JPH10259758A - Thermal engine - Google Patents

Thermal engine

Info

Publication number
JPH10259758A
JPH10259758A JP9103804A JP10380497A JPH10259758A JP H10259758 A JPH10259758 A JP H10259758A JP 9103804 A JP9103804 A JP 9103804A JP 10380497 A JP10380497 A JP 10380497A JP H10259758 A JPH10259758 A JP H10259758A
Authority
JP
Japan
Prior art keywords
gas
temperature
turbine
compressor
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9103804A
Other languages
Japanese (ja)
Inventor
Shoichi Fujii
昭一 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP9103804A priority Critical patent/JPH10259758A/en
Publication of JPH10259758A publication Critical patent/JPH10259758A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the energy efficiency by flowing the hot gas of the normal pressure or the pressure close thereto into a turbine to achieve the work, exchanging the heat of the hot gas leaving the turbine with cooling air to drop the temperature of the gas, and flowing the gas into a compressor to generate the output. SOLUTION: The gas 3 of high temperature and normal pressure is introduced in a turbine T to achieve the work, and the gas 4 which completes the work and is discharged flows into a heat exchanger HX, and the temperature is dropped to the normal temperature or the temperature close thereto through the heat exchange with the cooling air. After the gas 1 whose temperature is dropped is fed to a compressor C to rotate it, the gas is discharged outside. The turbine T can be driven with the gas of normal pressure by arranging the compressor C on the downstream side of the turbine T, and the difference between the output of the turbine T and the input required by the compressor C is taken out as the engine output. The gas to be used includes the exhaust gas from the engine and the hot gas generated in treatment of the refuse.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】ガスタービンや車両エンジンまた
は産業用レシプロエンジンあるいはゴミ焼却など排熱が
利用できるときこの発明を用いることによりエネルギー
利用効率を向上させることができる。また本発明を空気
を利用した冷凍機すなわちエアサイクルとして用いるこ
とができる。
The present invention can improve the energy use efficiency when exhaust heat can be used such as gas turbines, vehicle engines, industrial reciprocating engines, or incineration of waste. Further, the present invention can be used as a refrigerator using air, that is, an air cycle.

【0002】[0002]

【従来の技術】圧力の高くないガスの排熱を利用して動
力を得るには通常は蒸気タービンまたは温水器を通して
行われており、また冷凍機として作動させるときは圧縮
機から流入させ熱交換して温度を下げてタービンに流入
させているがタービン入口で常温まで温度を下げること
が困難なことと相まって成績係数が低い。
2. Description of the Related Art Power is obtained by utilizing exhaust heat of a gas having a low pressure, usually through a steam turbine or a water heater. When operating as a refrigerator, heat is supplied from a compressor to heat exchange. However, the temperature coefficient of flow is lowered into the turbine, but it is difficult to lower the temperature to room temperature at the turbine inlet.

【0003】[0003]

【発明が解決しようとする課題】圧力の高くないほぼ常
圧の高温ガスの熱源を利用するにさいし、液体を用いて
蒸気または温水に変換する従来技術は復水器を必要とし
複雑なシステムになる。あるいは液体を用いずタービン
で排熱回収できるが、例えば車両用エンジンの排気口に
直接タービンを置くと比較的大きな背圧がかかり元のエ
ンジンの性能を害する。本発明はこれらの欠点を克服し
簡単なシステムで効率の良い排熱利用を行うものであ
る。一方本発明において排熱でなく常温のガスに用いて
冷凍サイクルの成績係数を向上させようというものであ
る。
In utilizing a heat source of a high-pressure gas at almost normal pressure, which is not high in pressure, the prior art of converting a liquid to steam or hot water requires a condenser and requires a complicated system. Become. Alternatively, the exhaust heat can be recovered by a turbine without using a liquid. However, if the turbine is placed directly at the exhaust port of a vehicle engine, for example, a relatively large back pressure is applied, which impairs the performance of the original engine. The present invention overcomes these drawbacks and provides efficient waste heat utilization with a simple system. On the other hand, in the present invention, it is intended to improve the coefficient of performance of the refrigeration cycle by using gas at room temperature instead of exhaust heat.

【0004】[0004]

【課題を解決するための手段】本発明の請求項1に相当
する概念図を図1に、ガスの作動状態を示す温度T・エ
ントロピーS線図を図2に示す。高温・常圧のガスがタ
ービンTに流入し熱交換器HXで温度を常温またはそれ
に近い温度まで下げて圧縮機Cへ流れ外界に排出され
る。常圧のガスでタービンが作動できるのは圧縮機が後
方にあるためでタービンの出力と圧縮機の必要とする入
力の差がエンジン出力として取り出される。タービンへ
のガスとしてはいろいろな形態のエンジンやガスタービ
ンの排ガスを利用すれば良い。あるいはゴミ処理で生じ
た高温ではあるが圧力の高くないガスも利用できる。こ
のことを図2で説明すると3の状態にある温度T・エン
トロピーSを有するガスがタービンを通過すると4の状
態になる。熱交換器で熱を奪うと4から1の状態に移り
圧縮機で加圧ならびに加熱して2の状態になり外界に排
出される。請求項2に述べたように高温ガスの代わりに
常温ガスがタービンに流入すると冷凍機として作動でき
る。この場合は外部から不足する分だけ入力を別の機関
で加える必要がある。
FIG. 1 is a conceptual diagram corresponding to claim 1 of the present invention, and FIG. 2 is a temperature T / entropy S diagram showing an operating state of gas. High-temperature and normal-pressure gas flows into the turbine T, and the temperature is reduced to a normal temperature or a temperature close to the normal temperature by the heat exchanger HX, flows to the compressor C, and is discharged to the outside. The turbine can be operated with the gas at normal pressure because the compressor is at the rear, and the difference between the output of the turbine and the input required by the compressor is taken out as the engine output. As the gas for the turbine, exhaust gas from various forms of engines and gas turbines may be used. Alternatively, a high-temperature but low-pressure gas generated by dust treatment can be used. This will be described with reference to FIG. 2. When the gas having the temperature T and entropy S in the state 3 passes through the turbine, the state 4 is set. When the heat is removed by the heat exchanger, the state changes from 4 to 1, and the compressor is pressurized and heated to 2 and discharged to the outside world. As described in claim 2, when room temperature gas flows into the turbine instead of high temperature gas, the turbine can operate as a refrigerator. In this case, it is necessary to add the input from another institution, which is insufficient from the outside.

【0005】車のエンジンからの排熱のように通常の方
式ではもはやエネルギー回収し軸動力にすることが困難
なときその排ガスを用いて、図3に示したように、熱交
換器HXで圧縮機Cを通ったガスの温度を上げてタービ
ンTに流入させ圧縮機の入力とタービンの出力の差を利
用して軸出力を得る。この装置PASは請求項3に相当
するものである。請求項1および3の装置はいずれもタ
ービンと圧縮機の出力、入力がバランスするすなわちア
イドリングになるまで外部から始動入力を投入する必要
があり、一般のガスタービンの運転手順と同じである。
[0005] When it is difficult to recover energy and convert it to shaft power using a normal method such as exhaust heat from a car engine, the exhaust gas is used and compressed by a heat exchanger HX as shown in FIG. The temperature of the gas that has passed through the machine C is raised and flows into the turbine T to obtain the shaft output by utilizing the difference between the input of the compressor and the output of the turbine. This device PAS corresponds to claim 3. Both of the devices according to claims 1 and 3 require the input of a starting input from the outside until the output and input of the turbine and the compressor are balanced, that is, idling, and are the same as the operation procedure of a general gas turbine.

【0006】[0006]

【作用】常圧の高温ガスは従来蒸気あるいは温水に変換
しなければ利用できなかったが本発明では蒸気などに変
換することなく熱交換だけで動力として直接利用でき
る。冷凍機として作動させるときはタービン入口が必ず
常温またはそれに近い温度すなわち外気温度であり、流
入のとき熱交換器の性能に左右されない。
The high pressure gas at normal pressure cannot be used unless it is converted into steam or hot water, but in the present invention, it can be directly used as power only by heat exchange without conversion into steam or the like. When operating as a refrigerator, the turbine inlet is always at or near room temperature, that is, the outside air temperature, and does not depend on the performance of the heat exchanger at the time of inflow.

【0007】[0007]

【実施例】本発明による請求項1の装置TGをガスター
ビンと組み合わせて利用する場合を図4に示す。この図
においてBは燃焼器、HXは熱交換器、Cは圧縮機、T
はタービンとする。ガスの作動状態を図5に示す。G1
の状態にある空気を吸ってG2に圧縮されG2からG
5’までは排ガスの熱を利用する再生によって温度が高
められG5’からG3までが燃焼によってさらに高温に
なる。このガスがタービンを通過することによって常圧
高温の空気G4になる。これを改めてT3の状態と名付
ける。本発明の請求項1の装置TGに付いているタービ
ンによってT4の状態に温度が下がる。この高温ガスが
さらに熱交換によってG6’さらにT1に下げられる。
T4からT6’にいく過程で生じる熱はガスタービン内
のガスをG2からG5’に上げるのに使われる。G6’
からT1へは外部から強制的に冷却する。T1からT2
には圧縮機によって加圧され外界に放出される。このサ
イクル線図は図5でみるように常温にちかい部分があた
かもガスタービン単体で圧縮機の中間冷却を行った場合
になっている。このような形態を熱力学的に計算し結果
を図6に示す。この図で縦軸が本発明の装置TGによる
出力ΔTWTGを温度の単位で表し横軸がTGのタービ
ン通過に伴う膨張比πを示す。TGの熱交換の効率を
1.0としガスタービンへの再生の際の熱交換の効率を
0.8,0.4,0の3種類変化させ、かつTGの圧縮
機に中間冷却をした場合としない場合に分けて計算し
た。ここで熱交換の効率は一般に知られているように実
際の伝熱量と最大可能な伝熱量の比とした。図中η
ガスタービンおよびTGの要素の断熱効率であり0.7
0とあるのはガスタービンおよびTGの圧縮機とタービ
ンがすべて70%の断熱効率で作動していることを示し
ている。ここでは要素の断熱効率を2種類変えて0.7
0,0.75を計算した。いずれの場合も本発明の装置
TGから出力が得られることが判明した。
FIG. 4 shows a case where the apparatus TG according to the first aspect of the present invention is used in combination with a gas turbine. In this figure, B is a combustor, HX is a heat exchanger, C is a compressor, T
Is a turbine. FIG. 5 shows the operation state of the gas. G1
The air in the state of is sucked and compressed to G2 and G2 to G
Up to 5 ', the temperature is increased by regeneration using the heat of the exhaust gas, and the temperature from G5' to G3 is further increased by combustion. When this gas passes through the turbine, it becomes air G4 at normal pressure and high temperature. This is referred to as the state of T3 again. The temperature of the turbine TG of the device TG according to the first aspect of the present invention is reduced to the state of T4. This hot gas is further reduced to G6 'and further to T1 by heat exchange.
The heat generated in the process from T4 to T6 'is used to raise the gas in the gas turbine from G2 to G5'. G6 '
From T1 to T1. T1 to T2
Is pressurized by a compressor and discharged to the outside world. In this cycle diagram, as shown in FIG. 5, the portion close to the normal temperature has a case where the intermediate cooling of the compressor is performed by the gas turbine alone. Such a form is thermodynamically calculated and the result is shown in FIG. In this figure, the vertical axis represents the output ΔT WTG by the device TG of the present invention in units of temperature, and the horizontal axis represents the expansion ratio π r accompanying the TG passing through the turbine. When the heat exchange efficiency of TG is set to 1.0 and the heat exchange efficiency at the time of regeneration to the gas turbine is changed to three types of 0.8, 0.4, and 0, and the TG compressor is intercooled And calculated separately. Here, the heat exchange efficiency is, as generally known, the ratio of the actual heat transfer amount to the maximum possible heat transfer amount. In the figure, η e is the adiabatic efficiency of the gas turbine and TG elements, which is 0.7
A value of zero indicates that all gas turbine and TG compressors and turbines are operating at 70% adiabatic efficiency. Here, the heat insulation efficiency of the element is changed by two types to 0.7
0, 0.75 was calculated. In each case, it was found that an output was obtained from the device TG of the present invention.

【0008】図7に請求項1に述べた本発明の装置TG
の出力を利用するために通常のエアサイクル冷凍機を直
結した場合を示す。これに対応する温度T・エントロピ
ーS線図を図8に示す。冷凍機では冷凍能力に対する必
要入力の比すなわち成績係数COPが重要である。要素
の断熱効率ηを2種類(0.70、0.75)変えさ
らにガスタービンへの再生のための熱交換器効率εGR
を3種類(0.8,0.4,再生なし)変えてCOPと
エアサイクル入口と出口の温度差△Tの関係を熱力学
の方程式に基づいて計算したのが図9である。一点鎖線
がエアサイクルのみであるのに対していずれの条件下に
おいても飛躍的に成績係数COPが改善されている。
FIG. 7 shows an apparatus TG according to the first aspect of the present invention.
The case where a normal air cycle refrigerator is directly connected in order to utilize the output of FIG. The corresponding temperature T / entropy S diagram is shown in FIG. In the refrigerator, the ratio of the required input to the refrigeration capacity, that is, the coefficient of performance COP is important. The adiabatic efficiency η e of the element is changed by two types (0.70, 0.75) and the heat exchanger efficiency ε GR for regeneration to a gas turbine
Three of the relationship between the temperature difference △ T c of (0.8,0.4, play no) varied COP and air cycle inlet and outlet was calculated based on the equation of thermodynamics is FIG. While the dashed line indicates only the air cycle, the coefficient of performance COP is dramatically improved under any conditions.

【0009】請求項2に述べた本発明の装置GTを冷凍
機として用いたときの概念図を図10に、相当する温度
T・エントロピーS線図を図11に示す。3の状態の空
気をタービンにより膨張させ温度を下げ外部と熱交換し
4から1の状態に再び温度を上げる。熱交換により得ら
れた冷たい外部空気は冷房または冷凍に使える。熱力学
計算を行い成績係数COPに関して通常のエアサイクル
(AIRCYCLE)とTGを比べたのが図12、13
である。図12は圧縮機とタービンのそれぞれの断熱効
率ηc、ηt(ηc=ηtとする)の変化に対する成績
係数COPを比べている。熱交換の温度効率はηr=
0.7にしてある。要素の断熱効率が悪くても本発明に
よるTGは従来のエアサイクルよりCOPが大きい。現
在の空気力学的設計技術からは小型圧縮機やタービンで
は要素の断熱効率0.8以上は望めそうもないことから
みるとTGはエアサイクルに比べて有利である。図13
は熱交換器の温度効率ηrに対するTGの優位性を示し
たものである。計算ではηc=ηt=0.75、圧力比
π=2.0とした。現実的には温度効率0.8以上は考
えにくいことを考慮すると温度効率が悪いときでもTG
の優位性は変わらない。
FIG. 10 shows a conceptual diagram when the apparatus GT of the present invention described in claim 2 is used as a refrigerator, and FIG. 11 shows a corresponding temperature T / entropy S diagram. The air in the state of 3 is expanded by the turbine to lower the temperature, exchange heat with the outside, and raise the temperature again from the state of 4 to 1. The cold external air obtained by heat exchange can be used for cooling or freezing. 12 and 13 show a comparison between a normal air cycle (AIRCYCLE) and TG with respect to the coefficient of performance COP by performing thermodynamic calculations.
It is. FIG. 12 compares the coefficient of performance COP with respect to changes in the adiabatic efficiencies ηc and ηt (ηc = ηt) of the compressor and the turbine. The temperature efficiency of heat exchange is ηr =
0.7. The TG according to the present invention has a higher COP than a conventional air cycle even if the heat insulation efficiency of the element is poor. TG is more advantageous than an air cycle in view of the fact that it is unlikely that the adiabatic efficiency of the element of 0.8 or more can be expected in a small compressor or turbine from the current aerodynamic design technology. FIG.
Shows the superiority of TG to the temperature efficiency ηr of the heat exchanger. In the calculation, ηc = ηt = 0.75 and pressure ratio π = 2.0. Considering that it is difficult to think that a temperature efficiency of 0.8 or more is practically possible, even when the temperature efficiency is poor, TG
Has the same advantage.

【0010】請求項3に述べた本発明による装置PAS
を車のエンジンに応用して排熱を利用する補助動力とし
て作動させ車両クーラーの経済性を高めた場合の概念図
を図14に示す。前述のTGを冷凍機として用いても良
いがここでは説明を簡潔にするために通常のエアサイク
ルを連結した場合を述べる。図15は対応する温度T・
エントロピーS線図であるが高温の排ガスと熱交換して
P2からP3にPAS内のガスの温度を上げタービン通
過後P4になり排出される。これにより得られる出力と
エンジンの出力を加えてエアサイクルを作動させる。こ
のようなシステムに対して熱力学計算を行い表示したの
が図16である。この図においてECOPは新たに定義
する経済的成績係数である。一般に冷凍能力とそれに必
要な入力の比で成績係数COPが定義されているが、今
の場合排ガスというそのままでは無駄になってしまうエ
ネルギーを使っているのでPASによって生じる出力を
冷凍に必要な入力から差し引いて成績係数を求めたもの
を経済的成績係数ECOPとする。すなわち物理的に厳
密なCOPとは異なり経済的見地から成績係数を調べた
ことになる。図ではηPc,ηTcはPASの圧縮機と
タービンの断熱効率である。同様にηCc,ηCtはエ
アサイクルの圧縮機とタービンの断熱効率とする。ΔT
cはエアサイクルによる温度降下とする。この図からみ
てPASを用いるとエアサイクルの経済的成績係数を向
上させられることがわかる。
An apparatus PAS according to the invention as defined in claim 3
FIG. 14 is a conceptual diagram showing a case in which is applied to a vehicle engine to operate as auxiliary power utilizing waste heat to increase the economical efficiency of a vehicle cooler. Although the above-described TG may be used as a refrigerator, a case where a normal air cycle is connected will be described here for the sake of simplicity. FIG. 15 shows the corresponding temperature T.
Although it is an entropy S diagram, it exchanges heat with high-temperature exhaust gas, raises the temperature of the gas in the PAS from P2 to P3, becomes P4 after passing through the turbine, and is discharged. The output obtained by this and the output of the engine are added to operate the air cycle. FIG. 16 shows a thermodynamic calculation performed on such a system. In this figure, ECOP is a newly defined economic coefficient of performance. In general, the coefficient of performance COP is defined by the ratio of the refrigeration capacity and the input required for the refrigeration. However, in this case, the energy generated by the PAS is converted from the input required for the refrigeration because the waste gas is used as it is. The value obtained by subtracting the coefficient of performance is defined as the economic coefficient of performance ECOP. That is, unlike the physically strict COP, the coefficient of performance was examined from an economic viewpoint. In the figure, η Pc and η Tc are the adiabatic efficiency of the compressor and turbine of the PAS. Similarly, η Cc and η Ct are the adiabatic efficiency of the compressor and turbine of the air cycle. ΔT
c is the temperature drop due to the air cycle. It can be seen from the figure that the use of PAS can improve the economic coefficient of performance of the air cycle.

【0011】本発明の装置TGをゴミ処理施設に応用し
た例を図17に示す。この場合にはガスタービンやエン
ジンの代わりに補助動力Motorを必要とする。
FIG. 17 shows an example in which the apparatus TG of the present invention is applied to a waste disposal facility. In this case, an auxiliary power Motor is required instead of the gas turbine or the engine.

【0012】本発明の装置TGをゴミ焼却炉に応用しか
つ蒸気タービンに連動させた例を図18に示す。この図
でPumpはポンプ、Conは復水器を示す。排熱利用
を従来の2段階から3段階にしてシステムの最高温度の
部分をまず本発明の装置TGで利用してある程度温度が
下がつた状態でボイラにいれる。従来、ボイラに高温で
いれると材料の関係で腐食が起こるので水などで冷却し
わざわざ温度をさげていた。
FIG. 18 shows an example in which the apparatus TG of the present invention is applied to a garbage incinerator and linked to a steam turbine. In this figure, Pump indicates a pump and Con indicates a condenser. The utilization of exhaust heat is changed from the conventional two stages to three stages, and the highest temperature part of the system is first used in the apparatus TG of the present invention, and the system is put into the boiler in a state where the temperature is lowered to some extent. Conventionally, if a boiler is placed at a high temperature, corrosion will occur due to the material, so that the temperature has been lowered by cooling with water or the like.

【0013】請求項1の本発明の装置TGの代わりに請
求項3の装置PASをゴミ焼却炉に用いた場合をを図1
9に示す。
FIG. 1 shows a case where the apparatus PAS according to claim 3 is used in a garbage incinerator instead of the apparatus TG according to claim 1 of the present invention.
9

【0014】[0014]

【発明の効果】本発明の請求項2の装置TGではタービ
ンに先にガスを流入させているので一般に実現の困難な
熱交換の効率100%が流入時において常に保証されて
いる。また高温ガスのときタービンで100から150
度程度の温度降下があるのでその後に続く熱交換器の材
質選定が有利になる。熱力学の方程式では圧力比の形で
計算されるので比が同じのとき負圧力の方が圧力差の絶
対値が少ないので構造的に有利になる。
In the apparatus TG according to the second aspect of the present invention, since gas is first introduced into the turbine, a heat exchange efficiency of 100%, which is generally difficult to achieve, is always guaranteed at the time of inflow. In the case of high-temperature gas, 100 to 150
Since there is a temperature drop of about degree, it is advantageous to select the material of the heat exchanger that follows. In the equation of thermodynamics, the pressure is calculated in the form of a pressure ratio. Therefore, when the ratio is the same, the negative pressure is structurally advantageous because the absolute value of the pressure difference is small.

【0015】図7,8,9でエアサイクルの成績係数C
OPが本発明の装置TGにより増加した効果を次に述べ
る。Qの冷凍能力を得るにはWの仕事が必要であるとき
COP=Q/Wが一般に定義されている。本発明の装置
をつけると図8に示したようにサイクル線図ではあたか
も中間冷却を行ったようになりガスタービン単体の効率
EがEに上昇する。そのために COP=Q/(W−G(E−E)) の関係からCOPが向上する。上の式でGは入力ガスの
もつ熱量とする。もしガスタービンが発電をしないで冷
凍機だけを駆動するのに使用したとすれば冷凍能力と入
力の比QE/WがQE/Wに改善されG(E−E)
だけガスの熱量が節約できる。
FIGS. 7, 8 and 9 show the coefficient of performance C of the air cycle.
The effect that the OP has been increased by the device TG of the present invention will be described below. COP = Q / W is generally defined when the work of W is required to obtain the refrigerating capacity of Q. To become the gas turbine alone efficiency E as the put device in cycle diagram as shown in FIG. 8 as if performed intercooling of the present invention is increased to E t. Therefore COP is improved from the relationship of the COP = Q / (W-G (E t -E)) to. In the above equation, G is the amount of heat of the input gas. If the ratio QE / W input and cooling capacity if the gas turbine is used to drive only the refrigerator without the power generation is improved QE t / W G (E t -E)
Only gas calories can be saved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】請求項1の概念図FIG. 1 is a conceptual diagram of claim 1.

【図2】温度T・エントロピ−S線図FIG. 2 is a temperature T / entropy-S diagram

【図3】請求項2の概念図FIG. 3 is a conceptual diagram of claim 2;

【図4】ガスタービンと組み合わせて請求項1の装置T
Gを利用する場合の概念図
FIG. 4 shows a device T according to claim 1, in combination with a gas turbine.
Conceptual diagram when using G

【図5】温度T・エントロピーS線図FIG. 5 is a diagram of temperature T and entropy S

【図6】出力と膨張比の関係図FIG. 6 is a diagram showing a relationship between an output and an expansion ratio.

【図7】ガスタービンに本発明の装置TGを組み込んだ
概念図
FIG. 7 is a conceptual diagram in which the device TG of the present invention is incorporated in a gas turbine.

【図8】温度TとエントロピーS線図FIG. 8 is a diagram of temperature T and entropy S

【図9】冷凍機による温度降下と成績係数の関係図FIG. 9 is a diagram showing a relationship between a temperature drop and a coefficient of performance by a refrigerator.

【図10】請求項2による装置の概念図FIG. 10 is a conceptual diagram of an apparatus according to claim 2;

【図11】温度T・エントロピーS線図FIG. 11 is a diagram of temperature T and entropy S

【図12】成績係数と要素効率の関係FIG. 12: Relationship between coefficient of performance and element efficiency

【図13】圧縮比と要素効率を固定した場合の温度効率
と成績係数の関係
FIG. 13 shows a relationship between the temperature efficiency and the coefficient of performance when the compression ratio and the element efficiency are fixed.

【図14】請求項3の装置PASを車の補助動力として
用いた場合の概念図
FIG. 14 is a conceptual diagram when the device PAS of claim 3 is used as auxiliary power for a vehicle.

【図15】温度T・エントロピーS線図FIG. 15 is a diagram of temperature T and entropy S

【図16】温度降下と経済的成績係数の関係FIG. 16: Relationship between temperature drop and economic coefficient of performance

【図17】請求項1の装置TGを焼却炉に用いたときの
概念図
FIG. 17 is a conceptual diagram when the device TG of claim 1 is used in an incinerator.

【図18】請求項1の装置TGを蒸気機関の前方に用い
たときの概念図
FIG. 18 is a conceptual diagram when the device TG according to claim 1 is used in front of a steam engine.

【図19】請求項3の装置PASを焼却炉に用いたとき
の概念図
FIG. 19 is a conceptual diagram when the apparatus PAS according to claim 3 is used in an incinerator.

【符号の説明】[Explanation of symbols]

Tはタービンまたは温度 HXは熱交換器 Cは圧縮機 Sはエントロピー TGは本発明による請求項1および2の装置 PASは本発明による請求項3の装置 ηはタービンと圧縮機の要素効率 △Tは温度降下量 Pomはポンプ Conは復水器 Bは燃焼器 COPは成績係数 ECOPは経済的成績係数 ηc、ηtはそれぞれ圧縮機、タービンの断熱効率 εGRは熱交換効率 πは圧力比または膨張比T is a turbine or temperature HX is a heat exchanger C is a compressor S is entropy TG is a device according to claims 1 and 2 PAS is a device according to claim 3 η e is element efficiency of a turbine and a compressor △ Tc is the amount of temperature drop Pom is the pump Con is the condenser B is the combustor COP is the coefficient of performance ECOP is the economic coefficient of performance ηc and ηt are the compressor and turbine insulation efficiency ε GR is the heat exchange efficiency π is the pressure ratio Or expansion ratio

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 常圧またはそれに近い圧力の高温ガスを
タービンに流入させタービン出口後に熱交換してガスの
温度を下げ圧縮機に流入させて出力を得ることを特徴と
する装置。
An apparatus characterized in that a high-temperature gas at or near normal pressure flows into a turbine and heat is exchanged after the turbine exits to lower the gas temperature and flow into a compressor to obtain an output.
【請求項2】 常温またはそれに近い温度のガスをター
ビンに流入させタービン出口後に熱交換してガスの温度
を上げ圧縮機に流入させて請求項1の装置の出力または
他の一般的な動力を利用して冷凍機として作動させるこ
とを特徴とする装置。
2. A gas at a normal temperature or a temperature close to the normal temperature flows into the turbine, and after the turbine exits, heat exchange is performed to raise the temperature of the gas and flow into the compressor, so that the output of the apparatus of claim 1 or other general power is supplied. An apparatus characterized by being operated as a refrigerator by utilizing.
【請求項3】常温またはそれに近い温度のガスを圧縮機
から吸入し車のエンジンの排熱のように圧力の高くない
低密度の外部の高温ガスと熱交換して内部のガスの温度
を上げタービンに入れて軸動力を得ることを特徴とする
装置。
3. A gas at a normal temperature or a temperature close to the normal temperature is sucked from a compressor and heat-exchanged with a low-density external high-temperature gas having a low pressure, such as exhaust heat of a car engine, to raise the temperature of the internal gas. Apparatus characterized by obtaining shaft power in a turbine.
JP9103804A 1997-03-17 1997-03-17 Thermal engine Pending JPH10259758A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9103804A JPH10259758A (en) 1997-03-17 1997-03-17 Thermal engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9103804A JPH10259758A (en) 1997-03-17 1997-03-17 Thermal engine

Publications (1)

Publication Number Publication Date
JPH10259758A true JPH10259758A (en) 1998-09-29

Family

ID=14363600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9103804A Pending JPH10259758A (en) 1997-03-17 1997-03-17 Thermal engine

Country Status (1)

Country Link
JP (1) JPH10259758A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004033872A1 (en) * 2002-10-08 2004-04-22 Kawasaki Jukogyo Kabushiki Kaisha Atmospheric pressure combustion turbine system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004033872A1 (en) * 2002-10-08 2004-04-22 Kawasaki Jukogyo Kabushiki Kaisha Atmospheric pressure combustion turbine system
JP2004132183A (en) * 2002-10-08 2004-04-30 Kawasaki Heavy Ind Ltd Normal pressure combustion turbine system
US7204077B2 (en) 2002-10-08 2007-04-17 Kawasaki Jukogyo Kabushiki Kaisha Atmospheric pressure combustion turbine system
CN100458121C (en) * 2002-10-08 2009-02-04 川崎重工业株式会社 Atmospheric pressure combustion turbine system

Similar Documents

Publication Publication Date Title
JP3681434B2 (en) Cogeneration system and combined cycle power generation system
RU2406876C2 (en) Improved multi-stage compressor
CA2564155C (en) Highly efficient heat cycle device
EP3314096B1 (en) Power system and method for producing useful power from heat provided by a heat source
US5813215A (en) Combined cycle waste heat recovery system
CN111305920B (en) Steam-driven air energy storage peak shaving system and method
CN111271143A (en) System and method for improving electric power flexibility
KR100539101B1 (en) Three generation energy system for controlling among cooling/heating and electric power generation
JP3961653B2 (en) Power plant
JPH0354327A (en) Surplus power utilizing system
JP2003106163A (en) Gas and air combined turbine facility and power plant and operating method thereof
EP3420201A1 (en) Waste heat recovery cascade cycle and method
JPH0968006A (en) Gas turbine plant
CN213711133U (en) Back pressure type ORC combined heat and power generation system
CN113315152B (en) Gas turbine peak shaving power station combined with liquid air energy storage and peak shaving method
JP3773225B2 (en) Waste heat recovery device for internal combustion engine
KR20190037919A (en) Association system of power generation and heat pump
JPH10259758A (en) Thermal engine
JP4619563B2 (en) Ultra turbine
KR20180056148A (en) Combined cycle power generation system
JPH11117712A (en) Gas turbine combined plant
JP2000213418A (en) Heat source system using low temperature vapor and cogeneration system using thereof
JPH05240004A (en) Optimum operation method for heat recovering power generation system plant
CN115095899B (en) Coal-fired unit coupled compressed air energy storage waste heat supply system and operation method
JP3095680B2 (en) Hydrogen-oxygen combustion turbine plant