JPH10264257A - 熱硬化型積層樹脂板の接合方法 - Google Patents

熱硬化型積層樹脂板の接合方法

Info

Publication number
JPH10264257A
JPH10264257A JP9074080A JP7408097A JPH10264257A JP H10264257 A JPH10264257 A JP H10264257A JP 9074080 A JP9074080 A JP 9074080A JP 7408097 A JP7408097 A JP 7408097A JP H10264257 A JPH10264257 A JP H10264257A
Authority
JP
Japan
Prior art keywords
resin
prepreg
thermosetting
joining
joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9074080A
Other languages
English (en)
Inventor
Kunihiro Fukui
国博 福井
Katsuro Hirayama
克郎 平山
Keiji Miki
啓司 三木
Junichi Uchida
淳一 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP9074080A priority Critical patent/JPH10264257A/ja
Publication of JPH10264257A publication Critical patent/JPH10264257A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Moulding By Coating Moulds (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

(57)【要約】 【課題】 ポリイミド系の熱硬化型積層樹脂板から溶融
塩電気アルミニウムめっきの電解槽を製作することがで
きるように、強腐食性の高温環境でも接合部が劣化しな
い熱硬化型積層樹脂板の接合方法を提供する。 【解決手段】 2枚の熱硬化型積層樹脂板の接合面に、
少なくとも1枚の未硬化の熱硬化性プリプレグを挟み、
接合部を2Kgf/cm2 以上の圧力に加圧しながらプリプレ
グ中の樹脂の溶融と硬化に必要な温度に加熱する。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、すでに積層成形に
より熱硬化した熱硬化型積層樹脂板の接合方法に関す
る。本発明の接合方法を採用することにより、腐食の問
題から金属材料製の容器が使用できない、高腐食性の化
学薬品が接触する容器や装置を製作することが可能とな
る。本発明の接合方法は特に、水の沸点以上、300 ℃以
下の温度の強腐食性雰囲気下で使用される、大型および
/または複雑形状の容器や装置、例えば、溶融塩電気ア
ルミニウムめっき用の電解槽の製作に適している。
【0002】
【従来の技術】電気めっき設備の電解槽は、耐薬品性に
優れた樹脂単体か、またはかかる樹脂で金属をライニン
グした材料から製作されることが多い。これは、電気め
っき用電解槽には電気絶縁性が必要であることと、めっ
き液が一般に酸性またはアルカリ性であって、腐食性で
あるためである。
【0003】また、樹脂単体または樹脂ライニング金属
材料は、電気めっき用電解槽だけではなく、腐食性の強
い化学薬品の貯蔵容器といった、強腐食性環境下で使用
される他の容器や装置の製作にも利用されている。
【0004】これらの材料のうち、金属を樹脂ラインニ
グした材料は、電気めっき用の電解槽や薬品貯蔵用容器
の製作に既に利用されている。しかし、ライニングに使
用できる樹脂が限られている上、ライニングは複雑形状
の容器には不向きであり、また樹脂ライニングが傷付く
と下地の金属の腐食が避けられないので、容器の耐久性
の点でも問題がある。
【0005】耐薬品性に優れた樹脂単体から容器を製造
する場合、樹脂としては熱可塑性樹脂と熱硬化性樹脂の
いずれも使用可能であるが、高温で使用される容器で
は、熱可塑性樹脂より耐熱性に優れている熱硬化性樹脂
の使用が有利である。中でもポリイミド樹脂が耐熱性に
優れていることは良く知られている。
【0006】大型容器用の樹脂には高強度が要求される
ので、一般にガラス繊維などの強化用繊維を含有する繊
維強化プラスチックが使用される。繊維強化プラスチッ
クには、繊維が短繊維のもの、長繊維を1方向に揃
えたもの、マットや織物などの布状のもの、などがあ
る。の1種である熱硬化型積層成形樹脂板は、布状の
繊維基材に熱硬化性樹脂を含浸させ、必要により乾燥し
て溶媒を除去した樹脂含浸繊維基材 (プリプレグと呼ば
れる) を積層し、加圧下に加熱して樹脂を熱硬化させる
と同時に一体化したものであり、繊維強化プラスチック
の中でも強化繊維の割合が最も高くなるので、非常に高
強度の材料となる。
【0007】含浸用樹脂として熱硬化性ポリイミド樹脂
を用いたポリイミド系の熱硬化型積層樹脂板は、特に耐
熱性や絶縁性に優れているので、プリント配線板の基板
等として主に電気分野で使用されるようになってきた。
また、樹脂が熱硬化性ポリイミドで、強化用繊維が炭素
繊維である熱硬化型積層樹脂板は、耐熱性と強度が極め
て高いことから、航空宇宙用の先端複合材料として研究
されている。このようなポリイミド系の熱硬化型積層樹
脂板には、硬化中に揮発性物質が発生しない付加重合型
の熱硬化性ポリイミド樹脂、特にビスマレイミド系ポリ
イミド樹脂が主として使用されている。
【0008】熱硬化型積層樹脂板から容器を作製する方
法としては、前記のプリプレグを積層した後、積層体
を金型に入れ、加圧下に加熱して、硬化と成形を同時に
行う方法、および既に硬化の終了した積層樹脂板を所
定寸法に切断し、これを接合組立てして容器を作製する
方法がある。
【0009】の方法は一体成形であり、接合の必要は
ない。しかし、金型を必要とするので、例えば、電解槽
のように少量生産品の製作には不利である。また、深い
容器、大型容器、複雑形状の容器の作製も困難である。
電解槽は一般に深く、大型であるので、の方法は適し
ていない。
【0010】の方法は型を使用せずに容器を製作する
ことができるが、接合手段に問題がある。樹脂が熱可塑
性であれば、溶接、即ち、接合部または溶接棒 (これは
接合材と同種の樹脂からなる) を加熱して融着させる手
法により確実に接合できる。この場合には、接合部は、
周囲の成形体の材料と同一または同種の材料からなるの
で、接合部が特に耐薬品性や強度などの性能で劣ってい
ることはない。
【0011】一方、熱硬化型積層樹脂板のように既に熱
硬化した成形体の接合では、溶接で接合することはでき
ないので、接着剤による接合か、間にパッキング材を挟
んでボルト、ナット等により機械的に接合させるといっ
た手段になる。
【0012】しかし、接着剤による接合では、容器に要
求される接合部の気密性を必ずしも確保することができ
ない。また、接着剤の耐薬品性や機械的強度は、例えば
熱硬化型積層樹脂板に比べると劣ることが多いので、強
腐食性環境下で使用されると、接合部が腐食劣化して、
気密性が低下し、漏れなどが起こることがある。この接
合部の腐食劣化による気密性の低下は、パッキング材を
使用した場合でも同様に起こりうる。即ち、これらの接
合方法では、接合部に異質の材料が接合部材として存在
するので、容器材料として耐薬品性や強度に優れた材料
を選択しても、接合部の異質の材料が強腐食性環境下で
の使用中に劣化して、容器接合部の気密性が低下しがち
である。
【0013】
【発明が解決しようとする課題】溶融塩電気アルミニウ
ムめっきでは、例えば、塩化アルミニウムとアルカリ金
属塩化物とを主体とする混合物からなる溶融塩中でめっ
きが行われる。従って、めっき液である溶融塩の腐食性
が極めて強いことに加えて、めっき浴温も、電解質水溶
液をめっき液とする通常の電気めっき(浴温は水の沸点
未満、普通は80℃以下) に比べて著しく高い水の沸点以
上、300 ℃以下となるので、電解槽は極めて腐食性の高
い環境に曝される。
【0014】例えば、前述したポリイミド系の熱硬化型
積層樹脂板は、溶融塩電気アルミニウムめっきで曝され
るような、強腐食性で高温(100〜300 ℃) の環境にも十
分に耐えることができる耐薬品性、耐熱性、強度等の特
性を備え、絶縁性も良好である。しかし、この材料から
溶融塩電気アルミニウムめっき用の電解槽を作製しよう
としても、かかる環境下で容器の気密性を長期的に保証
できるような接着剤が存在しないため、従来はこの樹脂
板をポリテトラフルオロエチレン樹脂製のパッキング材
で挟んで電解槽を組み立てるか、或いは非常に高価なセ
ラミックス製の電解槽を採用していた。しかし、前者の
パッキング材を挟んで機械的に接合する方法では、長期
使用中に接合部の気密性が低下し、液漏れや電解電流の
リークを生じていた。
【0015】本発明は、熱硬化型積層樹脂板の用途拡大
を目指し、上記のような強腐食性の高温環境下でも接合
部の気密性を長期的に保持することができる、熱硬化型
積層樹脂板の新規な接合方法を開発することを技術的課
題とするものである。
【0016】
【課題を解決するための手段】本発明者らは、上記課題
を解決するために検討を重ねた結果、接合部に介在させ
る接合部材として、接合すべき熱硬化型積層樹脂板の樹
脂とは異質の接着剤やパッキング材ではなく、同質の材
料、即ち、熱硬化型積層樹脂板を積層成形する前の未硬
化の(即ち、熱硬化性の)プリプレグを使用し、積層成
形と同様に加圧下で接合部を加熱してプリプレグ中の熱
硬化性樹脂を溶融させて熱硬化させることにより、熱硬
化型積層樹脂板と同質の材料からなる接合部を形成する
ことで解決できることを見出した。
【0017】ここに本発明は、プリプレグの積層成形に
より得られた熱硬化型積層樹脂板の接合面を、少なくと
も1枚の未硬化の(即ち、熱硬化性の) プリプレグを間
に挟んで2Kgf/cm2 以上の圧力に加圧しながら未硬化プ
リプレグ中の樹脂の溶融と硬化に必要な温度に加熱する
ことを特徴とする熱硬化型積層樹脂板の接合方法であ
る。
【0018】好適態様にあっては、このプリプレグの樹
脂成分が付加重合型熱硬化性ポリイミド樹脂である。本
発明によれば、この方法により接合された熱硬化型積層
樹脂板からなる容器、特に溶融塩電気めっき用電解槽も
提供される。
【0019】
【発明の実施の形態】本発明は、熱硬化型積層樹脂板の
接合方法に関する。前述したように、熱硬化型積層樹脂
板は、プリプレグを積層成形したものである。積層成形
用のプリプレグは、マット(不織布)、織物等の布状の
繊維基材に、熱硬化性樹脂(未硬化のプレポリマー)の
樹脂液(液状樹脂単味または樹脂溶液)を含浸させ、硬
化温度より低温に加熱して溶媒を除去することにより製
造される。プリプレグの状態では樹脂はまだ未硬化であ
るので、プリプレグを加熱すると樹脂が溶融し、硬化す
る。即ち、プリプレグは熱硬化性を有している。
【0020】プリプレグの製造における繊維基材の樹脂
含浸方法としては、樹脂液中に布状の繊維基材を含浸さ
せる、或いは樹脂液を繊維基材に塗布するといった方法
が普通である。
【0021】繊維基材としては、最も一般的なガラス繊
維の他に、炭素繊維、アラミド繊維で代表される高強度
有機繊維、金属繊維、セラミックス繊維、紙なども使用
できるが、コスト、強度、絶縁性を考慮すると、通常は
ガラス繊維が使用される。含浸用の熱硬化性樹脂として
は、ポリイミド樹脂、エポキシ樹脂、フェノール樹脂、
不飽和ポリエステル樹脂、メラミン樹脂などが例示され
る。
【0022】本発明の接合方法が適用可能な熱硬化型積
層樹脂板の種類は特に制限されず、接合により作製され
る製品(例、容器、各種の装置)に要求される特性や使
用環境に応じて樹脂や強化用繊維の種類、繊維の状態、
樹脂含浸量などを選択すればよい。
【0023】例えば、融塩電気アルミニウムめっきの電
解槽の場合には、耐熱性と良好な絶縁性が要求されるの
で、樹脂の耐熱性と絶縁性に優れたポリイミド系の熱硬
化型積層樹脂板が一般に選択される。しかし、耐熱性が
それほど要求されない場合、例えば、強腐食性の化学薬
品の貯蔵容器といった用途に対しては、エポキシ系など
の熱硬化型積層樹脂板でも十分な場合がある。
【0024】ポリイミド系の熱硬化型積層樹脂板に用い
る熱硬化性ポリイミド樹脂としては、縮合型の全芳香族
ポリイミド樹脂より、それより耐熱性はやや低いが付加
重合型のポリイミド樹脂の方が好ましい。縮合型ポリイ
ミド樹脂は加熱硬化中に揮発性成分が発生するからであ
る。
【0025】付加重合型ポリイミド樹脂の代表例はビス
マレイミド系ポリイミド樹脂であるが、ナジック酸末端
ポリイミド樹脂、アセチレン末端ポリイミド樹脂等も使
用できる。ビスマレイミド系ポリイミド樹脂の具体例に
は、ポリアミノビスマレイミド樹脂、ビスマレイミド−
ジアリルビスフェノール系ポリイミド樹脂、ビスマレイ
ミド−トリアジン系ポリイミド樹脂、これらの変性樹脂
などが挙げられる。
【0026】プリプレグの積層成形は、プリプレグを数
枚から数十枚重ね、熱プレスで加圧しながら加熱して、
プリプレグ中の樹脂を溶融および硬化させることにより
行われる。熱プレスにおける圧力、温度、熱プレス時間
は、樹脂種やプリプレグの積層枚数に応じて選択され
る。例えば、樹脂が縮合型(例、フェノール樹脂)の場
合には圧力が高く、付加型の場合には圧力は低い。ま
た、圧力が高い場合には、加圧圧力を次第に増大させる
方法が採用されることが多い。熱プレスにより樹脂を完
全に硬化させると、本発明において接合に用いる熱硬化
型積層樹脂板が得られる。
【0027】本発明に係る接合方法では、接着剤の代わ
りに、プリプレグを接合部材として使用する。プリプレ
グの状態では、熱硬化性樹脂がまだ未硬化であるので、
その樹脂の溶融性と熱硬化性を接合に利用するのであ
る。接合材として使用するプリプレグは、接合すべき熱
硬化型積層樹脂板の製造に用いたのと全く同じプリプレ
グでもよいが、別のプリプレグを使用してもよい。
【0028】接合材として使用するプリプレグ中の樹脂
種は、接合すべき積層樹脂板中の樹脂種と同一または同
種のものであることが好ましい。しかし、プリプレグの
樹脂量や繊維基材の形態は、接合材として用いるプリプ
レグと熱硬化型積層樹脂板とで異なっていてもよい。例
えば、接合にはプリプレグ中の樹脂成分が溶融し、流れ
て、接合部の間隙を完全に充填する必要があるので、接
合部にボイドが残らないように、熱硬化型積層樹脂板よ
り樹脂量の多いプリプレグを使用することが好ましいこ
ともある。
【0029】本発明に係る接合方法は次のようにして実
施することができる。まず、2枚の熱硬化型積層樹脂板
の接合部に、少なくとも1枚のプリプレグを挟む。接合
部に挟むプリプレグの枚数は、接合に十分な樹脂量がプ
リプレグから供給されるように選択する。通常は2〜3
枚程度が適当である。プリプレグの枚数があまりに多く
なると、組立て時の寸法精度が悪くなる。
【0030】樹脂板の接合部の構造は接着剤による接合
と同様にすればよい。例えば、2枚の樹脂板の末端を平
面状に平行に接合する場合には、端面同士を突き合わせ
接合するより、両者の接合末端を図1(a) に示すような
カギ型形状に加工して、平面と平行な接合面にプリプレ
グを配置することが好ましい。但し、接合部の形状は図
示例に限るものではなく、他の形状も可能である。ま
た、図示例において、平面と垂直方向の接合面にもプリ
プレグを配置してもよい。
【0031】容器の角のように、2枚の樹脂板を互いに
垂直に接合する、即ち、一方の樹脂板の端面を他方の樹
脂板の平面の末端(L型接合)または他の位置(T型接
合)に接合する場合には、図1(b) に示すように、単純
に接合面(即ち、一方の樹脂板の端面)にプリプレグを
配置すればよい。しかし、この場合にも、接合面をカギ
型その他の形状に加工することもできる。
【0032】接合面にプリプレグを挟んだ後、2枚の熱
硬化型積層樹脂板の接合部を加圧しながら加熱して、プ
リプレグ中の熱硬化性樹脂を溶融させ、熱硬化させる
と、樹脂板の接合が達成される。加圧は、プリプレグ中
の熱硬化性樹脂が加熱で溶融した時に、接合面が均一に
樹脂で濡れるようにするために必要である。
【0033】このための加圧圧力(面圧) は2Kgf/cm2
以上とする。圧力が2Kgf/cm2 より低いと、溶融した樹
脂が接合面に十分に広がらず、接合面が全体に均一に樹
脂で濡れないため、接合強度が低くなる。圧力の上限は
特に制限されず、15〜20 Kgf/cm2或いはそれ以上といっ
た高い圧力も使用できるが、圧力が10 Kgf/cm2を超える
と、圧力増加による接合強度の向上が少なくなるので、
通常は10 Kgf/cm2以下とすることが好ましい。また、大
型の容器等を組み立てる場合には接合面積が大きいの
で、装置や工具の都合上からも10 Kgf/cm2以下とするこ
とが好ましい。
【0034】加圧手段は、所定の圧力を発生させ、一定
時間保持できれば、特に制限されない。例えば、図1
(a) に示すような平行接合では、クランプやプレス機を
利用して行うことが、接合部に傷をつけることがないの
で好ましい。しかし、図1(b)に示すような垂直接合の
場合には、このような加圧手段は採用しにくいので、図
2に示すように、ビス (またはボルトとナット) を利用
して、ネジこみトルクによる締付け力で加圧することが
できる。この時に、ビスは接合部を完全に貫通しない長
さにする。ビスによる加圧力は、接合部面積に対するビ
スの数 (間隔) と締付けトルクにより調整することがで
きる。
【0035】接合部の加熱手段にも特に制限はない。こ
の加熱は、接合部だけを局部的に熱風等で加熱すること
によって行ってもよいが、局部加熱すると加熱部の熱膨
張により樹脂板の破損や接合部の破損を生じることがあ
るので、均熱炉を使用して樹脂板全体を均一加熱するこ
とが好ましい。
【0036】加熱温度は、接合材であるプリプレグ中の
熱硬化性樹脂を溶融させ熱硬化させるのに十分な温度で
あればよい。樹脂が熱硬化性ポリイミド樹脂である場合
には、 150〜230 ℃の範囲内が好ましく、より好ましく
は 160〜210 ℃、特に200 ℃前後である。150 ℃より低
温では樹脂が十分溶解しないため、接合面が樹脂で十分
に濡れず、樹脂の硬化反応も不完全であるので、十分な
接合強度を得ることが困難となる。加熱温度が230 ℃を
超えても、接合は可能であるが、接合強度はそれ以上に
増大せず、加熱コストが嵩む。
【0037】加圧下での接合面の加熱温度は、10分間程
度保持できれば接合は可能であるが、加熱温度の保持時
間が1時間程度になると安定した接合強度を得ることが
できる。大型の容器やめっき電解槽の場合には、強度確
保のために樹脂板の厚みも通常は厚くなるので、接合部
の内部まで均一に加熱して、最大の接合強度を得るた
め、さらに長時間の加熱を行ってもよい。また、容器が
大型の場合には、加熱の昇温、降温過程での熱歪みから
接合部や樹脂板に無理な応力がかかり、亀裂の発生する
ことがあるので、例えば8〜24時間といった長時間をか
けて、緩やかな加熱処理を行うことが好ましい。
【0038】ビスにより加圧した場合には、接合が終了
した後、接合部からビスを抜取っても、そのまま残して
おいてもよい。ビスを残しておけば、ビスによる機械的
な接合も加わり、接合強度は著しく高くなり、特に接合
部の耐衝撃性が向上する。しかし、例えば、溶融塩電気
アルミニウムめっき用の電解槽のように、接合した製品
が強腐食性環境で使用される場合には、使用中にビスが
腐食するので、ビスを抜取るか、或いはビスを残す場合
には、図3に示すように、ビスを埋め込みネジ型のもの
とし、ネジの頭上の穴にプリプレグのシートを配置し、
適宜手段(例、アイロン)でこの部分だけを加圧・加熱
することによりネジの頭を被覆して、ネジの腐食を防止
するようにしてもよい。
【0039】本発明によれば、プリプレグの積層成形に
より得られた熱硬化型積層樹脂板を、接着剤ではなく、
熱硬化性のプリプレグを接合材とし、プリプレグ中に含
まれる熱硬化性樹脂の溶融と熱硬化による接着作用を利
用して接合する。樹脂板中の樹脂とプリプレグ中の樹脂
を同種のものにすれば、プリプレグ中の樹脂は樹脂板に
よく馴染むので、高い初期接合強度を得ることができ
る。
【0040】しかも、接着剤を使用した場合と異なり、
接合部は熱硬化型積層樹脂板と同種の材質になり、従っ
て、同様の耐薬品性、耐熱性、機械的強度といった特性
を示すので、使用中の腐食挙動は、接合部と熱硬化型積
層樹脂板とでほとんど同じになる。接合部にも強化用繊
維が存在するので、接合部の強度が高く、接着剤のよう
に接合部の強度が不十分で、強い応力が接合部に加わっ
た時に接合部が凝集破壊することもない。
【0041】例えば、熱硬化型積層樹脂板としてポリイ
ミド系のものを使用し、接合剤のプリプレグもポリイミ
ド系のものであれば、接合部も熱硬化型積層樹脂板と同
様に強腐食性の高温環境に十分に耐えるので、長期間使
用しても、初期の接合強度がほとんど低下せずに保持さ
れ、接合部の腐食劣化による接合強度の低下や漏れとい
った現象が起こりにくい。
【0042】従って、本発明の接合方法は、腐食性の強
い化学薬品の貯蔵容器や、これを処理する装置類の製作
に適しており、特にこれまでは満足できる接合方法がな
かった、溶融塩電気アルミニウムめっき (アルミニウム
合金めっきを含む) に用いる電解槽の製作にも十分に適
用できる。
【0043】かかる電気めっき用電解槽の1例を図4に
示す。図4において、電解槽6をポリイミド系の熱硬化
型積層樹脂板から本発明の接合方法により製作すること
ができ、ノズル7もポリイミド製とすることが好まし
い。さらに、密閉される上部空間の壁材も、電解槽6と
同様に製作してもよい。
【0044】溶融塩電気アルミニウムめっきに使用され
る溶融塩は、例えば、塩化アルミニウムと塩化ナトリウ
ムと塩化カリウムとを61:26:13(mol%)の比率で含有す
る。これにさらに浴温低下のために金属フッ化物を加え
たり、或いはアルミニウム合金めっきのために合金元素
の塩化物 (または他の塩) を添加することもある。浴温
(溶融塩の温度) は通常は 150〜300 ℃、例えば200 ℃
前後であり、1m/秒前後の液速度で溶融塩を攪拌するの
が普通である。
【0045】
【実施例】
(実施例1)市販のポリイミド系熱硬化型積層樹脂板
(日光化成社製、ニコライト NL-PIG-13、厚み2.5 mm、
樹脂はビスマレイミド系ポリイミド樹脂、繊維基材はガ
ラスクロス、樹脂量約33重量%)とプリプレグ(樹脂と
繊維基材は樹脂板と同じ、厚み0.25 mm 、樹脂量約33重
量%、未硬化の樹脂の溶融温度は160 ℃)とを用い、本
発明の方法に従って接合することにより、剪断引張試験
用の平行接合試験片を作製した。
【0046】この平行接合試験片は、図5に示すよう
に、幅30 mm ×長さ150 mmに切断した2枚の積層樹脂板
の端部を30 mm の長さだけ重ね、両者の間に上記プリプ
レグ2枚を挟んだ後、熱プレスにより加圧下に加熱する
ことにより作製した。接合面積は30×30 mm(=9cm2)で
ある。熱プレスは、温度と圧力を変えて行ったが、熱プ
レス時間は10分間に統一した。熱プレス終了後、得られ
た接合試験片を約1時間放冷してから、大気雰囲気下、
25℃でインストロン試験機により試験片を2.0 mm/分の
速度で引張ることにより接合部に剪断引張応力を加え、
その剪断強度 (接合強度) を測定した。試験結果を表1
に熱プレス条件と共に示す。
【0047】
【表1】
【0048】表1からわかるように、熱プレスの加熱温
度がプリプレグ中の樹脂の溶融温度より低い140 ℃であ
ると、圧力を高くしても接合部の剪断強度は低いままで
あった。これに対し、加熱温度が樹脂の溶融温度より高
くなると、熱プレス中の圧力が2Kgf/cm2 以上となった
場合に高い剪断強度が得られ、2Kgf/cm2 未満では剪断
強度が低かった。剪断強度は、圧力が10 Kgf/mm2までは
圧力の増加とともに増大したが、それを超えて圧力を増
加させても剪断強度の増大は僅かになった。
【0049】本実施例のように、樹脂種、樹脂量および
繊維基材が熱硬化型積層樹脂板と接合材のプリプレグと
でほぼ同じであれば、接合部は本体と同じ耐熱性や耐薬
品性を示すので、接合強度が十分であれば、接合部は本
体に匹敵する耐久性を示し、使用中に接合部だけが劣化
することがない。
【0050】(実施例2)寸法以外は実施例1と同じ2
枚のポリイミド系熱硬化型積層樹脂板およびプリプレグ
を用い、本発明の方法に従って互いに垂直方向に接合す
ることにより、垂直引張試験用の接合試験片を作製し
た。
【0051】この試験片は、下記寸法の樹脂板Aまたは
B (Bは厚みが半分である以外は、樹脂板Aと同寸法)
を使用し、同じ寸法の樹脂板2枚を、図6に示すように
T形に互いに垂直に接合することにより作製した。 樹脂板A=厚さ20mm×幅30mm×長さ100 mm、 樹脂板B=厚さ10mm×幅30mm×長さ100 mm。
【0052】このT字形の垂直接合部の寸法は板厚 (10
または20 mm)×30mmであり、接合面積は3または6cm2
なる。この接合部に、同じ寸法に切ったプリプレグ2枚
を挟み込んでから、接合部の中心にM4ビス1個をトル
クドライバーでトルクを制御してネジ込み、発生した面
圧を次式により算出した。
【0053】 FL=W×de/2×tan(α+ρ) tanα=P/ (π×D) tanρ=μ FL:ビスを回すトルク (kg−cm) W:軸力 (kg) de:ビスの有効径 (cm) P:ビスのネジピッチ (cm) D:ビスの呼び径 (cm) μ:ビス摩擦係数 (約0.15) M4ビスの上記各パラメータの値は、呼び径Dが0.4 c
m、有効径deが0.3545cm、ピッチPが0.07cm、軸力Wが1
00 kg、トルクFLが3.68 kg-cmである。
【0054】ネジ込みにより接合部を加圧した試験片
を、200 ℃の焼き付け熱風炉を用いて、表2に示す時間
だけ加熱することにより、垂直接合試験片を得た。得ら
れた接合試験片からビスを抜取り、加熱終了から約1日
間経過してから、大気雰囲気下25℃でインストロン試験
機により試験片を2.0 mm/分の速度で引張ることによ
り、接合部に垂直引張応力を加え、その垂直引張強度を
測定した。試験結果を表2に発生面圧および加熱時間と
共に示す。
【0055】
【表2】
【0056】表2からわかるように、面圧 (圧力) が2
Kgf/cm2 以上であれば、高い垂直引張強度が得られた。
但し、加熱時間が1分以下と極端に短いと、樹脂が十分
に溶融しないため、接合強度は著しく低くなった。加熱
時間は樹脂が完全に溶融するように十分にとることが望
ましい。
【0057】
【発明の効果】本発明によれば、これまでの接着剤によ
る接合やパッキング材を介した機械的接合では、強腐食
性の高温環境で接合部が劣化し易かった熱硬化型積層樹
脂板に対して、かかる環境でも長期間にわたって接合部
の劣化を生じないように接合することが可能となる。
【0058】その結果、例えば、溶融塩電気アルミニウ
ムめっき用の電解槽のように、強腐食性で 100〜 300℃
といった高温の環境に曝される場合にも使用可能な容器
や装置を、熱硬化型積層樹脂板から作製することが可能
なり、この樹脂板の用途が大きく拡大する。また、強腐
食性環境で使用される容器や装置の耐久性が改善され、
および/またはその製造コストが低減される。
【図面の簡単な説明】
【図1】本発明に係る熱硬化型積層樹脂板の接合部の構
造例を示す説明図である。
【図2】本発明に係る熱硬化型積層樹脂板の接合部の別
の構造例を示す説明図である。
【図3】加圧に用いた埋め込みネジを残しておく態様に
おけるネジ頭部の被覆方法を示す説明図である。
【図4】溶融塩電気アルミニウムめっき装置の1例を示
す説明図である。
【図5】実施例で作製した剪断引張試験片の形状を示す
説明図である。
【図6】実施例で作製した垂直引張試験片の形状を示す
説明図である。
【符号の説明】
1:シールロール 2:コンダクタロール 3:電極 [Al] 4:シンクロール 5:鋼帯 6:電解槽(めっきセル) 7:ノズル 8:めっき液 (溶融塩)
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI B29L 7:00 (72)発明者 内田 淳一 大阪市中央区北浜4丁目5番33号 住友金 属工業株式会社内

Claims (4)

    【特許請求の範囲】
  1. 【請求項1】 プリプレグの積層成形により得られた熱
    硬化型積層樹脂板の接合面を、少なくとも1枚の未硬化
    のプリプレグを間に挟んで2Kgf/cm2 以上の圧力に加圧
    しながら未硬化プリプレグ中の樹脂の溶融と硬化に必要
    な温度に加熱することを特徴とする、熱硬化型積層樹脂
    板の接合方法。
  2. 【請求項2】 前記プリプレグの樹脂成分が付加重合型
    熱硬化性ポリイミド樹脂である、請求項1記載の熱硬化
    型積層樹脂板の接合方法。
  3. 【請求項3】 請求項1または2記載の方法により接合
    された熱硬化型積層樹脂板からなる容器。
  4. 【請求項4】 請求項1または2記載の方法により接合
    された熱硬化型積層樹脂板からなる溶融塩電気めっき用
    電解槽。
JP9074080A 1997-03-26 1997-03-26 熱硬化型積層樹脂板の接合方法 Pending JPH10264257A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9074080A JPH10264257A (ja) 1997-03-26 1997-03-26 熱硬化型積層樹脂板の接合方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9074080A JPH10264257A (ja) 1997-03-26 1997-03-26 熱硬化型積層樹脂板の接合方法

Publications (1)

Publication Number Publication Date
JPH10264257A true JPH10264257A (ja) 1998-10-06

Family

ID=13536839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9074080A Pending JPH10264257A (ja) 1997-03-26 1997-03-26 熱硬化型積層樹脂板の接合方法

Country Status (1)

Country Link
JP (1) JPH10264257A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6719865B2 (en) 2000-12-06 2004-04-13 Honda Giken Kogyo Kabushiki Kaisha Method for producing stiffened hollow structure composed of fiber-reinforced composite
US6986827B2 (en) 2000-08-23 2006-01-17 Honda Giken Kogyo Kabushiki Kaisha Method for bonding non-magnetic members
JP2008195990A (ja) * 2007-02-09 2008-08-28 Dipsol Chem Co Ltd 電気アルミニウムめっき浴及びそれを用いためっき方法
JP2014025530A (ja) * 2012-07-26 2014-02-06 Okasan Livic Co Ltd 管更生工法
WO2014141736A1 (ja) * 2013-03-12 2014-09-18 住友電気工業株式会社 溶融塩電解めっき装置及びアルミニウム膜の製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6986827B2 (en) 2000-08-23 2006-01-17 Honda Giken Kogyo Kabushiki Kaisha Method for bonding non-magnetic members
US6719865B2 (en) 2000-12-06 2004-04-13 Honda Giken Kogyo Kabushiki Kaisha Method for producing stiffened hollow structure composed of fiber-reinforced composite
JP2008195990A (ja) * 2007-02-09 2008-08-28 Dipsol Chem Co Ltd 電気アルミニウムめっき浴及びそれを用いためっき方法
JP2014025530A (ja) * 2012-07-26 2014-02-06 Okasan Livic Co Ltd 管更生工法
WO2014141736A1 (ja) * 2013-03-12 2014-09-18 住友電気工業株式会社 溶融塩電解めっき装置及びアルミニウム膜の製造方法

Similar Documents

Publication Publication Date Title
JP5094849B2 (ja) ステンレス鋼複合体
EP0366979B1 (en) Improved interleaf layer in fiber reinforced resin laminate composites
JP5129903B2 (ja) マグネシウム合金複合体とその製造方法
US5141804A (en) Interleaf layer in fiber reinforced resin laminate composites
CA2131562A1 (en) Welded composite panels
JPWO2008146833A1 (ja) 鋼材複合体及びその製造方法
EP2247421A1 (en) Thermally efficient tooling for composite component manufacturing
JP2011042030A (ja) 金属と被着物の接合体、及びその製造方法
JP2016203397A (ja) プリプレグ製造方法
JP2016060051A (ja) 金属とfrtpの複合体の製造方法とその複合体
JPH10264257A (ja) 熱硬化型積層樹脂板の接合方法
US20030173715A1 (en) Resistive-heated composite structural members and methods and apparatus for making the same
US5688600A (en) Thermoset reinforced corrosion resistant laminates
CN112895474A (zh) 一种纤维增强热塑性复合材料与金属的连接方法
US3361608A (en) Method and apparatus for producing metal-foil clad synthetic resin laminates
JPH06190847A (ja) 炭素繊維強化プラスチック成形体の製造方法
Xiao¹ et al. Repair of thermoplastic resin composites by fusion bonding
US20240123721A1 (en) Method for producing composite of cfrtp plate material with metal plate material and composite thereof
JP7468836B2 (ja) Frpと金属材の接着一体化物とその製造方法
US12017440B2 (en) Method for producing composite of CFRP with metal material and composite thereof
JPH0419111A (ja) コンクリート製成形型の表面補強方法
KR20210076525A (ko) 탄소섬유복합재 금속체결부품 체결구조 및 그 형성방법
JP7466248B1 (ja) プレス成型用部材、その製造方法、及びプレス成型用部材を用いたバッテリーケースの製造方法
CN211764003U (zh) 一种高强度光滑板
KR102065241B1 (ko) 클램프형 단열용 판넬 제조방법

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20011113