行うようにすることに
より、安全に像が得られる。さらに同一領域の測定デー
タが存在する場合には、そのデータを予想データとして
走査し、測定物理量の設定値からのずれを測定すること
により像を補正し、これにより従来の測定方法よりはる
かに速くかつ探針と試料の衝突を防いで安全に像を得る
ことができる。
According to the present invention, the scanning in the X + direction of the probe is performed by alternately using the scanning in the backward (X +) direction and the forward (X-) direction of the same X direction line for each line in the Y direction as described above. Is compared with the image obtained by scanning in the X-direction, and the correction is performed to eliminate the difference, and the measurement is performed.
High-speed measurement can be performed as compared with a conventional method in which scanning in the X-direction is not used for measuring information. In addition, the scan data in the X + direction of a certain line and the scan data in the X-direction after being moved by the set value in the Y direction are corrected.
The next scan data in the X + direction is predicted. In controlling the probe at each set measurement position, an image can be obtained safely by moving the probe to the predicted position and then performing fine correction in the Z direction. If measurement data of the same area exists, the data is scanned as expected data, and the image is corrected by measuring the deviation from the set value of the measured physical quantity, thereby making the measurement much faster than the conventional measurement method. In addition, an image can be obtained safely by preventing collision between the probe and the sample.

【0007】[0007]

【実施例】以下に本発明の実施例を図面に基づいて説明
する。 [実施例1]本実施例では、走査型プローブ顕微鏡の一
例として走査型トンネル顕微鏡(STM)を用いて説明
する。図2はSTMの探針および走査機構部とデータの
処理部の構成を示している。1は探針であり先端は先鋭
化していて試料2と対向している。探針1は探針駆動用
圧電素子3に固定されており、圧電素子3はX方向、Y
方向、Z方向の移動、走査に使われるアクチュエータか
ら構成されている。探針1と試料2の間には電源4が接
続され、設定した電圧が印加される。この状態で探針1
を試料2へ近づけると、トンネル電流が流れるようにな
り、検出したトンネル電流を電流電圧変換部10で電圧
に変換する。この電圧値は帰還回路9に入力し、設定値
と等しくなるように帰還回路9から圧電素子3のZ方向
制御用アクチュエータに電圧が印加され、探針1の高さ
が変化する。通常の形状測定では以上のように探針1の
高さを制御しながら、探針1をXY方向に走査する。X
Y方向の走査はXY走査制御部5からの電圧印加により
圧電素子3のX方向制御用アクチュエータおよびY方向
制御用アクチュエータを駆動して行われる。この時のX
YZ方向の変位量は測定値格納部6に記録されデータ処
理を施して表示装置11に表示される。
Embodiments of the present invention will be described below with reference to the drawings. [Embodiment 1] In this embodiment, a scanning tunneling microscope (STM) will be described as an example of a scanning probe microscope. FIG. 2 shows the configuration of the probe and scanning mechanism of the STM and the data processor. Reference numeral 1 denotes a probe, the tip of which is sharpened and faces the sample 2. The probe 1 is fixed to a probe driving piezoelectric element 3, and the piezoelectric element 3 is
It is composed of actuators used for movement in the direction, Z direction, and scanning. A power supply 4 is connected between the probe 1 and the sample 2, and a set voltage is applied. Probe 1 in this state
Is brought closer to the sample 2, a tunnel current starts to flow, and the detected tunnel current is converted into a voltage by the current-voltage converter 10. This voltage value is input to the feedback circuit 9, and a voltage is applied from the feedback circuit 9 to the Z-direction control actuator of the piezoelectric element 3 so that the voltage becomes equal to the set value, and the height of the probe 1 changes. In normal shape measurement, the probe 1 is scanned in the X and Y directions while controlling the height of the probe 1 as described above. X
The scanning in the Y direction is performed by driving the actuator for controlling the X direction and the actuator for controlling the Y direction of the piezoelectric element 3 by applying a voltage from the XY scanning control unit 5. X at this time
The displacement in the YZ directions is recorded in the measured value storage unit 6, subjected to data processing, and displayed on the display device 11.

【0008】実際の測定ではまずY方向制御用アクチュ
エータヘの印加電圧を固定し、X方向のみのライン走査
を行う。X+方向走査の測定データaと同一ラインのX
−方向走査の測定データbはデータ処理部7に送られ
る。データ処理部7では測定データaとbは各測定点毎
に比較され、aとbのデータが一致するような演算fx
を推定する。演算fxはa,bの各測定点の誤差の和が
最小になるように設定する。このとき探針先端が尖鋭で
かつ対称性がよいほど誤差は小さくなる。次にXY面内
の走査が図3に示した移動経路で行われる。1例として
200 ×200pointの測定データを得る方法を示す。
Y方向第1ラインの走査はX+方向に200pointの測
定点においてZを測定し,測定値格納部6に記録する。
次いでY方向に1ステップ移動し、Y方向第2ラインの
走査はX−方向に200pointの測定点においてZを測
定する。X−方向の測定データはデータ処理部7におい
て演算fxにより処理し、測定値格納部6に記録され
る。探針1はY方向に1ステップ移動し,以上の操作を
100回繰り返す。これによりX+方向走査とX−方向
走査が交互に合計200ライン測定される。従来の方法
ではX−方向の走査が無駄な時間となっていたが、上記
の様にX+方向およびX−方向の走査を1ライン毎に使
用することにより、高速な測定ができるようになった。
In an actual measurement, first, an actuator for controlling in the Y direction is used.
Fixed voltage applied to eta, line scanning only in X direction
I do. X on the same line as the measurement data a in the X + direction scan
The measurement data b of the − direction scan is sent to the data processing unit 7.
You. In the data processing unit 7, the measurement data a and b are obtained for each measurement point.
Fx such that the data of a and b match
Is estimated. The calculation fx is the sum of the errors at the measurement points a and b.
Set to the minimum. At this time, the tip of the probe is sharp
In addition, the better the symmetry, the smaller the error. Next, in the XY plane
Is performed on the movement path shown in FIG. As an example
200 A method for obtaining measurement data of × 200 points will be described.
The scanning of the first line in the Y direction measures 200 points in the X + direction.
Z is measured at a fixed point and recorded in the measured value storage unit 6.
Next, it moves one step in the Y direction,
Scanning measures Z at 200 points in the X-direction.
Set. The measurement data in the X-direction is stored in the data processing unit 7.
And processed by the calculation fx, and recorded in the measured value storage unit 6.
You. The probe 1 moves one step in the Y direction and performs the above operation.
Repeat 100 times. This allows scanning in the X + direction and the X- direction.
The scan is measured alternately for a total of 200 lines. Conventional method
In this case, the scanning in the X-direction was wasted time.
Scans in the X + and X- directions are used for each line.
By using it, high-speed measurement can be performed.

【0009】[実施例2]以下に本発明の実施例2を図
4に基づいて説明する。例として200 ×200point
の測定データを得る方法を示す。XY面内の走査は図5
に示した移動経路で行われる。Y方向200ラインのデ
ータを測定するにはX+方向の走査200ラインとX−
方向の走査199ラインが交互に行われる。まずX+方
向1ラインあたりに200pointでZの測定が行われ、
図4の測定値格納部6に記録される(データA)。次に
Y方向に1ステップ移動後X−方向の走査が行われ、測
定値が測定値格納部6に記録される(データB)。デー
タBは実施例1で使用した演算fxで処理してデータ
B′とする。次にデータAとデータB′から次のX+方
向の走査のデータを予測し、参照値格納部8に入力す
る。Y方向に1ステップ移動後X+方向の走査が行われ
る。測定の際の探針の移動方法としてはpoint1の測定
が終わると参照値格納部8にあるpoint2のデータとし
て予想されるZ値へ探針1が移動し、その後X方向の移
動を行い、最後に設定されたトンネル電流が流れるよう
にZ方向の微調整を行う。このようにして得られた20
0pointのデータは再びデータAとして使用されると共
に、表示装置に表示される。
[Embodiment 2] Embodiment 2 of the present invention will be described below.
4 will be described. 200 as an example × 200point
The method for obtaining the measurement data of FIG. The scanning in the XY plane is shown in FIG.
Is performed on the movement route shown in FIG. 200 lines in the Y direction
To measure the data, scan 200 lines in the X + direction and X-
Scanning 199 lines in the direction are performed alternately. First X +
Z measurement is performed at 200 points per line
It is recorded in the measured value storage unit 6 in FIG. 4 (data A). next
After moving one step in the Y direction, scanning in the X-direction is performed, and measurement is performed.
The constant value is recorded in the measured value storage 6 (data B). Day
Data B is processed by the calculation fx used in the first embodiment and
B ′. Next, the next X + direction from data A and data B '
Direction data is predicted and input to the reference value storage 8.
You. After moving one step in the Y direction, scanning in the X + direction is performed.
You. Point1 measurement as a method of moving the probe at the time of measurement
Is completed, the data of point2 in the reference value storage unit 8 is used.
The probe 1 moves to the expected Z value, and then moves in the X direction.
The tunnel current set at the end.
Then, fine adjustment in the Z direction is performed. 20 obtained in this way
0 point data is used again as data A.
Is displayed on the display device.

【0010】データAとデータB′から次のX+方向の
走査のデータを予測する方法を図6により説明する。X
+方向走査の測定値データAの任意の位置をpoint1,
2,3,4,5、X−方向走査の測定値データB′の位
置をpoint6,7,8,9,10、予想するX+方向の
位置をpoint11,12,13,14,15とする。こ
のうちpoint13を予測するためには、point1と7,3
と8,5と9から直線近似によりpoint13を計算す
る。ただしラインの初めの2pointと最後の2pointに関
しては存在する測定データのみを使用して計算する。従
来の方法では無駄に移動していたX−方向の走査を活か
すことにより、探針1と試料2が接触することを極力避
け、安全に測定できる様になる。
A method of predicting the next scan data in the X + direction from data A and data B 'will be described with reference to FIG. X
An arbitrary position of the measurement value data A of the + direction scanning is set to point 1 and
The positions of the measurement value data B 'in the 2,3,4,5 and X-direction scans are point 6,7,8,9,10, and the expected positions in the X + direction are point11,12,13,14,15. In order to predict point13, point1 and 7,3
, 8, 5 and 9 are calculated by linear approximation. However, for the first two points and the last two points of the line, calculation is performed using only existing measurement data. By making use of the scanning in the X-direction, which has been moved uselessly in the conventional method, it is possible to minimize the contact between the probe 1 and the sample 2 and measure safely.

【0011】[実施例3]以下に本発明の実施例3につ
いて説明する。本実施例は、一度測定した領域と同じ領
域を再び走査する場合の測定方法であり、これを図7を
使用して次に述べる。まず1画像分のデータ(A)を参
照値格納部8に記録する。そのデータ(A)の記録と全
く同じように探針1が移動するようにX,Y,Z方向制
御用圧電素子に電圧を印加する。XY面内の走査方法は
従来どうり(図1)でよい。データ(A)が測定試料と
全く同一の場合(図8)、トンネル電流は設定値からず
れることはない。また探針1は試料2に接触することは
ありえず、安全かつ高速に測定することができる。デー
タ(A′)と測定試料に違いが存在する場合(図9)、
その位置ではトンネル電流値と設定値に差が生じる。こ
の場合はX+方向の走査時に上記方法に因るトンネル電
流値と設定値の差を測定し、X−方向走査時に差分から
Zの値の修正値を計算してデータ(A′)を修正し表示
する。
Third Embodiment A third embodiment of the present invention will be described below. The present embodiment is a measuring method for re-scanning the same area as the once measured area, which will be described below with reference to FIG. First, data (A) for one image is recorded in the reference value storage unit 8. A voltage is applied to the X, Y, and Z direction control piezoelectric elements so that the probe 1 moves in exactly the same manner as the recording of the data (A). The scanning method in the XY plane may be the same as the conventional method (FIG. 1). When the data (A) is exactly the same as the measurement sample (FIG. 8), the tunnel current does not deviate from the set value. Further, the probe 1 cannot come into contact with the sample 2 and can measure safely and at high speed. When there is a difference between the data (A ′) and the measurement sample (FIG. 9),
At that position, a difference occurs between the tunnel current value and the set value. In this case, the difference between the tunnel current value and the set value due to the above method is measured at the time of scanning in the X + direction, and a correction value of the Z value is calculated from the difference at the time of scanning in the X− direction to correct the data (A ′). indicate.

【0012】[0012]

【発明の効果】本発明は、以上のようにライン毎にX+
方向走査とX−方向走査を交互に行い補正処理して測定
するようにしたものであるから、高速に測定することが
でき、また、あるラインの右X+方向の走査データと、
Y方向に設定値分移動した後のX−方向の走査データを
補正したものから、次のX+方向の走査データを予測
し、探針をその予測位置に移動させた後測定する構成を
採用することにより、安全に像形成をすることができ
る。さらに、同一領域の測定データを予想データとして
走査し、測定物理量の設定値からのずれを測定しその差
分を修正する構成を採用し、より速くかつ探針と試料の
衝突を防いで安全に像形成することができる。したがっ
て、上記したライン毎に右方向走査と左方向走査を交互
に行う方法により大領域を高速走査して測定領域をしぼ
り、上記した走査データを予測する方法で観察目的領域
を安全に測定し、最後に上記した同一領域の測定方法法
により高速かつ安全にデータの微修正を行うといった使
い分けができる。
As described above, according to the present invention, X +
Since the scanning is performed by alternately performing the directional scanning and the X-direction scanning and performing the correction processing, the measurement can be performed at a high speed.
A configuration is adopted in which the next scan data in the X + direction is predicted from the corrected scan data in the X-direction after being moved by the set value in the Y direction, and the probe is moved to the predicted position before measurement. Thereby, it is possible to form an image safely. In addition, it scans the measured data of the same area as expected data, measures the deviation from the set value of the measured physical quantity, and corrects the difference. Can be formed. Therefore, a large area is scanned at high speed by a method of alternately performing the rightward scan and the leftward scan for each line, and the measurement area is squeezed, and the observation target area is safely measured by the method of predicting the scan data described above. Finally, it is possible to properly use the above-described method of measuring the same area to perform fine correction of data quickly and safely.

【図面の簡単な説明】[Brief description of the drawings]

【図1】走査型プローブ顕微鏡の従来のXY走査方法を
示す図である。
FIG. 1 is a diagram showing a conventional XY scanning method of a scanning probe microscope.

【図2】本発明に係る走査型プローブ顕微鏡の実施例1
の要部構成を示す構成図である。
FIG. 2 is a first embodiment of a scanning probe microscope according to the present invention.
FIG. 3 is a configuration diagram illustrating a main configuration of the first embodiment.

【図3】本発明に係る走査型プローブ顕微鏡の実施例1
のXY走査方法を示す図である。
FIG. 3 is a first embodiment of a scanning probe microscope according to the present invention.
FIG. 5 is a diagram showing an XY scanning method of FIG.

【図4】本発明に係る走査型プローブ顕微鏡の実施例2
の要部構成を示す構成図である。
FIG. 4 is a second embodiment of the scanning probe microscope according to the present invention.
FIG. 3 is a configuration diagram illustrating a main configuration of the first embodiment.

【図5】本発明に係る走査型プローブ顕微鏡の実施例2
のXY走査方法を示す図である。
FIG. 5 is a second embodiment of the scanning probe microscope according to the present invention.
FIG. 5 is a diagram showing an XY scanning method of FIG.

【図6】実施例2における走査データの予測方法を説明
するための概念図である。
FIG. 6 is a conceptual diagram for explaining a scan data prediction method according to a second embodiment.

【図7】本発明に係る走査型プローブ顕微鏡の実施例3
の要部構成を示す構成図である。
FIG. 7 is a scanning probe microscope according to a third embodiment of the present invention;
FIG. 3 is a configuration diagram illustrating a main configuration of the first embodiment.

【図8】実施例3の測定方法を説明するための概念図で
ある。
FIG. 8 is a conceptual diagram illustrating a measurement method according to a third embodiment.

【図9】実施例3の測定方法を説明するための概念図で
ある。
FIG. 9 is a conceptual diagram illustrating a measurement method according to a third embodiment.

【符号の説明】[Explanation of symbols]

1・・・探針 2・・・試料 3・・・探針駆動用圧電素子 4・・・電源 5・・・XY走査制御部 6・・・測定値格納部 7・・・データ処理部 8・・・参照値格納部 9・・・帰還回路 l0・・・電流電圧変換回路 11・・・表示装置 DESCRIPTION OF SYMBOLS 1 ... Probe 2 ... Sample 3 ... Probe driving piezoelectric element 4 ... Power supply 5 ... XY scanning control unit 6 ... Measured value storage unit 7 ... Data processing unit 8 ... Reference value storage unit 9 ... Feedback circuit 10 ... Current-voltage conversion circuit 11 ... Display device

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01N 13/10 - 13/24 G12B 21/00 - 21/24 G01B 21/30 H01J 37/28 JICSTファイル(JOIS)Continuation of the front page (58) Fields investigated (Int. Cl. 7 , DB name) G01N 13/10-13/24 G12B 21/00-21/24 G01B 21/30 H01J 37/28 JICST file (JOIS)

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】探針を試料表面に接近させ走査し、前記探
針と前記試料表面の間に生じる物理量を利用して前記試
料表面の形状を測定する走査型プローブ顕微鏡におい
て、前記探針の往路と復路の位置情報をそれぞれ記録す
る測定値格納部と、前記探針の試料表面の面方向におけ
る同一X方向ラインの往路と復路の走査により得られる
情報を比較しその差の補正処理を行うデータ処理部とを
有することを特徴とする走査型プローブ顕微鏡。
1. A scanning probe microscope for scanning a probe close to a sample surface and measuring a shape of the sample surface by using a physical quantity generated between the probe and the sample surface . Record the position information of the outbound and return trips respectively
And a data processing unit for comparing information obtained by scanning the forward and backward paths of the same X-direction line in the surface direction of the sample surface of the probe and correcting the difference.
A scanning probe microscope, comprising:
【請求項2】前記測定値格納部の記録データとデータ処
理部のデータとに基づいて、前記X方向ラインにおける
次の往路方向の探針の予測走査データを算出してこのデ
ータを格納する手段を有することを特徴とする請求項1
に記載の走査型プローブ顕微鏡。
2. A means for calculating predicted scanning data of a probe in the next forward direction in the X direction line based on the recording data of the measured value storage section and the data of the data processing section, and storing the data. 2. The method according to claim 1, wherein
2. A scanning probe microscope according to claim 1.
【請求項3】既に走査された領域と同一の走査領域を走
査した際に、前記既に走査された領域の記録データと今
回の走査による測定データとの間に差が存在する場合、
その差分を修正する手段を有することを特徴とする請求
項1に記載の走査型プローブ顕微鏡。
3. A method according to claim 1, wherein when a scan area identical to the already scanned area is scanned, there is a difference between print data of the already scanned area and measurement data obtained by a current scan.
2. The scanning probe microscope according to claim 1, further comprising means for correcting the difference.
【請求項4】探針を試料表面に接近させ走査し,複数の
測定箇所で前記探針と前記試料表面の間に生じる物理量
を利用して前記試料表面の形状を測定する走査型プロー
ブ顕微鏡の像測定方法において、前記探針の試料表面の
面方向における同一X方向ラインの走査の往路と復路の
情報からそれらが一致する演算を算出し、該演算に基づ
いて補正処理を行いつつ、前記探針の試料表面の面方向
におけるY方向に1X方向ラインずつ往路と復路を交互
に測定する走査型プローブ顕微鏡の像測定方法。
4. A scanning probe microscope which scans a probe by approaching the surface of the sample and using a physical quantity generated between the probe and the surface of the sample at a plurality of measurement points to measure the shape of the surface of the sample. In the image measurement method, a calculation is performed on the forward and backward scans of the same X-direction line in the plane direction of the sample surface of the probe so as to match them , based on the calculation.
A scanning probe microscope for alternately measuring the forward path and the return path by 1X lines in the Y direction in the plane direction of the sample surface of the probe while performing correction processing .
【請求項5】前記往路と復路の情報に基づいて探針の次
の往路の走査位置を予測し、探針をその予測位置に移動
させた後測定するようにした請求項4に記載の走査型プ
ローブ顕微鏡の像測定方法。
5. The scanning device according to claim 4, wherein a scanning position of the next forward path of the probe is predicted based on the information on the forward path and the return path, and the probe is moved to the predicted position and then measured. Image measurement method using a scanning probe microscope.
【請求項6】既に走査された領域と同一の走査領域を走
査する際に、その走査領域の測定データ通りに探針を走
査し、既に走査された領域の記録データと今回の走査に
よる測定データとの差を測定し、その差分を修正するよ
うにした請求項4に記載の走査型プローブ顕微鏡の像測
定方法。
6. When scanning the same scanning area as the already scanned area, the probe is scanned according to the measurement data of the scanning area, and the recorded data of the already scanned area and the measurement data of the current scanning are scanned. 5. The method for measuring an image of a scanning probe microscope according to claim 4, wherein a difference between the measured values is measured and the difference is corrected.
JP12312695A 1995-04-24 1995-04-24 Scanning probe microscope and image measurement method using the same Expired - Fee Related JP3359181B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12312695A JP3359181B2 (en) 1995-04-24 1995-04-24 Scanning probe microscope and image measurement method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12312695A JP3359181B2 (en) 1995-04-24 1995-04-24 Scanning probe microscope and image measurement method using the same

Publications (2)

Publication Number Publication Date
JPH08292196A JPH08292196A (en) 1996-11-05
JP3359181B2 true JP3359181B2 (en) 2002-12-24

Family

ID=14852832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12312695A Expired - Fee Related JP3359181B2 (en) 1995-04-24 1995-04-24 Scanning probe microscope and image measurement method using the same

Country Status (1)

Country Link
JP (1) JP3359181B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2131180A4 (en) * 2007-03-05 2013-01-23 Univ Yokohama Nat Atomic force microscope
CN106370150A (en) * 2016-08-30 2017-02-01 广西玉柴机器股份有限公司 Label application method of electronic level meter

Also Published As

Publication number Publication date
JPH08292196A (en) 1996-11-05

Similar Documents

Publication Publication Date Title
US5414260A (en) Scanning probe microscope and method of observing samples by using the same
US5204531A (en) Method of adjusting the size of the area scanned by a scanning probe
JP3450349B2 (en) Cantilever probe
EP0347739B1 (en) Scanning tunneling microscope and surface topographic observation method
US5323003A (en) Scanning probe microscope and method of observing sample by using such a microscope
JPH10332713A (en) Control of interlocking of probe of scanning microscope and segmental piezo-electric actuator
US5773824A (en) Method for improving measurement accuracy using active lateral scanning control of a probe
US9823208B2 (en) Method for measuring spreading resistance and spreading resistance microscope
US8141168B2 (en) Scanning probe microscope and a method to measure relative-position between probes
JP3359181B2 (en) Scanning probe microscope and image measurement method using the same
JP2001194284A (en) Probe scanning method
JP3103217B2 (en) Scanning probe microscope and method for observing a sample using the same
US20020079446A1 (en) Scanning probe microscope
JP3671591B2 (en) Scanning probe microscope
JP4497665B2 (en) Probe scanning control device, scanning probe microscope using the scanning control device, probe scanning control method, and measurement method using the scanning control method
JP3121619B2 (en) Image processing method for scanning tunneling microscope
JPH06147821A (en) Inclination correcting method for scanning probe microscopic image
JP3058724B2 (en) Scanning probe microscope
JPH06194115A (en) Scanning tunneling microscope and measuring method thereof
JPH06147820A (en) Probe moving method for scanning probe microscope
JPH05180614A (en) Observing method of surface
JPH10170525A (en) Scanning probe microscope, and measuring method for adsorption force using the scanning probe microscope
JPH0650707A (en) Scanning tunnel electron microscope
JPH06241716A (en) Servo control device for scanning tunneling microscope
JPH1194851A (en) Scanning probe microscope

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071011

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081011

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091011

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091011

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101011

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101011

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111011

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111011

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121011

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131011

Year of fee payment: 11

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

LAPS Cancellation because of no payment of annual fees