JPH10263771A - Method for removing non-metallic inclusion in cast slab in continuous casting and device therefor - Google Patents

Method for removing non-metallic inclusion in cast slab in continuous casting and device therefor

Info

Publication number
JPH10263771A
JPH10263771A JP7559297A JP7559297A JPH10263771A JP H10263771 A JPH10263771 A JP H10263771A JP 7559297 A JP7559297 A JP 7559297A JP 7559297 A JP7559297 A JP 7559297A JP H10263771 A JPH10263771 A JP H10263771A
Authority
JP
Japan
Prior art keywords
slab
cast slab
surface layer
frequency coil
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7559297A
Other languages
Japanese (ja)
Other versions
JP3491120B2 (en
Inventor
Hiroshi Yamane
浩志 山根
Koichi Tozawa
宏一 戸澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP07559297A priority Critical patent/JP3491120B2/en
Publication of JPH10263771A publication Critical patent/JPH10263771A/en
Application granted granted Critical
Publication of JP3491120B2 publication Critical patent/JP3491120B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To carry out casting of a cast slab having high cleanliness on the surface layer by casting while again solidifying after melting the surface layer of the cast slab drawn out from a mold with high frequency magnetic field generated from a high frequency coil arranged at just below a ferromagnetism body. SOLUTION: The ferromagnetism body 4 is arranged just below the mold 1 and the high frequency coil 5 is arranged just below the body 4 to generate AC magnetic field. A temp. detecting device 21 for detecting the surface temp. of the melting part 6 on the surface layer of the cast slab to control the temp. to the constant, and a current control device 7 for fixing the thickness of the melting part, are arranged. The control of the melting part is executed by adjusting the current of the high frequency coil 5. By this method, the surface layer of the cast slab is melted by impressing the high frequency magnetic field just below the mold 1, and non-metallic inclusion caught on the surface layer of the cast slab is shifted onto the uppermost surface of the cast slab with the reaction of electromagnetic force worked to the molten metal, and the non-metallic inclusion together with oxidized scale on the cast slab surface are separated and then, the cast slab having high cleanliness on the surface layer, is obtd.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、金属の連続鋳造に
おいて鋳片表層内の非金属介在物を連続鋳造機内で鋳造
中に除去し、表面欠陥の少ない鋳片を製造する連続鋳造
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuous casting method for removing nonmetallic inclusions in the surface layer of a slab during continuous casting of metal during casting in a continuous casting machine to produce a slab having few surface defects. It is.

【0002】[0002]

【従来の技術】凝固シェルによる非金属介在物の捕捉を
低減するための電磁ブレーキによる鋳型内溶鋼流動制御
が多数提案されている。この提案は、電磁ブレーキによ
って鋳片内の溶融金属の下降流を減速し、非金属介在物
の侵入深さを減少させるものであり、非金属介在物に積
極的に浮上力を与えて除去する技術ではない。
2. Description of the Related Art A number of proposals have been made for controlling the flow of molten steel in a mold by means of an electromagnetic brake to reduce the trapping of nonmetallic inclusions by a solidified shell. This proposal is to slow down flow of molten metal in the slab by electromagnetic brake, reduce the penetration depth of non-metallic inclusions, and remove non-metallic inclusions by positively applying levitation force Not a technology.

【0003】特開平8−19841 号公報には、脱酸生成物
の浮上促進のための磁場発生コイル形状が示されてい
る。しかしながら、図5に示すように、連続鋳造中にメ
ニスカス近傍では爪状の凝固シェル10に浮上してきた非
金属介在物11が捕捉され易い状況にあり、この技術は鋳
片表層部の非金属介在物低減技術としては不充分であ
る。
[0003] Japanese Patent Application Laid-Open No. 8-19841 discloses a shape of a magnetic field generating coil for promoting the floating of deoxidized products. However, as shown in FIG. 5, the non-metallic inclusions 11 that have floated to the claw-shaped solidified shell 10 are likely to be trapped near the meniscus during continuous casting. It is not enough as an object reduction technology.

【0004】特開平5−154620号公報、特開平8−1126
52号公報には、電磁力等によりメニスカスに適切な溶鋼
流動を生じさせて凝固界面を洗い流して非金属介在物が
凝固シェルに付着するのを防止する技術が示されてい
る。特開平8−90183 号公報には、溶融金属が凝固を開
始する鋳型の上部に溶融金属を溶融保持する容器を設置
し、溶融金属の自由表面近傍に浮遊する不純物が凝固シ
ェルに捕捉されることを防止する技術が示されている。
しかしながら、これらの技術は、非金属介在物が凝固シ
ェルに捕捉されるのを防止できるが、一旦凝固シェルに
捕捉された非金属介在物を除去することはできない。
JP-A-5-154620, JP-A-8-1126
No. 52 discloses a technique of causing an appropriate molten steel flow in a meniscus by an electromagnetic force or the like to flush a solidification interface to prevent nonmetallic inclusions from adhering to a solidification shell. Japanese Patent Application Laid-Open No. HEI 8-90183 discloses that a container for melting and holding a molten metal is installed above a mold where the molten metal starts to solidify, and that impurities floating near a free surface of the molten metal are captured by a solidified shell. Techniques to prevent this are shown.
However, while these techniques can prevent non-metallic inclusions from being trapped in the solidified shell, they cannot remove non-metallic inclusions once trapped in the solidified shell.

【0005】鋳型内溶鋼流動の制御では、特に鋳片表層
の凝固シェルの非金属介在物の捕捉を低減できるが、非
金属介在物の捕捉を完全に防止することは困難であり、
また、凝固シェルに捕捉された非金属介在物を除去する
ためには、鋳造後にスカーファー等による鋳片表面手入
れの工程を追加しなければならないという問題があっ
た。さらに、スカーファー等で鋳片表面を溶削しても、
溶削部の下に捕捉されていた非金属介在物が鋳片表面に
露出し欠陥となるという問題もあった。
In controlling the flow of molten steel in a mold, the trapping of non-metallic inclusions in the solidified shell of the slab surface layer can be reduced, but it is difficult to completely prevent the trapping of non-metallic inclusions.
In addition, in order to remove the nonmetallic inclusions trapped in the solidified shell, there is a problem that a step of caring the slab surface with a scarfer or the like must be added after casting. Furthermore, even if the slab surface is cut with a scarfer,
There was also a problem that nonmetallic inclusions trapped under the machined portion were exposed on the surface of the slab and caused defects.

【0006】[0006]

【発明が解決しようとする課題】本発明では、上記した
従来技術の問題に鑑み、連続鋳造機内で引き抜かれてい
る鋳片表層をオンラインで手入れでき、かつ鋳片表層部
の清浄性がより一層向上する鋳片内非金属介在物除去方
法および装置を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above-mentioned problems of the prior art, the present invention allows the surface layer of a slab that has been drawn in a continuous casting machine to be maintained online, and the cleanness of the surface layer of the slab is further improved. It is an object of the present invention to provide a method and an apparatus for removing non-metallic inclusions in a slab which are improved.

【0007】[0007]

【課題を解決するための手段】図6のように、溶融金属
の周りの高周波コイル5から交流磁場を印加することに
より、電気伝導度の高い金属部には溶融金属表層から内
部に向かう電磁力15が作用し、その結果電気伝導度が金
属より低い非金属介在物11は、溶融金属の表面に押し出
される現象がある。
As shown in FIG. 6, by applying an AC magnetic field from a high-frequency coil 5 around a molten metal, an electromagnetic force directed from the surface of the molten metal to the inside thereof is applied to a metal portion having high electric conductivity. 15 acts, and as a result, there is a phenomenon that the nonmetallic inclusions 11 having lower electric conductivity than the metal are extruded to the surface of the molten metal.

【0008】本発明者らは、この原理を利用して連続鋳
造中に鋳片内の非金属介在物を効率的に除去する方法を
見い出し、本発明をなすに至ったのである。本発明は、
連続鋳造鋳型直下に設置された強磁性体から磁力を発生
させながら、該強磁性体の直下に設置された高周波コイ
ルから発生する高周波磁場によって、鋳型から引き抜か
れた鋳片の凝固シェル表層を溶融した後、再び凝固させ
ながら鋳造することを特徴とする連続鋳造方法である。
The present inventors have found a method for efficiently removing nonmetallic inclusions in a slab during continuous casting by utilizing this principle, and have accomplished the present invention. The present invention
While generating magnetic force from the ferromagnetic material installed directly under the continuous casting mold, the high-frequency magnetic field generated from the high-frequency coil installed directly under the ferromagnetic material melts the solidified shell surface layer of the slab drawn from the mold. And then casting while solidifying again.

【0009】本発明によると、誘導溶解した凝固シェル
に捕捉されている非金属介在物を鋳片最表層に移動分離
させ、一方、鋳片最表層は鋳片搬送中に酸化スケールと
なり、分離された非金属介在物はこの酸化スケールと共
に離脱し、表層部の清浄性の高い鋳片が製造できた。ま
た、本発明は、連続鋳造鋳型直下に鋳片表層を溶融する
高周波コイルと、高周波コイルを囲み前記鋳片に磁場を
集中させるための強磁性体と、該高周波コイル内の鋳片
溶融部温度を測定する温度検出器と、前記温度検出器の
信号から鋳片溶融部温度を一定に調整する前記高周波コ
イルの電流制御装置と、からなる鋳片内非金属介在物除
去装置であり、前記強磁性体に移動手段を配設したこと
を特徴とする。連続鋳造鋳型直下に鋳片表層を溶融する
高周波コイルと、高周波コイルを囲み鋳片に磁場を集中
させるための強磁性体と、高周波コイル内の鋳片溶融部
温度を測定する温度検出器と、鋳片溶融部温度を一定に
調整する位置制御装置と、からなる鋳片内非金属介在物
除去装置であり、鋳片とヨークとの間隔を調整して鋳片
溶融部の形状を制御することもできる。
According to the present invention, nonmetallic inclusions trapped in the induction-melted solidified shell are moved and separated to the outermost layer of the slab, while the outermost layer of the slab becomes oxidized scale during transportation of the slab and is separated. The non-metallic inclusions detached together with the oxide scale, and a slab with high cleanliness of the surface layer could be produced. Also, the present invention provides a high-frequency coil for melting a slab surface layer immediately below a continuous casting mold, a ferromagnetic material surrounding the high-frequency coil and concentrating a magnetic field on the slab, and a slab melting portion temperature in the high-frequency coil. And a current control device for the high-frequency coil for adjusting the temperature of the slab melting portion to be constant from a signal of the temperature detector. The moving means is provided on the magnetic body. A high-frequency coil that melts the slab surface layer immediately below the continuous casting mold, a ferromagnetic material that surrounds the high-frequency coil and concentrates a magnetic field on the slab, and a temperature detector that measures the temperature of the slab fusion zone in the high-frequency coil, A non-metallic inclusion removal device in the slab, comprising: a position control device for adjusting the slab melting portion temperature to a constant value, and controlling the shape of the slab melting portion by adjusting the interval between the slab and the yoke. Can also.

【0010】[0010]

【発明の実施の形態】本発明を実施する装置概要を図1
に示す。鋳型1から離れた位置で鋳片表層を溶融しよう
とすると、鋳型から遠く離れるにしたがって二次冷却に
より鋳片温度は急激に低下するため、鋳片温度を融点ま
で上げるためのエネルギーがより多く必要となる。した
がって、凝固シェル2の温度を融点まで上げるために必
要なエネルギーを少なくするため、鋳型直下に鋳片表層
溶融用の高周波コイル5を設置する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG.
Shown in If the slab surface is to be melted away from the mold 1, the slab temperature will rapidly decrease due to secondary cooling as the distant from the mold, so more energy is needed to raise the slab temperature to the melting point. Becomes Therefore, in order to reduce the energy required to raise the temperature of the solidified shell 2 to the melting point, the high-frequency coil 5 for melting the surface layer of the slab is installed immediately below the mold.

【0011】高周波磁場を用いることにより、鋳片の表
層のみを溶融する。周波数が低くなると磁場の侵入深さ
が深くなり溶融厚みが厚すぎてブレークアウトの危険が
増大し、かつ非金属介在物の分離効果が減少するため、
鋼の連続鋳造では高周波の周波数は500kHzが好ましい。
連続鋳造用鋳型1は、鋳片30より電気伝導度の高い銅合
金で作製されるため、鋳型直近で交流磁場を発生させる
と、鋳型で発生する誘導電流による磁場で印加磁場が減
少され、誘導加熱の目標とする鋳片に浸透する磁場が小
さくなってしまう。したがって、鋳型直下に強磁性体4
を設置し、その直下に高周波コイル5を設置し交流磁場
を発生させることにより、鋳型へ向かう磁場は低減し、
鋳片へ浸透する磁場が鋳型で発生する誘導電流による磁
場で減少することを防止する。
By using a high-frequency magnetic field, only the surface layer of the slab is melted. When the frequency is low, the penetration depth of the magnetic field is deep, the melt thickness is too thick, the risk of breakout increases, and the separation effect of nonmetallic inclusions decreases,
In continuous casting of steel, the high frequency is preferably 500 kHz.
Since the continuous casting mold 1 is made of a copper alloy having higher electric conductivity than the slab 30, when an AC magnetic field is generated in the immediate vicinity of the mold, the applied magnetic field is reduced by the magnetic field generated by the induced current generated in the mold. The magnetic field permeating the slab to be heated is reduced. Therefore, the ferromagnetic material 4 just below the mold
Is installed, and the high-frequency coil 5 is installed immediately below the coil to generate an AC magnetic field, so that the magnetic field toward the mold is reduced,
The magnetic field penetrating the slab is prevented from being reduced by the magnetic field due to the induced current generated in the mold.

【0012】鋳片表層溶融厚みが変動し大きくなるとブ
レークアウトが発生してしまう。したがって、鋳片表層
溶融部6の表面温度を検出し、この温度を一定に制御す
るために、溶融部表層温度検出器21と溶融厚みを一定に
する電流制御装置7を設置する。溶融部の温度の制御
は、高周波コイル電流の調節によって行う。鋳片表層が
溶融すると、溶融部に働く静鉄圧により溶融部が下方に
垂れ、鋳片表面形状が波打った形になってしまう。高周
波コイルで印加する磁場と、鋳片溶融部内に発生する誘
導電流の相互作用により溶融部は表面から内側に向かう
磁力圧が発生する。この磁力圧と静鉄圧が釣り合うよう
な磁場分布を発生させるために強磁性体と鋳片の間隔を
設定する。図2に示すように静鉄圧は上から下に向かっ
て大きくなるため、強磁性体4と鋳片1の間隔は、図1
のように上部で広く、下部で狭くして磁力圧分布を静鉄
圧分布に近づける。
If the molten thickness of the surface layer of the slab varies and becomes large, breakout occurs. Therefore, in order to detect the surface temperature of the slab surface layer fusion zone 6 and control this temperature to be constant, a fusion zone surface layer temperature detector 21 and a current control device 7 for making the fusion thickness constant are installed. The temperature of the melting part is controlled by adjusting the high-frequency coil current. When the slab surface layer is melted, the molten portion hangs down due to the static iron pressure acting on the molten portion, and the slab surface shape becomes wavy. Due to the interaction between the magnetic field applied by the high-frequency coil and the induced current generated in the slab fusion zone, a magnetic pressure is generated in the fusion zone inward from the surface. In order to generate a magnetic field distribution that balances the magnetic force pressure and the static iron pressure, the distance between the ferromagnetic material and the slab is set. As shown in FIG. 2, since the static iron pressure increases from top to bottom, the distance between the ferromagnetic material 4 and the slab 1 is
The magnetic pressure distribution is made closer to the static iron pressure distribution by making it wider at the upper part and narrower at the lower part.

【0013】図3のように、操業中に鋳片表層溶融部の
温度検出器21によって鋳片表層溶融部6の形状を観測
し、ヨーク(強磁性体)と鋳片の間隔をオンラインでヨ
ークの上部16、下部17を独立に駆動装置18で操作しなが
ら調節し、鋳片表層溶融部6の表面形状が垂直に近づく
ように制御することで、より安定した表層形状の鋳片が
鋳造可能になる。
As shown in FIG. 3, during operation, the shape of the slab surface melted portion 6 is observed by the temperature detector 21 of the slab surface melted portion, and the distance between the yoke (ferromagnetic material) and the slab is determined on-line by the yoke. By controlling the upper part 16 and lower part 17 of the slab independently by operating the drive unit 18 and controlling the surface shape of the slab surface layer fusion zone 6 to approach vertical, a more stable surface layer slab can be cast. become.

【0014】[0014]

【実施例】以下にこの発明を図1に図示する一実施例に
基づき詳細を説明する。高周波コイル5は、コの字型の
強磁性体のヨーク4で囲い、鋳片30表層に磁場を集中さ
せ、周囲の電気伝導体への磁場の漏れを低減する。鋳片
表層溶融部6が静鉄圧で下方に垂れるのを防止するた
め、ヨークの上部16と下部17での鋳片とのギャップをそ
れぞれ独立に変更できるように駆動装置18を付設し、静
鉄圧分布と磁気圧分布がほぼ一致するように制御する。
高周波コイル5内の鋳片表層温度を非接触形の温度検出
器21で測温し、鋳片溶融部の温度をコイル電流で制御す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to an embodiment shown in FIG. The high-frequency coil 5 is surrounded by a U-shaped ferromagnetic yoke 4 and concentrates a magnetic field on the surface layer of the slab 30 to reduce leakage of the magnetic field to surrounding electric conductors. In order to prevent the slab surface molten portion 6 from drooping downward due to the static iron pressure, a drive device 18 is provided so that the gap between the slab at the upper part 16 and the lower part 17 of the yoke can be changed independently. Control is performed so that the iron pressure distribution and the magnetic pressure distribution substantially match.
The temperature of the slab surface layer in the high-frequency coil 5 is measured by a non-contact type temperature detector 21, and the temperature of the slab melting portion is controlled by the coil current.

【0015】高周波コイルの電流を変化させ、鋳片溶融
厚みを0.4mm, 0.8mm, 1.2mm と変化させたが、本発明に
よって図4に示すように冷間圧延後の鋼板表面欠陥は低
減されることが明らかである。ここで、溶融厚みは、ダ
ミーのサンプル表面を溶解して溶解後の断面観察より溶
解厚みを測定し、コイルの周波数とコイル電流および溶
解中の溶融部表面温度と溶解厚みの関係を求めておき、
鋳造中のコイル周波数、電流、溶融部表面温度から推定
した値である。鋼板表面欠陥は、非金属介在物起因のヘ
ゲ、スケールである。
The current of the high frequency coil was changed to change the molten thickness of the slab to 0.4 mm, 0.8 mm and 1.2 mm. However, according to the present invention, as shown in FIG. It is clear that Here, the melt thickness is measured by melting the surface of the dummy sample and observing the cross section after melting, and determining the relationship between the coil frequency, the coil current, the surface temperature of the melted portion during melting, and the melt thickness. ,
This is a value estimated from the coil frequency during casting, current, and surface temperature of the melted part. Steel plate surface defects are scabs and scales caused by non-metallic inclusions.

【0016】[0016]

【発明の効果】本発明によれば、以下のような効果を得
ることができる。すなわち、 鋳型直下で高周波磁場印加により鋳片表層部を溶融
し、鋳片表層部に捕捉された非金属介在物を溶融金属に
働く電磁力の反作用で鋳片最表面に移動させ、鋳片表面
の酸化スケールと共に非金属介在物を離脱させ表層の清
浄性の高い鋳片が鋳造可能となる。
According to the present invention, the following effects can be obtained. That is, the surface layer of the slab is melted by applying a high-frequency magnetic field immediately below the mold, and the nonmetallic inclusions trapped in the surface layer of the slab are moved to the outermost surface of the slab by the reaction of the electromagnetic force acting on the molten metal. The non-metallic inclusions are removed together with the oxide scale, and a cast slab with high cleanliness on the surface layer can be cast.

【0017】 鋳片表面のブローホールや割れも鋳片
表層再溶融により修復され表面欠陥が低減される。 次工程での表面手入れが不要となる。
Blowholes and cracks on the slab surface are also repaired by remelting the slab surface layer to reduce surface defects. No need for surface care in the next step.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る装置の概要説明図。FIG. 1 is a schematic explanatory view of an apparatus according to the present invention.

【図2】溶融金属内の静鉄圧分布図。FIG. 2 is a distribution diagram of static iron pressure in a molten metal.

【図3】強磁性体位置制御の説明図。FIG. 3 is an explanatory diagram of ferromagnetic material position control.

【図4】本発明による溶融厚みと鋼板表面欠陥との関係
を示す特性図。
FIG. 4 is a characteristic diagram showing a relationship between a molten thickness and a steel sheet surface defect according to the present invention.

【図5】連続鋳造鋳型内初期凝固シェルでの非金属介在
物の捕捉の説明図。
FIG. 5 is an illustration of trapping of non-metallic inclusions in an initially solidified shell in a continuous casting mold.

【図6】交流磁場による溶融金属内非金属介在物の分離
の説明図。
FIG. 6 is an explanatory diagram of separation of nonmetallic inclusions in a molten metal by an alternating magnetic field.

【符号の説明】[Explanation of symbols]

1 鋳型 2 凝固シェル 3 溶融部温度検出器 4 ヨーク(強磁性体) 5 高周波コイル 6 鋳片表層溶融部 7 電流制御装置 8 二次冷却スプレー 9 ロール 10 爪状凝固シェル 11 非金属介在物 12 非金属介在物浮上方向 13 磁場印加方向 14 非金属介在物に作用する力 15 溶融金属に作用する電磁力 16 ヨークの上部 17 ヨークの下部 18 駆動装置 19 強磁性体位置制御装置 20 強磁性体移動方向 21 鋳片表層溶融部温度検出器 22 溶融金属 23 鋳片表面 30 鋳片 REFERENCE SIGNS LIST 1 mold 2 solidified shell 3 melting part temperature detector 4 yoke (ferromagnetic material) 5 high-frequency coil 6 slab surface melting part 7 current control device 8 secondary cooling spray 9 roll 10 claw-shaped solidified shell 11 nonmetallic inclusion 12 non Direction of floating magnetic inclusions 13 Direction of applying magnetic field 14 Force acting on non-metallic inclusions 15 Electromagnetic force acting on molten metal 16 Upper part of yoke 17 Lower part of yoke 18 Drive unit 19 Ferromagnetic material position controller 20 Ferromagnetic substance moving direction 21 Slab surface melting point temperature detector 22 Molten metal 23 Slab surface 30 Slab

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 連続鋳造鋳型直下に設置された強磁性体
から磁力を発生させながら、該強磁性体の直下に設置さ
れた高周波コイルから発生する高周波磁場によって、鋳
型から引き抜かれた鋳片の凝固シェル表層を溶融した
後、再び凝固させながら鋳造することを特徴とする連続
鋳造における鋳片内非金属介在物除去方法。
1. A slab extracted from a mold by a high-frequency magnetic field generated from a high-frequency coil installed immediately below the ferromagnetic material while generating magnetic force from a ferromagnetic material installed immediately below the continuous casting mold. A method for removing nonmetallic inclusions in a slab in continuous casting, wherein the solidified shell is melted and then cast while solidifying again.
【請求項2】 連続鋳造鋳型直下に鋳片表層を溶融する
高周波コイルと、高周波コイルを囲み前記鋳片に磁場を
集中させるための強磁性体と、該高周波コイル内の鋳片
溶融部温度を測定する温度検出器と、前記温度検出器の
信号から鋳片溶融部温度を一定に調整する前記高周波コ
イルの電流制御装置と、からなる鋳片内非金属介在物除
去装置。
2. A high-frequency coil for melting a slab surface layer immediately below a continuous casting mold, a ferromagnetic material surrounding the high-frequency coil for concentrating a magnetic field on the slab, and a slab melting portion temperature in the high-frequency coil. An apparatus for removing non-metallic inclusions in a slab, comprising: a temperature detector to be measured; and a current control device for the high-frequency coil for adjusting the temperature of the slab melting portion to be constant based on a signal from the temperature detector.
【請求項3】 前記強磁性体に移動手段を配設したこと
を特徴とする請求項2記載の鋳片内非金属介在物除去装
置。
3. The apparatus for removing nonmetallic inclusions in a slab according to claim 2, wherein a moving means is provided on said ferromagnetic material.
JP07559297A 1997-03-27 1997-03-27 Method and apparatus for removing nonmetallic inclusions in slab in continuous casting Expired - Fee Related JP3491120B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07559297A JP3491120B2 (en) 1997-03-27 1997-03-27 Method and apparatus for removing nonmetallic inclusions in slab in continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07559297A JP3491120B2 (en) 1997-03-27 1997-03-27 Method and apparatus for removing nonmetallic inclusions in slab in continuous casting

Publications (2)

Publication Number Publication Date
JPH10263771A true JPH10263771A (en) 1998-10-06
JP3491120B2 JP3491120B2 (en) 2004-01-26

Family

ID=13580635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07559297A Expired - Fee Related JP3491120B2 (en) 1997-03-27 1997-03-27 Method and apparatus for removing nonmetallic inclusions in slab in continuous casting

Country Status (1)

Country Link
JP (1) JP3491120B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120038353A1 (en) * 2008-07-08 2012-02-16 Hiroshi Harada Device and method for measuring surface temperature of cast piece
KR101463314B1 (en) * 2012-12-21 2014-11-18 주식회사 포스코 Apparatus for recovering mold flux film
CN107812907A (en) * 2017-10-27 2018-03-20 攀钢集团攀枝花钢铁研究院有限公司 Large section Properties of Heavy Rail Steel green shell method of quality control

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120038353A1 (en) * 2008-07-08 2012-02-16 Hiroshi Harada Device and method for measuring surface temperature of cast piece
US9052242B2 (en) * 2008-07-08 2015-06-09 Nippon Steel & Sumitomo Metal Corporation Device and method for measuring surface temperature of cast piece
KR101463314B1 (en) * 2012-12-21 2014-11-18 주식회사 포스코 Apparatus for recovering mold flux film
CN107812907A (en) * 2017-10-27 2018-03-20 攀钢集团攀枝花钢铁研究院有限公司 Large section Properties of Heavy Rail Steel green shell method of quality control

Also Published As

Publication number Publication date
JP3491120B2 (en) 2004-01-26

Similar Documents

Publication Publication Date Title
JP5755438B2 (en) Control device and method for metal casting machine
KR960015335B1 (en) Sidewall containment of liquid metal with horizontal alternating magnetic fields
EP1448329A1 (en) A device and a method for continuous casting
US5836376A (en) Method and apparatus for giving vibration to molten metal in twin roll continuous casting machine
KR20160142871A (en) Continuous strip casting apparatus comprising a form adjustment system and continuous casting method
US5439046A (en) Process for producing thin sheet by continuous casting in twin-roll system
JP3491120B2 (en) Method and apparatus for removing nonmetallic inclusions in slab in continuous casting
CN1288790A (en) Continuous metal casting method with applied composite electromagnetic field
JP2008055431A (en) Method of continuous casting for steel
JP4427875B2 (en) Metal continuous casting method
EP3967422A1 (en) Electromagnetic stirring and heating of an ingot
JP2000351048A (en) Method and apparatus for continuously casting metal
JP3205018B2 (en) Manufacturing method of continuous cast slab with excellent surface properties
JP5146002B2 (en) Steel continuous casting method
JP3412691B2 (en) Continuous casting of molten metal
JP2004042068A (en) Continuous casting method of molten metal and continuous casting apparatus
JPH09288093A (en) Purity evaluation method and apparatus for metal
JPH04333353A (en) Method for continuously casting steel utilizing static magnetic field
JPH01150450A (en) Method and device for treating non-solidifying section of casting strand
JP3624682B2 (en) Metal cleaning methods
JPS59202144A (en) Stirring method of molten steel in continuous casting
JP3393712B2 (en) Continuous casting method of molten metal
JPH04313451A (en) Single belt type continuous casting apparatus
JPH07266010A (en) Method for preventing channeling of molten metal in continuous casting mold
JPH02205241A (en) Method for preventing breakout in heated mold type continuous casting apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees