JPH06147821A - Inclination correcting method for scanning probe microscopic image - Google Patents
Inclination correcting method for scanning probe microscopic imageInfo
- Publication number
- JPH06147821A JPH06147821A JP4327485A JP32748592A JPH06147821A JP H06147821 A JPH06147821 A JP H06147821A JP 4327485 A JP4327485 A JP 4327485A JP 32748592 A JP32748592 A JP 32748592A JP H06147821 A JPH06147821 A JP H06147821A
- Authority
- JP
- Japan
- Prior art keywords
- probe
- sample
- measurement
- scanning
- image
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は走査型探針顕微鏡像の傾
斜補正方法に関し、特に、走査型探針顕微鏡を用いた試
料の表面凹凸形状の測定および画像作成において、測定
データから傾斜成分を取り除く場合に、補正後の測定デ
ータで作られる像の凹凸形状を変形せず原形状を正確に
再現できる傾斜補正方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for correcting inclination of a scanning probe microscope image, and more particularly, in measuring an uneven surface shape of a sample using a scanning probe microscope and creating an image, an inclination component is measured from measurement data. The present invention relates to a tilt correction method capable of accurately reproducing an original shape without deforming an uneven shape of an image formed by measurement data after correction when removing.
【0002】[0002]
【従来の技術】走査型探針顕微鏡(走査型プローブ顕微
鏡ともいう)の代表的な装置例として走査型トンネル顕
微鏡(以下STMという)について概説する。STMで
は、探針と試料の間に流れるトンネル電流を検知し、試
料の測定面(互いに直交するX軸とY軸で定義される平
面)を探針で走査しながら、かかるトンネル電流が例え
ば一定になるように探針の高さ位置(XY平面に直交す
るZ軸方向の変位量)を制御し、その際の探針の空間座
標、すなわち、X,Y,Zの各軸方向の圧電素子(探針
位置を変位させるためのアクチュエータ)を伸縮させる
ための駆動用印加電圧を測定データとして用いて、試料
測定面の凹凸形状についてCRTモニタに鳥瞰図等を表
示する。こうして得られた試料の測定領域の凹凸情報に
基づいて試料表面上の微細形状の観察や解析を行う。2. Description of the Related Art A typical example of a scanning probe microscope (also referred to as a scanning probe microscope) is a scanning tunneling microscope (hereinafter referred to as STM). In STM, the tunnel current flowing between the probe and the sample is detected, and while the measurement surface of the sample (the plane defined by the X axis and the Y axis orthogonal to each other) is scanned by the probe, the tunnel current is constant, for example. The height position of the probe (the amount of displacement in the Z-axis direction orthogonal to the XY plane) is controlled so that the probe becomes the spatial coordinate of the probe, that is, the piezoelectric element in each of the X, Y, and Z axis directions. A drive applied voltage for expanding and contracting the (actuator for displacing the probe position) is used as measurement data, and a bird's-eye view or the like is displayed on the CRT monitor regarding the uneven shape of the sample measurement surface. The fine shape on the surface of the sample is observed and analyzed based on the thus obtained unevenness information of the measurement region of the sample.
【0003】上記STMによる表面形状測定では、トン
ネル電流は探針と試料の間の距離のの変化に極めて敏感
であることから、原子レベルの識別が可能という高い分
解能を持つことが知られている。In the surface shape measurement by the above-mentioned STM, since the tunnel current is extremely sensitive to the change in the distance between the probe and the sample, it is known that it has a high resolution capable of discriminating at the atomic level. .
【0004】[0004]
【発明が解決しようとする課題】上記測定を行うSTM
で得られる情報は試料表面の凹凸形状である。しかし試
料の測定面が探針の軸方向に対して実質的に直角ではな
く傾斜している場合には、検出される探針の高さ情報
は、必要とする表面凹凸情報の他に試料表面の傾斜を含
んだ情報となる。このため、測定で得られたデータを用
いて輝度変調像や立体陰影像を作成し、CRTモニタに
表示し、解析を行う場合には、試料測定面の傾斜が障害
になり、適正な補正を行うことが必要となる。The STM for performing the above measurement
The information obtained in step 1 is the uneven shape of the sample surface. However, if the measurement surface of the sample is not substantially perpendicular to the axial direction of the probe but is inclined, the detected height information of the probe includes the required surface irregularity information as well as the sample surface. The information includes the inclination of. Therefore, when a brightness modulation image or a stereoscopic shadow image is created using the data obtained by the measurement and displayed on a CRT monitor for analysis, the inclination of the sample measurement surface becomes an obstacle and proper correction is required. It is necessary to do it.
【0005】試料測定面の傾斜を補正する方法として、
例えば、XとYの各方向のラインスキャンによる測定デ
ータに基づいて求めた測定面の傾斜角、あるいは二次元
の測定データに対し最小自乗法を用いて得られる傾斜面
の方程式などに基づいて、傾斜に起因する高さ分を減算
または加算して補正する考え方が提案されている。これ
らの方法は、写像的な意味を有する濃淡補正であり、傾
斜の程度が小さいときには簡便かつ有用な補正方法であ
るといえる。しかし、近似的な方法に過ぎないことか
ら、傾斜の程度が大きい場合には厳密には適正であると
はいえないこともある。特に傾斜の程度が大きい場合に
は、図6に示すように補正後の測定データで作成される
画像の凹凸形状(図6(B))が、実際の凹凸形状(図
6(A))に比較して顕著に変形し、傾斜補正を行うと
凹凸形状を原形のまま維持することができないという不
具合が生じる。このような補正後の凹凸画像によって試
料表面の解析を行えば、判断を誤るをおそれが高くな
る。As a method of correcting the inclination of the sample measuring surface,
For example, based on the inclination angle of the measurement surface obtained based on the measurement data by the line scan in each of the X and Y directions, or the equation of the inclination surface obtained by using the least square method for the two-dimensional measurement data, A concept of correcting by subtracting or adding the height amount due to the inclination has been proposed. These methods are gradation corrections having a mapping meaning, and can be said to be simple and useful correction methods when the degree of inclination is small. However, since it is only an approximate method, it may not be strictly appropriate when the degree of inclination is large. Particularly when the degree of inclination is large, the uneven shape (FIG. 6B) of the image created by the corrected measurement data becomes the actual uneven shape (FIG. 6A) as shown in FIG. In comparison, when it is remarkably deformed and the inclination is corrected, there is a problem that the uneven shape cannot be maintained as it is. If the surface of the sample is analyzed using the thus-corrected uneven image, the risk of misjudgment increases.
【0006】上記問題は、STMだけではなく、原子間
力顕微鏡のごとき類似の構成を有する走査型探針顕微鏡
で得られる画像の傾斜補正でも起きる問題である。The above problem is not only caused by the STM but also caused by the inclination correction of the image obtained by the scanning probe microscope having the similar structure such as the atomic force microscope.
【0007】本発明の目的は、上記問題に鑑み、走査型
探針顕微鏡で得られる測定データから傾斜程度に関係な
く傾斜成分を精度よく取り除き、かつ補正後の測定デー
タで描かれる凹凸像が正確に実際の凹凸形状を示すこと
のできる走査型探針顕微鏡像の傾斜補正方法を提供する
ことにある。In view of the above problems, an object of the present invention is to accurately remove the tilt component from the measurement data obtained by the scanning probe microscope regardless of the tilt degree, and to accurately obtain the uneven image drawn by the corrected measurement data. Another object of the present invention is to provide a method for correcting inclination of a scanning probe microscope image capable of showing an actual uneven shape.
【0008】[0008]
【課題を解決するための手段】本発明に係る走査型探針
顕微鏡像の傾斜補正方法は、試料の表面に接近させた状
態の探針で試料表面を走査し、その走査中複数の測定箇
所のそれぞれで、探針と試料表面の間の微小間隔に生じ
るトンネル電流や原子間力等の物理量を利用して試料表
面の凹凸形状に対応する探針の高さ位置を測定し、この
高さ位置のデータを用いて試料表面の凹凸形状の画像を
作成する測定方法に適用されるものであり、試料の測定
領域上にて、好ましくは直角の角度で定められた2軸方
向のそれぞれでライン状の走査を行って測定領域の測定
面の傾斜角を算出し、この傾斜角に基づいて走査範囲を
定め、この走査範囲と測定データを用いて傾斜した前述
の測定面に直交する方向での信号レベルを算出し、走査
範囲とサンプリング数と算出した信号レベルに基づいて
等間隔なサンプリングピッチにおける信号レベルを内挿
法により求め、内挿法で求めた等間隔のサンプリングピ
ッチにおける前記信号レベルを、凹凸形状画像を作成す
るための最終的なデータとして用いるようにした傾斜補
正方法である。A method for correcting inclination of a scanning probe microscope image according to the present invention scans a sample surface with a probe in a state of being close to the surface of the sample, and a plurality of measurement points during the scanning. For each of the above, the height position of the probe corresponding to the uneven shape of the sample surface is measured using physical quantities such as tunneling current and atomic force generated in the minute gap between the probe and the sample surface. The present invention is applied to a measuring method for creating an image of a concave-convex shape on the surface of a sample using position data, and a line is formed on the measuring area of the sample, preferably in each of two biaxial directions defined at right angles. -Like scanning is performed to calculate the tilt angle of the measurement surface in the measurement region, the scan range is determined based on this tilt angle, and the scan range and measurement data are used to tilt in the direction orthogonal to the above-described measurement surface. Calculate the signal level, scan range and sampling The signal levels at evenly spaced sampling pitches based on the number and the calculated signal levels are determined by interpolation, and the signal levels at evenly spaced sampling pitches determined by interpolation are used to create the final image for creating the concavo-convex shape image. This is a tilt correction method that is used as temporary data.
【0009】[0009]
【作用】本発明では、走査型探針顕微鏡で得られた測定
データを用いて試料の測定領域の凹凸形状の画像を作成
する場合において、測定領域の表面が傾斜していて、測
定データに含まれる傾斜成分を取り除くための傾斜補正
を行う必要があるとき、傾斜補正の演算を行って新しい
座標系に関する信号レベルを得ると共に、この信号レベ
ルを、内挿法を利用して、等間隔サンプリングピッチに
対応する信号レベルに変換する。これによって、最初に
得た測定データに傾斜補正の演算を施しても、実際の凹
凸形状を変形させることなく、傾斜成分を取り除くこと
が可能となる。換言すれば、走査型探針顕微鏡像に対し
傾斜補正を行っても、実際の凹凸形状と同じプロファイ
ルで凹凸形状像を表示させることができる。In the present invention, when the image of the uneven shape of the measurement area of the sample is created by using the measurement data obtained by the scanning probe microscope, the surface of the measurement area is inclined and is included in the measurement data. When it is necessary to perform the tilt correction to remove the tilt component that is generated, the tilt correction calculation is performed to obtain the signal level related to the new coordinate system, and this signal level is calculated by using the interpolation method. To the signal level corresponding to. This makes it possible to remove the tilt component without deforming the actual concavo-convex shape even if the initially obtained measurement data is subjected to tilt correction calculation. In other words, even when the inclination correction is performed on the scanning probe microscope image, the uneven shape image can be displayed with the same profile as the actual uneven shape.
【0010】[0010]
【実施例】以下に、本発明の実施例を添付図面に基づい
て説明する。この実施例では、走査型探針顕微鏡の一例
としてSTMについて説明する。Embodiments of the present invention will be described below with reference to the accompanying drawings. In this embodiment, an STM will be described as an example of a scanning probe microscope.
【0011】図1はSTMの探針部分の構成と、探針の
位置制御のための装置構成と、探針により得られる測定
データの検出・処理部の構成を示している。図1を参照
してSTMの要部に関する一般的な構成および動作を説
明する。1は探針であり、探針1の先端は鋭く尖り、試
料2の表面に臨んでいる。探針1は、図示しないトライ
ポッドヘッドにおいて相互に直角になるように配置され
た棒状の微動用圧電素子3,4,5の交差部に取り付け
られている。圧電素子3はX軸方向の移動に関与するア
クチュエータ、圧電素子4はY軸方向の移動に関与する
アクチュエータ、圧電素子5はZ軸方向の移動に関与す
るアクチュエータである。また探針1は、トライポッド
ヘッドを取り付けた図示しない手動装置、ステッピング
モータ、またはストロークの大きな粗動用圧電素子等に
よって、所要のトンネル電流が検出される距離まで試料
2の表面に近づけられる。FIG. 1 shows the structure of the STM probe part, the device structure for controlling the position of the probe, and the structure of the detection / processing unit for the measurement data obtained by the probe. With reference to FIG. 1, a general configuration and operation of main parts of the STM will be described. Reference numeral 1 is a probe, and the tip of the probe 1 is sharply pointed and faces the surface of the sample 2. The probe 1 is attached to an intersection of rod-shaped fine-movement piezoelectric elements 3, 4 and 5 arranged at right angles to each other in a tripod head (not shown). The piezoelectric element 3 is an actuator involved in movement in the X-axis direction, the piezoelectric element 4 is an actuator involved in movement in the Y-axis direction, and the piezoelectric element 5 is an actuator involved in movement in the Z-axis direction. Further, the probe 1 is brought close to the surface of the sample 2 to a distance at which a required tunnel current is detected by a manual device (not shown) having a tripod head attached, a stepping motor, or a coarse-movement piezoelectric element having a large stroke.
【0012】探針1と試料2の間には電源6が接続さ
れ、所要の電圧がそれらの間に印加されている。この状
態で探針1を試料2に近づけ、探針1と試料2の間の距
離が所要の微小距離になると、それらの間にトンネル電
流が流れる。導電性の探針1に流れるトンネル電流は、
トンネル電流検出部7で検出され、その後トンネル電流
・距離変換部8によって、検出されたトンネル電流は探
針1と試料2の間の距離に相当する電圧信号に変換され
る。凹凸形状の測定では、探針1の走査において、検出
されるトンネル電流が一定の値に保持されるように探針
1の高さ位置を制御する。この制御を行うため、次段の
サーボ回路9は、トンネル電流・距離変換部8から出力
される距離信号を入力し、この距離信号を予め設定され
た基準距離と比較し両者が一致するように制御すること
によって、探針・試料間が一定距離に保持されるよう
に、Z軸方向の圧電素子5の伸縮動作量を制御する。A power source 6 is connected between the probe 1 and the sample 2 and a required voltage is applied between them. In this state, when the probe 1 is brought close to the sample 2 and the distance between the probe 1 and the sample 2 becomes a required minute distance, a tunnel current flows between them. The tunnel current flowing through the conductive probe 1 is
The tunnel current is detected by the tunnel current detector 7, and then the tunnel current / distance converter 8 converts the detected tunnel current into a voltage signal corresponding to the distance between the probe 1 and the sample 2. In the measurement of the uneven shape, the height position of the probe 1 is controlled so that the tunnel current detected during scanning of the probe 1 is maintained at a constant value. In order to perform this control, the servo circuit 9 in the next stage inputs the distance signal output from the tunnel current / distance converter 8 and compares this distance signal with a preset reference distance so that they match. By controlling, the expansion / contraction amount of the piezoelectric element 5 in the Z-axis direction is controlled so that the probe and the sample are held at a constant distance.
【0013】試料2の測定面における探針1のX軸とY
軸の各方向の走査は、走査部10によって行われる。走
査部10は、X軸方向用の圧電素子3とY軸方向用の圧
電素子4に対して伸縮用駆動信号を与え、これらの圧電
素子3,4の伸縮動作によって二次元的に探針1の走査
が行われる。圧電素子3,4の伸縮動作はそれぞれ独立
に行われ、圧電素子3,4の伸縮量の組み合わせで探針
のXY平面における走査位置が決定される。The X axis and Y of the probe 1 on the measurement surface of the sample 2
Scanning in each direction of the axis is performed by the scanning unit 10. The scanning unit 10 gives an expansion / contraction driving signal to the piezoelectric element 3 for the X-axis direction and the piezoelectric element 4 for the Y-axis direction, and the expansion / contraction operation of these piezoelectric elements 3, 4 causes the probe 1 to two-dimensionally move. Scanning is performed. The expansion and contraction operations of the piezoelectric elements 3 and 4 are independently performed, and the scanning position of the probe on the XY plane is determined by the combination of the expansion and contraction amounts of the piezoelectric elements 3 and 4.
【0014】X,Y,Zの各軸方向の圧電素子3,4,
5による探針1の移動に伴い、圧電素子3,4,5の負
荷電圧、すなわち各圧電素子の伸縮量に関するデータを
空間座標として測定データ記憶部11に記憶する。測定
データ記憶部11に記憶された探針1の位置データは適
宜に取り出され、データ処理部12に供給される。デー
タ処理部12では、試料2の測定面の凹凸形状について
の画像処理を行い、画像処理で得られたデータを用いて
モニタ部13に試料2の表面凹凸形状を表示する。本実
施例のデータ処理部12では、後述する傾斜補正方法を
実行するための傾斜補正手段を備えている。上記の測定
データ記憶部11とデータ処理部12は、演算・制御部
14に含まれる。演算・制御部14はCPUとメモリに
よって構成される。演算・制御部14によって必要な機
能手段が実現される。Piezoelectric elements 3, 4, in the directions of the X, Y and Z axes
With the movement of the probe 1 by 5, the load voltage of the piezoelectric elements 3, 4, and 5, that is, the data regarding the expansion and contraction amount of each piezoelectric element is stored in the measurement data storage unit 11 as spatial coordinates. The position data of the probe 1 stored in the measurement data storage unit 11 is appropriately extracted and supplied to the data processing unit 12. The data processing unit 12 performs image processing on the uneven shape of the measurement surface of the sample 2, and displays the surface uneven shape of the sample 2 on the monitor unit 13 using the data obtained by the image processing. The data processing unit 12 of this embodiment is provided with a tilt correction means for executing a tilt correction method described later. The measurement data storage unit 11 and the data processing unit 12 described above are included in the calculation / control unit 14. The arithmetic / control unit 14 is composed of a CPU and a memory. The arithmetic / control unit 14 realizes necessary functional means.
【0015】演算・制御部14は、さらに走査制御部1
5を有する。この走査制御部15には、試料2の表面上
で測定すべき対象領域が設定されたときに、この領域の
探針走査で探針をどのように移動させるかという手順が
用意され、かつ走査制御部15は、この手順を実行する
ための制御信号を走査部10に与える機能を有してい
る。The calculation / control unit 14 further includes the scan control unit 1.
Have 5. The scan control unit 15 is provided with a procedure of how to move the probe in the probe scan of this region when the target region to be measured on the surface of the sample 2 is set, and the scan is performed. The control unit 15 has a function of giving a control signal for executing this procedure to the scanning unit 10.
【0016】上記の構成において、探針1と試料2の間
にトンネル電流が流れる場合に、探針1と試料2の間の
距離は原子レベルの1nm程度であり、試料表面の凹凸
状態を検出するためには、この距離を一定に保つように
圧電素子5の伸縮動作を制御することが必要である。ト
ンネル電流は、探針・試料間の距離の変化に敏感であ
り、これによって高い分解能を得ることができる。In the above structure, when a tunnel current flows between the probe 1 and the sample 2, the distance between the probe 1 and the sample 2 is about 1 nm at the atomic level, and the unevenness of the sample surface is detected. In order to do so, it is necessary to control the expansion / contraction operation of the piezoelectric element 5 so as to keep this distance constant. The tunnel current is sensitive to the change in the distance between the probe and the sample, and thus high resolution can be obtained.
【0017】STMの上記構成に基づけば、その一連の
動作により、試料2の測定面の凹凸形状に関する情報を
得ることができる。この情報を得るためには、測定領域
で設定された複数の測定箇所のそれぞれにおいて、探針
1を走査させるための移動を停止し、探針1と試料2の
表面との距離を一定に保つためのサーボ制御が、サーボ
回路9によって複数回繰り返して行われる。Based on the above structure of the STM, the series of operations makes it possible to obtain information on the uneven shape of the measurement surface of the sample 2. In order to obtain this information, the movement for scanning the probe 1 is stopped at each of the plurality of measurement points set in the measurement region, and the distance between the probe 1 and the surface of the sample 2 is kept constant. The servo control is performed by the servo circuit 9 repeatedly a plurality of times.
【0018】試料2の測定領域について、前述のごとく
して予め定められた複数の測定箇所で凹凸形状の高さ位
置を測定することによって当該測定領域の凹凸情報を得
ることができる。かかる測定によって例えば図2に示す
ような測定データが得られたとする。図2に示されるよ
うに、当該測定データによって作成される試料の測定面
2aには傾斜が存在する。測定面2aの傾斜角は基準面
2bに対して定められる。この基準面は、試料2の載置
ステージ(図示せず)に平行な面であり、探針1の軸方
向すなわちZ軸方向に直交している。傾斜を有する試料
2の測定面2aに対して、例えばX軸方向およびY軸方
向にラインスキャンを行うことにより、あるいは二次元
測定データを得るための二次元測定を行うことにより、
任意方向のラインの測定データを得、測定面2aの基準
面2bに対する傾斜角を求める。なお、二次元測定は測
定領域内の部分領域を二次元的に走査することである。
これによって、任意ライン上の凹凸データを得る。As for the measurement area of the sample 2, the height information of the uneven shape is measured at a plurality of predetermined measurement points as described above, whereby the uneven information of the measurement area can be obtained. It is assumed that the measurement data as shown in FIG. 2 is obtained by such measurement. As shown in FIG. 2, the measurement surface 2a of the sample created by the measurement data has an inclination. The inclination angle of the measurement surface 2a is defined with respect to the reference surface 2b. The reference plane is a plane parallel to the mounting stage (not shown) of the sample 2 and is orthogonal to the axial direction of the probe 1, that is, the Z-axis direction. For example, by performing a line scan in the X-axis direction and the Y-axis direction on the measurement surface 2a of the sample 2 having an inclination, or by performing a two-dimensional measurement for obtaining two-dimensional measurement data,
The measurement data of a line in an arbitrary direction is obtained, and the inclination angle of the measurement surface 2a with respect to the reference surface 2b is obtained. The two-dimensional measurement is to scan a partial area within the measurement area two-dimensionally.
By this, the unevenness data on an arbitrary line is obtained.
【0019】一例としてY軸方向のラインスキャン時の
測定データが、図3に示すように得られた場合、この測
定データを用いて基準面2bに対する試料面(平均的な
平面と想定される面2c)の傾斜角θyが求められる。
X軸方向の傾斜角についても同様に求めることができ
る。以下では、説明の便宜上、傾斜角θyについての傾
斜補正に関して説明する。As an example, when the measurement data at the time of line scanning in the Y-axis direction is obtained as shown in FIG. 3, using this measurement data, the sample surface with respect to the reference surface 2b (a surface assumed to be an average plane) is used. The inclination angle θy of 2c) is obtained.
The inclination angle in the X-axis direction can be similarly obtained. Hereinafter, for convenience of description, tilt correction for the tilt angle θy will be described.
【0020】測定データに関し傾斜補正を行う方法を図
4(A),(B),(C)に従って説明する。図4
(A)は試料2で設定された測定面2aでY軸方向にラ
インスキャンした結果得られた測定データ(探針の高さ
位置データ)を、Y軸方向に並べて示したグラフであ
る。横軸がY0 軸、縦軸がZ0 軸であり、Y0 −Z0 を
基準座標系とする。このグラフにおいてサンプリングピ
ッチP0 は等間隔である。図4(A)中16はスキャン
方向、ΔY0 は、測定時におけるY軸方向の走査範囲を
示している。また測定データの高さをZi,0 (i=1〜
ny ;ny はサンプリング点数または測定データ数)と
する。図4(A)のグラフの中には、さらに前記試料面
2cに対応する座標系Y1 −Z1 が示される。基準座標
系に対する角度はθyである。A method of correcting the inclination of the measured data will be described with reference to FIGS. 4 (A), (B) and (C). Figure 4
(A) is a graph in which measurement data (probe height position data) obtained as a result of line scanning in the Y-axis direction on the measurement surface 2a set for the sample 2 are arranged in the Y-axis direction. The horizontal axis is the Y 0 axis and the vertical axis is the Z 0 axis, and Y 0 -Z 0 is the reference coordinate system. In this graph, the sampling pitch P 0 is evenly spaced. In FIG. 4A, 16 indicates the scanning direction, and ΔY 0 indicates the scanning range in the Y-axis direction at the time of measurement. In addition, the height of the measured data is Z i, 0 (i = 1 to
n y ; n y is the number of sampling points or the number of measurement data). The coordinate system Y 1 -Z 1 corresponding to the sample surface 2c is further shown in the graph of FIG. The angle with respect to the reference coordinate system is θy.
【0021】傾斜している試料面2cに対する測定デー
タZi,1 を、Zi,0 を用いて求めると下記の(数1)の
ようになる。(数1)等の誘導に関し図5を参照する。
図5は図4(A)の一部を拡大して示し、点A〜Gを図
中に示す。これらの点A〜Gについては線分CA=Z
i,0 、線分CD=Zi,1 と定義され、かつ次の式が成立
する。 CD={AC−AB}cos θy Pi,1 =(CF2 −CG2 )1/2 CF2 =EF2 +P0 2 =(Zi+1,0 −Zi,0 ) 2 +P
0 2 CG2 =( Zi+1,1 −Zi,1 )2 上記の関係式を用いて(数1)等が求められる。When the measured data Z i, 1 for the inclined sample surface 2c is obtained using Z i, 0 , the following (Equation 1) is obtained. Refer to FIG. 5 for the guidance of (Equation 1) and the like.
FIG. 5 shows a part of FIG. 4A in an enlarged manner, and points A to G are shown in the figure. For these points A to G, the line segment CA = Z
i, 0 and line segment CD = Z i, 1 are defined, and the following equation holds. CD = {AC-AB} cos θy P i, 1 = (CF 2 -CG 2 ) 1/2 CF 2 = EF 2 + P 0 2 = (Z i + 1,0 -Z i, 0 ) 2 + P
0 2 CG 2 = (Z i + 1,1 −Z i, 1 ) 2 (Equation 1) and the like are obtained using the above relational expressions.
【数1】 Zi,1 ={Zi,0 −(i−1)P0 tan θy}cos θy 測定データZi,1 に対するY1 軸方向の不等間隔のサン
プリングピッチPi,1を求めると、次式で与えられる。[Expression 1] Z i, 1 = {Z i, 0 − (i−1) P 0 tan θy} cos θy The sampling pitch P i, 1 at unequal intervals in the Y 1 axis direction with respect to the measurement data Z i, 1 When calculated, it is given by the following formula.
【数2】Pi,1 ={((Zi+1,0 −Zi,0 ) 2 +P0 2 )-
( Zi+1,1 −Zi,1 )2 }1/2 試料面2cのY1 軸方向に沿った走査範囲ΔY1 (補正
された走査範囲)は、上記の(数2)の結果を用いて、
次式で与えられる。## EQU2 ## P i, 1 = {((Z i + 1,0 −Z i, 0 ) 2 + P 0 2 ) −
(Z i + 1,1 −Z i, 1 ) 2 } 1/2 The scanning range ΔY 1 (corrected scanning range) along the Y 1 axis direction of the sample surface 2c is the result of the above (Formula 2). Using,
It is given by the following formula.
【数3】 ΔY1 =ΣPi,1 ただしi=1〜(ny −1) 上記の値は厳密には表面凹凸の程度に応じて走査ライン
ごとに異なる。このため、走査範囲として近似的に次式
で与えられるΔY1 ′を採用する。Equation 3] ΔY 1 = ΣP i, 1 except i = 1~ (n y -1) The above information is different for each scan line in accordance with the degree of strictly surface irregularities. Therefore, ΔY 1 ′, which is approximately given by the following equation, is adopted as the scanning range.
【数4】ΔY1 ′=ΔY0 /cos θy ただし、ΔY0 は補正前の測定で設定された走査範囲 (数3)と(数4)で求められる各値の比率ΔY1 /Δ
Y1 ′を、不等間隔の走査ピッチPi,1 に乗じてP
i,1 ′とし、この値と(数1)より得られる傾斜試料面
2cに対する高さ成分Zi,1 を用いて等間隔ピッチΔY
1 ′/(ny −1)での高さ成分を内挿法により算出す
る。[Formula 4] ΔY 1 ′ = ΔY 0 / cos θy However, ΔY 0 is the ratio ΔY 1 / Δ of the scanning range set by the measurement before correction (Formula 3) and each value obtained by (Formula 4).
Y 1 ′ is multiplied by the non-equidistant scanning pitch P i, 1 to obtain P 1
i, 1 ′, and using this value and the height component Z i, 1 with respect to the inclined sample surface 2c obtained from (Equation 1) , an equal pitch ΔY
The height component at 1 '/ ( ny- 1) is calculated by the interpolation method.
【0022】上記の傾斜補正の演算に関連して、図4
(B)は、座標系Y1 −Z1 において傾斜している試料
面2cに対する測定データZi,1 を不等間隔ピッチP
i,1 で示したグラフである。図4(C)は、座標系Y1
−Z1 において、前記内挿法で算出した等間隔ピッチΔ
Y1 ′/(ny −1)での高さ成分データを示したグラ
フである。図4(C)に示した高さ成分データを用いて
輝度変調像や立体陰影像として表示する。In connection with the above tilt correction calculation, FIG.
(B), the measurement data Z i, 1 unequally spaced pitch P with respect to the sample surface 2c which is inclined in the coordinate system Y 1 -Z 1
It is a graph shown by i, 1 . FIG. 4C shows the coordinate system Y 1
At Z 1 , the equidistant pitch Δ calculated by the interpolation method
Y 1 '/ is a graph showing the height component data in (n y -1). The height component data shown in FIG. 4C is used to display as a brightness modulation image or a stereoscopic shadow image.
【0023】前述した傾斜補正の演算において、試料面
2cの方向に沿った走査範囲ΔY1を(数4)で近似し
ている問題を明確にするために、以下の点を考察する。
試料2の傾斜面に対する高さ方向成分を、測定データか
ら、In order to clarify the problem that the scanning range ΔY 1 along the direction of the sample surface 2c is approximated by (Equation 4) in the calculation of the inclination correction described above, the following points will be considered.
From the measurement data, the height direction component of the sample 2 with respect to the inclined surface is
【数5】 Yi,1 ={(i−1)P0 }sin θy+Zi,0 cos θy[Expression 5] Y i, 1 = {(i−1) P 0 } sin θy + Z i, 0 cos θy
【数6】 Zi,1 ={(i−1)P0 }cos θy+Zi,0 sin θy
で求める。補正後の走査範囲ΔY1 に対する等間隔な走
査ピッチとして、Z i, 1 = {(i−1) P 0 } cos θy + Z i, 0 sin θy
Ask in. As the scanning pitch at equal intervals with respect to the corrected scanning range ΔY 1 ,
【数7】Pi =P0 /cos θy を採用する。以上により(数6)と(数7)で得られる
(Yi,1 ,Zi,1 )ただしi=1〜ny のデータを基
に、内挿法により試料傾斜面に対するデータを新たに算
出し、補正後の高さ方向データとして用いることができ
る。(7) Adopt P i = P 0 / cos θy. Obtained in (6) and (7) the above (Y i, 1, Z i , 1) except i = based on data from 1 to n y, the data for the specimen rotation plane by interpolation new It can be calculated and used as corrected height direction data.
【0024】上記の2つの傾斜補正方法のいずれによっ
ても、走査範囲に対して数パーセント程度の表面凹凸形
状を対象として精緻な探針走査を行う実際の測定では、
問題なく傾斜補正を行うことができる。上記の各実施例
の傾斜補正方法によれば、傾斜補正後のSTM像作成デ
ータによって作成したSTM像において、実際の試料表
面の凹凸形状と異なったプロファイルとなるのを避ける
ことができる。In any of the above two inclination correction methods, in the actual measurement in which the fine probe scanning is performed on the surface unevenness shape of about several percent with respect to the scanning range,
The tilt correction can be performed without any problem. According to the inclination correction method of each of the above-described embodiments, it is possible to avoid that the STM image created by the STM image creation data after the tilt correction has a profile different from the actual uneven shape of the sample surface.
【0025】前述の説明では、STMによる画像の補正
傾斜方法について説明したが、本発明は走査型探針顕微
鏡に一般的に適用することができる。In the above description, the method of correcting and tilting an image by STM has been described, but the present invention can be generally applied to a scanning probe microscope.
【0026】[0026]
【発明の効果】以上の説明で明らかなように本発明によ
れば、走査型探針顕微鏡で得られる画像に対し傾斜補正
を行うにあたって、測定データから傾斜成分の取り除い
て得られる信号レベルを、さらに等間隔サンプリングピ
ッチの信号レベルに変換するように処理したため、傾斜
補正を行っても実際の凹凸形状と同じ形状をした画像を
得ることができ、傾斜した試料表面の凹凸について正確
な情報を得ることができ、解析を容易に行うことができ
る。As is apparent from the above description, according to the present invention, when performing tilt correction on an image obtained by a scanning probe microscope, the signal level obtained by removing the tilt component from the measurement data is Further, since the processing is performed so that the signal level is converted into a sampling pitch of equal intervals, an image having the same shape as the actual uneven shape can be obtained even if the inclination correction is performed, and accurate information about the unevenness of the inclined sample surface is obtained. Therefore, the analysis can be easily performed.
【図1】走査型探針顕微鏡の一例であるSTMの要部構
成を示す構成図である。FIG. 1 is a configuration diagram showing a main configuration of an STM which is an example of a scanning probe microscope.
【図2】試料の傾斜した測定面を示す斜視図である。FIG. 2 is a perspective view showing an inclined measurement surface of a sample.
【図3】試料の傾斜した測定面を説明するための図であ
る。FIG. 3 is a diagram for explaining an inclined measurement surface of a sample.
【図4】本実施例による傾斜補正の方法を説明するため
の図である。FIG. 4 is a diagram for explaining a tilt correction method according to the present embodiment.
【図5】傾斜補正方法の説明を補助する拡大図である。FIG. 5 is an enlarged view for assisting the description of the tilt correction method.
【図6】傾斜補正方法の問題点を説明するための図であ
る。FIG. 6 is a diagram for explaining a problem of the tilt correction method.
1 …探針 2 …試料 3,4,5 …圧電素子 7 …トンネル電流検出部 8 …トンネル電流・距離変換部 9 …サーボ回路 10 …走査部 11 …測定データ記憶部 12 …データ処理部 13 …モニタ部 14 …演算・制御部 DESCRIPTION OF SYMBOLS 1 ... Probe 2 ... Samples 3, 4, 5 ... Piezoelectric element 7 ... Tunnel current detection unit 8 ... Tunnel current / distance conversion unit 9 ... Servo circuit 10 ... Scan unit 11 ... Measurement data storage unit 12 ... Data processing unit 13 ... Monitor unit 14 ... Calculation / control unit
Claims (1)
表面を走査し、複数の測定箇所のそれぞれで、前記探針
と前記試料表面の間の微小間隔に生じる物理量を利用し
て前記試料表面の凹凸形状に対応する前記探針の高さ位
置を測定し、この高さ位置のデータを用いて前記試料表
面の凹凸形状の画像を作成する走査型探針顕微鏡像の画
像作成方法において、 前記試料の測定領域上にて任意方向のラインの測定デー
タに基づき前記測定領域の測定面の傾斜角を算出し、こ
の傾斜角に基づいて走査範囲を定め、この走査範囲と測
定データを用いて傾斜した前記測定面に直交する方向で
の信号レベルを算出し、前記走査範囲とサンプリング数
と前記信号レベルに基づいて等間隔なサンプリングピッ
チにおける信号レベルを内挿法により求め、等間隔のサ
ンプリングピッチにて求めた前記信号レベルを用いて前
記凹凸形状画像を作成することを特徴とする走査型探針
顕微鏡像の傾斜補正方法。1. The sample surface is scanned by a probe close to the surface of the sample, and a physical quantity generated in a minute interval between the probe and the sample surface is used at each of a plurality of measurement points to obtain the In the image forming method of the scanning probe microscope image, the height position of the probe corresponding to the uneven shape of the sample surface is measured, and the image of the uneven shape of the sample surface is created using the data of the height position. , Calculating the inclination angle of the measurement surface of the measurement region based on the measurement data of the line in an arbitrary direction on the measurement region of the sample, determining the scanning range based on the inclination angle, and using the scanning range and the measurement data The signal level in the direction orthogonal to the inclined measurement surface, and obtain the signal level at the sampling pitch at equal intervals based on the scanning range, the number of samplings, and the signal level by the interpolation method. Tilt correction method of a scanning probe microscopic image, characterized in that to create the uneven shape image using the signal level obtained at the sampling pitch.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4327485A JPH06147821A (en) | 1992-11-12 | 1992-11-12 | Inclination correcting method for scanning probe microscopic image |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4327485A JPH06147821A (en) | 1992-11-12 | 1992-11-12 | Inclination correcting method for scanning probe microscopic image |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06147821A true JPH06147821A (en) | 1994-05-27 |
Family
ID=18199685
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4327485A Pending JPH06147821A (en) | 1992-11-12 | 1992-11-12 | Inclination correcting method for scanning probe microscopic image |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06147821A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101011203B1 (en) * | 2007-10-09 | 2011-01-26 | 파나소닉 주식회사 | Three-dimensional shape measuring method |
JP2011122958A (en) * | 2009-12-11 | 2011-06-23 | Jasco Corp | Three-dimensional base setting method for image data |
US8037736B2 (en) * | 2008-01-14 | 2011-10-18 | International Business Machines Corporation | Non-linearity determination of positioning scanner of measurement tool |
US10846547B2 (en) * | 2018-03-20 | 2020-11-24 | Shimadzu Corporation | Data correction method, computer program for causing computer to perform data correction method, image processor, and scanning probe microscope |
JP2021043096A (en) * | 2019-09-12 | 2021-03-18 | 株式会社日立ハイテク | Pattern height information correcting system and pattern height information correcting method |
-
1992
- 1992-11-12 JP JP4327485A patent/JPH06147821A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101011203B1 (en) * | 2007-10-09 | 2011-01-26 | 파나소닉 주식회사 | Three-dimensional shape measuring method |
US8037736B2 (en) * | 2008-01-14 | 2011-10-18 | International Business Machines Corporation | Non-linearity determination of positioning scanner of measurement tool |
US8990961B2 (en) | 2008-01-14 | 2015-03-24 | International Business Machines Corporation | Non-linearity determination of positioning scanner of measurement tool |
JP2011122958A (en) * | 2009-12-11 | 2011-06-23 | Jasco Corp | Three-dimensional base setting method for image data |
US10846547B2 (en) * | 2018-03-20 | 2020-11-24 | Shimadzu Corporation | Data correction method, computer program for causing computer to perform data correction method, image processor, and scanning probe microscope |
JP2021043096A (en) * | 2019-09-12 | 2021-03-18 | 株式会社日立ハイテク | Pattern height information correcting system and pattern height information correcting method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7569077B2 (en) | Position control for scanning probe spectroscopy | |
JP6627903B2 (en) | Data correction method, program for causing computer to execute data correction method, image processing apparatus, scanning probe microscope | |
EP2003526A1 (en) | Method and device for controlling and monitoring a position of a holding element | |
JPH06147821A (en) | Inclination correcting method for scanning probe microscopic image | |
JPH04212001A (en) | Scanning tunnel microscope | |
KR20010086014A (en) | Line based characterization of a complex surface | |
JP3118108B2 (en) | Scanning probe microscope and its measuring method | |
Lapshin | Drift-insensitive distributed calibration of probe microscope scanner in nanometer range: Real mode | |
JP3065768B2 (en) | Scanning tunneling microscope, scanning atomic force microscope and similar measuring devices | |
US6563116B1 (en) | Method of measuring sizes of trapezoidal structure | |
JPH0666512A (en) | Scanning type tunnel microscope | |
JP3121619B2 (en) | Image processing method for scanning tunneling microscope | |
JPH09166607A (en) | Scanning probe microscope and its measuring method | |
JPH05196408A (en) | Scanning tunneling microscope and tunnel electron spectral method utilizing the same | |
JPH0650708A (en) | Pixel displaying method for scanning tunnel electron microscope | |
JP3359181B2 (en) | Scanning probe microscope and image measurement method using the same | |
JPH05296712A (en) | Scanning type tunnel microscope | |
JP3219258B2 (en) | Preparation method for scanning probe microscope measurement | |
JPH06137811A (en) | Monitoring method for measurement data of scanner type probe microscope and its device | |
JPH06147885A (en) | Method and equipment for measuring tip profile of needle-like object | |
JPH07198372A (en) | Method and apparatus for evaluation of probe for scanning probe microscope | |
JPH0587764B2 (en) | ||
JPH0650707A (en) | Scanning tunnel electron microscope | |
JPH09178758A (en) | Scanning probe microscope | |
JPH06147820A (en) | Probe moving method for scanning probe microscope |