JPH1025909A - Reinforcing structure of existing building - Google Patents

Reinforcing structure of existing building

Info

Publication number
JPH1025909A
JPH1025909A JP8199811A JP19981196A JPH1025909A JP H1025909 A JPH1025909 A JP H1025909A JP 8199811 A JP8199811 A JP 8199811A JP 19981196 A JP19981196 A JP 19981196A JP H1025909 A JPH1025909 A JP H1025909A
Authority
JP
Japan
Prior art keywords
column
built
earthquake
reinforcing material
end parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8199811A
Other languages
Japanese (ja)
Inventor
Junichi Fukushima
順一 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP8199811A priority Critical patent/JPH1025909A/en
Publication of JPH1025909A publication Critical patent/JPH1025909A/en
Pending legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/02Repairing, e.g. filling cracks; Restoring; Altering; Enlarging
    • E04G23/0218Increasing or restoring the load-bearing capacity of building construction elements
    • E04G2023/0251Increasing or restoring the load-bearing capacity of building construction elements by using fiber reinforced plastic elements
    • E04G2023/0262Devices specifically adapted for anchoring the fiber reinforced plastic elements, e.g. to avoid peeling off

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Working Measures On Existing Buildindgs (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide sufficient earthquake resistance by a method wherein a carbon fibre reinforcing material is wound around the upper and lower end parts of a column to repair the named parts, an after-placed reinforced concrete-made wall is integrally built through a beam and an anchor beam between the column and the beam, and the column is built without being integrally built. SOLUTION: A carbon fibre reinforcing material 13 is wound around the upper and lower end parts of a PC-made column 10 to effect reinforcement and an after- placed RC-made wall 12 is integrally built through a beam 11 and an anchor bar 14 but built without being built integrally with the column 10. Since the wall 12 is not built integrally with the column 10, a transmission content of a shearing force by the truss effect of a frame comprising the column 10 and the beam 11 is decreased. Transmission of a shearing force by an arch effect is main and though a shearing force from an arch is locally increased at the upper and lower end parts of the column 10, since the upper and lower end parts are increased in rigidity through winding of the upper and lower end parts with a reinforcing material 13, a high out-of-plane stress is exerted on the column 10 due to an earthquake force, shear fracture is effectively suppressed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、各種のコンクリー
ト系の既存の建物に対して耐震補強を行なう際に用いて
好適な、既存建物の補強構造に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reinforcing structure for an existing building, which is suitable for use in performing seismic retrofitting of various existing concrete buildings.

【0002】[0002]

【従来の技術】従来より、鉄筋コンクリート(以下、R
Cと略す。)造や鉄骨鉄筋コンクリート(以下、SRC
と略す。)造等のコンクリート系の既存建物に対して耐
震補強を行なう場合には、通常図3に示すように、RC
造の柱1と梁2との間に後打ちコンクリートによる耐震
壁3を構築する工法が採られている。この際に、上記耐
震壁3を増設した部位の構造物としての剛性を高めて耐
震性を確保するために、上記耐震壁3の柱1および梁2
と対向する4周には、それぞれアンカー筋4…が埋設さ
れており、これにより上記耐震壁3は、柱1と梁2とか
らなる既存のフレームに一体化されている。
2. Description of the Related Art Conventionally, reinforced concrete (hereinafter referred to as R
Abbreviated as C. ) Construction and steel reinforced concrete (hereinafter, SRC
Abbreviated. ) When seismic retrofitting is performed on an existing concrete building such as a structure, usually, as shown in FIG.
A construction method of constructing an earthquake-resistant wall 3 made of post-cast concrete between a column 1 and a beam 2 is adopted. At this time, the columns 1 and the beams 2 of the earthquake-resistant wall 3 are provided in order to increase the rigidity of the structure where the earthquake-resistant wall 3 is added and to secure the earthquake resistance.
Anchor bars 4 are buried in the four circumferences facing each other, so that the earthquake-resistant wall 3 is integrated with the existing frame including the columns 1 and the beams 2.

【0003】[0003]

【発明が解決しようとする課題】一方、近年における耐
震性に対する意識の高まりから、この種のRC造やSR
C造等の既存建物に対して、従来よりも大きな地震が発
生した場合を想定した耐震補強を行なう要請が強くなっ
ている。ところが、このような大地震に対する耐震補強
に、図3に示した従来のRC造の既存建物における補強
構造を適用すると、大地震が発生した場合に上記フレー
ムが大変形して耐震壁3に剪断によるひび割れが発生
し、この結果アンカー筋4に過大な引張り力および剪断
力が作用して抜け出すおそれがある。そして、特に柱1
の側面に設けた上記アンカー筋4が抜け出すと、図4に
示すように、その周囲のコンクリート1aもコーン状に
えぐられてしまい、この結果柱1に断面欠損が生じてそ
の軸耐力を著しく低下させ、本来の耐震壁3による所望
の耐震性を発揮することができないばかりか、却って柱
1の剪断破壊を招いて鉛直荷重保持能力を喪失するおそ
れがある。
On the other hand, due to the recent increase in awareness of earthquake resistance, this type of RC construction and SR
There is a growing demand for existing buildings such as C-structures to be reinforced in anticipation of the occurrence of a larger earthquake than before. However, when the conventional RC structure shown in FIG. 3 is applied to the seismic reinforcement for such a large earthquake, when the large earthquake occurs, the frame is greatly deformed and shears to the shear wall 3. Cracks may occur, and as a result, an excessive tensile force and shear force may act on the anchor streaks 4 and come off. And especially Pillar 1
When the anchor bar 4 provided on the side surface of the slab comes off, as shown in FIG. 4, the surrounding concrete 1a is also cut off in a cone shape. As a result, the column 1 has a cross-sectional defect, and its axial proof stress is remarkably reduced. As a result, not only the desired earthquake resistance due to the original earthquake-resistant wall 3 cannot be exhibited, but also the column 1 may be sheared and the vertical load holding capacity may be lost.

【0004】そこで、このようなアンカー筋4の抜け出
しを防止するために、当該アンカー筋4の定着長さを充
分にとることも考えられるが、既存のRC柱1に上記ア
ンカー筋4の定着長さに対応する深い穴を穿設すること
は施工上極めて困難であって現実的ではない。また、一
般に既存のRC建物においては、RC造の柱1等の各部
材が地震時においても弾性であることを前提とし、かつ
主として面内応力に対する強度に基づいて耐震設計がな
されているのに対して、想定しているような大地震では
必ずしも地震力が各部材の延在方向にのみ作用するとは
限らず、しかも上記柱1等の各部材の延在方向と直交す
る方向の面外応力についても剪断破壊を生じないように
考慮をする必要がある。したがって、かかる観点からす
ると上記既存のRC建物にあっては、柱等の剪断補強筋
量が充分であると言えるものが少なく、よって上記柱1
等に大きな面外応力が作用することによっても、当該柱
1が剪断破壊して上述した鉛直荷重の保持能力を喪失す
るおそれがある。
In order to prevent the anchor bar 4 from slipping out, it is conceivable that the anchor bar 4 has a sufficient anchoring length. However, the anchor bar 4 is fixed to the existing RC column 1. Drilling a correspondingly deep hole is extremely difficult and impractical in construction. Also, in general, existing RC buildings are premised on that each member such as RC columns 1 is elastic even during an earthquake, and is designed to be earthquake-resistant mainly based on strength against in-plane stress. On the other hand, in the case of an assumed large earthquake, the seismic force does not always act only in the extending direction of each member, and the out-of-plane stress in the direction perpendicular to the extending direction of each member such as the column 1 is not limited. Must also be considered so as not to cause shear failure. Therefore, from this viewpoint, in the existing RC buildings, there are few that can be said to have sufficient shear reinforcement bars such as columns.
Even when a large out-of-plane stress acts on the column 1, the column 1 may be sheared and may lose the above-described vertical load holding ability.

【0005】本発明は、上記従来の既存建物の補強構造
が有する課題を有効に解決すべくなされたもので、大地
震に対して耐力不足が予測される既存のコンクリート系
の建物においても、充分な耐震性を付与することができ
るとともに、施工が容易な既存建物の補強構造を提供す
ることを目的とするものである。
The present invention has been made in order to effectively solve the problems of the above-mentioned conventional existing building reinforcement structure, and can be sufficiently applied to an existing concrete building which is expected to have insufficient strength against a large earthquake. It is an object of the present invention to provide a reinforcement structure for an existing building that can provide excellent seismic resistance and is easy to construct.

【0006】[0006]

【課題を解決するための手段】請求項1に記載の本発明
に係る既存建物の補強構造は、既存建物のRC造の柱の
少なくとも上下端部に、炭素繊維補強材を巻回して当該
部分を補強するとともに、上記柱と梁との間に後打ちR
C造の壁を、上記梁とはアンカー筋を介して一体化さ
せ、かつ上記柱とは一体化させずに構築してなることを
特徴とするものである。ここで、請求項2に記載の発明
は、上記炭素繊維補強材に代えて鋼板部材を配設して柱
の当該部分を補強したことを特徴とするものであり、ま
た請求項3に記載の発明は、上記請求項1または2に記
載の後打ちRC造の壁の少なくとも上下部と上記柱とに
緊張材を挿通して、プレストレスを導入したことを特徴
とするものである。
According to a first aspect of the present invention, there is provided a reinforcing structure for an existing building, wherein a carbon fiber reinforcing material is wound around at least upper and lower ends of RC columns of the existing building. And a post-rack between the column and the beam
It is characterized in that the C-shaped wall is constructed integrally with the beam via an anchor bar and without being integrated with the column. Here, the invention according to claim 2 is characterized in that a steel plate member is provided in place of the carbon fiber reinforcing material to reinforce the portion of the column, and the invention according to claim 3 is provided. The present invention is characterized in that a tension material is inserted into at least the upper and lower portions of the post-cast RC wall according to claim 1 or 2 and the column to introduce prestress.

【0007】請求項1〜3のいずれかに記載の発明にあ
っては、RC造の柱と梁との間に後打ちRC造の壁を、
上記梁とはアンカー筋を介して一体化させ、かつ上記柱
とは一体化させずに構築しているので、大地震が発生し
て柱と梁からなるフレームが大変形した場合において
も、従来のもののように柱の側面に設けたアンカー筋が
抜け出して柱に断面欠損を生じるといったおそれが全く
無い。しかも、施工に際しては、柱側のアンカー筋を埋
設する必要が無いために、当該補強工事が極めて容易に
なる。ところで、上述したように通常の既存のコンクリ
ート系の建物にあっては、もともと想定しているような
大地震に対しては剪断補強筋量が充分であるとは言えな
いために、単に後打ちRC造の壁を柱と一体化させない
場合には、当該柱が耐力不足となって剪断破壊を生じる
おそれがある。
In the invention according to any one of claims 1 to 3, a post-cast RC wall is provided between the RC column and the beam.
Since the beam and the beam are integrated via anchor bars and are not integrated with the column, even if the frame consisting of the column and beam is greatly deformed due to a large earthquake, There is no danger that the anchor streak provided on the side surface of the column will slip out and cause a cross-sectional defect in the column. In addition, at the time of construction, since it is not necessary to bury the anchor bar on the pillar side, the reinforcement work becomes extremely easy. By the way, as described above, in ordinary existing concrete buildings, the amount of shear reinforcement is not sufficient for a large earthquake as originally assumed, If the RC wall is not integrated with the column, the column may be insufficiently proof and shear fracture may occur.

【0008】この点、上記本発明においては、大地震時
に局部的に大きな剪断力を受ける既存建物の柱の少なく
とも上下端部に、補強強度に優れる炭素繊維補強材を巻
回して剛性を高めることにより、当該部分における剪断
補強を行なっているので、地震力に起因して上記柱に大
きな面外応力が加わった場合においても、これが剪断破
壊することを効果的に抑止することができる。このよう
な観点から、上記炭素繊維補強材を巻回する範囲として
は、少なくとも柱のせいの1.5倍以上であることが望
ましい。また、特に請求項2に記載の発明のように、上
記炭素繊維補強材に代えて鋼板部材を配設して当該部分
を補強するようにしてもよく、さらに請求項3に記載の
発明のように、後打ちRC造の壁の少なくとも上下部と
上記柱の上下部とに緊張材を挿通して、プレストレスを
導入すれば、上記柱の柱頭および柱脚のみならずRC造
の壁の上下部における剛性も大幅に高めることができ
て、より好適である。
In this respect, in the present invention, the rigidity is enhanced by winding a carbon fiber reinforcing material having excellent reinforcing strength on at least the upper and lower ends of columns of an existing building which is locally subjected to a large shear force during a large earthquake. Thus, since shear reinforcement is performed at the portion, even when a large out-of-plane stress is applied to the column due to seismic force, it is possible to effectively prevent the column from being sheared and fractured. From such a viewpoint, it is desirable that the range around which the carbon fiber reinforcing material is wound is at least 1.5 times or more the diameter of the pillar. Further, in particular, as in the invention according to claim 2, a steel plate member may be provided instead of the carbon fiber reinforcing material to reinforce the portion, and furthermore, as in the invention according to claim 3, If a prestress is introduced by inserting a tension material into at least the upper and lower portions of the post-cast RC wall and the upper and lower portions of the post, the top and bottom of the RC post, as well as the column head and column base of the post, are introduced. The rigidity of the portion can be greatly increased, which is more preferable.

【0009】[0009]

【発明の実施の形態】図1は、本発明の既存建物の補強
構造の一実施形態を示すもので、図中符号10、11
が、それぞれ既存のRC積層構造の建物におけるRC造
の柱および梁である。そして、この柱10および梁11
からなるフレームの所定位置に、耐震補強が施されてい
る。この耐震補強は、上記フレーム内に後打ちコンクリ
ートが打設されることによって構築された耐震壁(後打
ちRC造の壁)12と、上記柱10の上下端部にそれぞ
れ巻回された炭素繊維補強材13とから概略構成された
ものである。ここで、上記耐震壁12は、後打ちコンク
リートが打設される際に梁11との間に多数のアンカー
筋14…が埋設されることにより、上記梁11と一体化
されており、他方当該耐震壁12と柱10との間には、
アンカー筋が介装されずに非一体化構造とされている。
また、上記柱10の上下端部に巻回された炭素繊維補強
材13は、それぞれ上記柱10の上端または下端から中
央部側に向けて、柱10のせいの1.5倍以上の長さに
わたって巻回されている。さらに、上記耐震壁12の上
下部と炭素繊維補強材13が巻回された柱10の上下端
部には、PC鋼線あるいはPC鋼棒からなる緊張材15
が挿通されてプレストレスが導入されている。
FIG. 1 shows an embodiment of a reinforcing structure for an existing building according to the present invention.
Are RC columns and beams in an existing RC laminated structure building. And this pillar 10 and beam 11
Seismic reinforcement is applied to predetermined positions of the frame made of. This aseismic reinforcement is performed by arranging an earthquake-resistant wall (wall of a post-cast RC structure) 12 constructed by placing cast concrete in the frame, and carbon fibers wound around upper and lower ends of the column 10, respectively. It is roughly constituted by the reinforcing member 13. Here, the earthquake-resistant wall 12 is integrated with the beam 11 by embedding a large number of anchor bars 14... Between the beam 11 when the post-cast concrete is cast. Between the earthquake-resistant wall 12 and the pillar 10,
It has a non-integrated structure with no anchor muscle interposed.
The carbon fiber reinforcing material 13 wound around the upper and lower ends of the column 10 has a length of 1.5 times or more of the column 10 from the upper or lower end of the column 10 toward the center. It is wound over. Further, a tension member 15 made of a PC steel wire or a PC steel rod is provided at the upper and lower ends of the above-mentioned earthquake-resistant wall 12 and the upper and lower ends of the column 10 around which the carbon fiber reinforcing material 13 is wound.
Is inserted and prestress is introduced.

【0010】以上の構成からなる既存建物の補強構造に
よれば、柱10と梁11との間に後打ちRC造の耐震壁
12を、上記梁11とはアンカー筋14…を介して一体
化させ、かつ上記柱10とは一体化させずに構築してい
るので、大地震が発生して柱10と梁11からなるフレ
ームが大変形した場合においても、図3および図4に示
した従来の補強構造のように、柱の側面に設けたアンカ
ー筋が抜け出して柱に断面欠損を生じるおそれが全く無
い。しかも、施工に際しては、柱10側のアンカー筋を
埋設する必要が無いために、当該補強工事が極めて容易
になる。
According to the reinforcing structure of an existing building having the above-described structure, a post-cast RC-made earthquake-resistant wall 12 is integrated between the column 10 and the beam 11, and the beam 11 is integrated with the above-mentioned beam 11 via the anchor bars 14. 3 and 4 are constructed without being integrated with the column 10, so that even if a large earthquake occurs and the frame formed of the column 10 and the beam 11 is greatly deformed, the conventional structure shown in FIGS. Unlike the reinforcing structure of the above, there is no possibility that the anchor streak provided on the side surface of the column will slip out and cause a cross-sectional defect in the column. In addition, at the time of construction, there is no need to bury anchor bars on the side of the pillar 10, so that the reinforcement work becomes extremely easy.

【0011】ここで、上記補強構造においては、耐震壁
12の柱10との対向辺が当該柱10と一体化されてい
ないため、柱10と梁11とからなるフレームとのトラ
ス効果による剪断力の伝達分が減少し、もっぱらアーチ
効果による剪断力の伝達が主となる。この結果、柱10
の上下端部においてアーチからの剪断力が局部的に大き
くなるが、当該上下端部には、補強強度に優れる炭素繊
維補強材13が巻回されて剛性が高められているので、
例えば地震力に起因して上記柱10に大きな面外応力が
加わった場合においても、これが剪断破壊することを効
果的に抑止することができる。加えて、後打ちRC造の
耐震壁12の上下部と上記柱10の上下部とに緊張材1
5を挿通して、プレストレスを導入しているので、上記
柱10の上下端部のみならず、耐震壁12の上下部にお
ける剛性も大幅に高めることができる。
Here, in the above-mentioned reinforcing structure, the side opposite to the column 10 of the earthquake-resistant wall 12 is not integrated with the column 10, so that the shear force due to the truss effect between the frame composed of the column 10 and the beam 11. , And the transmission of shear force mainly by the arch effect is mainly performed. As a result, pillar 10
Although the shearing force from the arch locally increases at the upper and lower ends, the carbon fiber reinforcing material 13 having excellent reinforcing strength is wound around the upper and lower ends to increase the rigidity.
For example, even when a large out-of-plane stress is applied to the column 10 due to seismic force, it is possible to effectively prevent the column 10 from shearing and breaking. In addition, the tension members 1 are attached to the upper and lower portions of the post-cast RC frame 12 and the upper and lower portions of the column 10.
5, the prestress is introduced, so that not only the upper and lower ends of the column 10 but also the rigidity of the upper and lower portions of the earthquake-resistant wall 12 can be greatly increased.

【0012】この結果、図5に示すように、図3に示し
た従来の補強を行なった構造における曲線(ロ) において
は、補強構造を行なわない既存建物の曲線(イ) と比較し
て、耐震壁3の増設によってフレームにおける剛性が増
し、よって直線となる弾性域の範囲が広がるものの、剪
断に至るまでの変形量が小さくなってしまうのに対し
て、図1に示した本実施形態による上記既存建物の補強
構造にあっては、荷重−変形曲線(ハ) に見られるよう
に、直線となる弾性域の範囲がさらに広くなると共に、
塑性変形から破断に至る荷重および変形能も高くなり、
よって大地震に対して耐力不足が予測される既存のRC
造の建物においても、充分な耐震性を付与することがで
きる。
As a result, as shown in FIG. 5, the curve (b) of the conventional reinforced structure shown in FIG. 3 is compared with the curve (a) of the existing building without the reinforced structure. Although the rigidity of the frame is increased by the addition of the earthquake-resistant wall 3, the range of the elastic region that is linear is widened, but the amount of deformation up to shearing is reduced, but according to the present embodiment shown in FIG. In the reinforcement structure of the above-mentioned existing building, as shown in the load-deformation curve (c), the range of the elastic region that is linear is further expanded,
The load and deformability from plastic deformation to fracture also increase,
Therefore, existing RC, which is expected to have a shortage of capacity against a large earthquake
Sufficient seismic resistance can be imparted even to a built building.

【0013】なお、上記実施の形態においては、柱10
の上下端部に炭素繊維補強材13を巻回した場合につい
てのみ説明したが、これに限定するものではなく、上記
炭素繊維補強材13に代えて、図2に示す他の実施形態
のように、柱10の少なくとも上下端部の外周に、モル
タル18を間に充填した平鋼板(鋼板部材)16を配設
して当該部分を補強してもよい。さらに、本発明は、R
C造やSRC造等の各種のコンクリート系既存建物の耐
震補強に適用することができ、この際に既存のRC柱に
おける剛性不足の程度によっては、柱の上下端部のみな
らず、その全長にわたって炭素繊維補強材もしくは鋼板
部材を巻回または配設してもよい。
In the above embodiment, the pillar 10
Although only the case where the carbon fiber reinforcing material 13 is wound around the upper and lower end portions has been described, the present invention is not limited to this. Instead of the carbon fiber reinforcing material 13 as in the other embodiment shown in FIG. A flat steel plate (steel plate member) 16 filled with a mortar 18 may be provided at least on the outer periphery of the upper and lower ends of the pillar 10 to reinforce the portion. Further, the present invention relates to R
It can be applied to the seismic retrofit of various concrete-based existing buildings such as C-building and SRC-building. At this time, depending on the degree of rigidity shortage of the existing RC columns, not only the upper and lower ends of the columns but also the entire length A carbon fiber reinforcing material or a steel plate member may be wound or provided.

【0014】[0014]

【発明の効果】以上説明したように、請求項1〜3のい
ずれかに記載の発明によれば、大地震が発生して柱と梁
からなるフレームが大変形した場合においても、柱が剪
断破壊することを効果的に抑止することができ、よって
大地震に対して耐力不足が予測される既存のコンクリー
ト系建物においても、充分な耐震性を付与することがで
きるとともに、補強工事が極めて容易になる。ここで、
柱の補強としては、請求項2に記載の発明にように、上
記炭素繊維補強材に代えて鋼板部材を配設してもよく、
さらに請求項3に記載の発明のように、後打ちRC造の
壁の少なくとも上下部と上記柱の上下部とに緊張材を挿
通してプレストレスを導入すれば、上記柱の柱頭および
柱脚のみならずRC造の壁の上下部における剛性も大幅
に高めることができるといった効果が得られる。
As described above, according to any one of the first to third aspects of the present invention, even when a large earthquake occurs and the frame including the columns and the beams is greatly deformed, the columns are not sheared. Destruction can be effectively suppressed, so that existing concrete buildings that are expected to have insufficient strength against large earthquakes can be provided with sufficient earthquake resistance, and reinforcement work is extremely easy become. here,
As the reinforcement of the column, a steel plate member may be provided instead of the carbon fiber reinforcing material as in the invention according to claim 2,
Further, as in the invention as set forth in claim 3, if a prestress is introduced by inserting a tension material into at least the upper and lower portions of the post-cast RC wall and the upper and lower portions of the column, the column capital and the column base of the column are provided. In addition, the rigidity of the upper and lower portions of the RC wall can be significantly increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の既存建物の補強構造の一実施形態を示
す正面図である。
FIG. 1 is a front view showing an embodiment of a reinforcement structure for an existing building of the present invention.

【図2】本発明の他の実施形態を示す柱上下端部の断面
図である。
FIG. 2 is a sectional view of the upper and lower ends of a pillar showing another embodiment of the present invention.

【図3】従来の既存建物の補強構造を示す正面図であ
る。
FIG. 3 is a front view showing a conventional existing building reinforcing structure.

【図4】図3の補強構造が大地震を受けた際のアンカー
筋の抜け出し状態を示す要部の縦断面図である。
4 is a longitudinal sectional view of a main part of the reinforcement structure of FIG. 3 showing a state in which anchor bars come off when a large earthquake occurs.

【図5】図1の補強構造の効果を示す荷重−変形曲線図
である。
FIG. 5 is a load-deformation curve showing the effect of the reinforcing structure of FIG.

【符号の説明】[Explanation of symbols]

10 RC造の柱 11 RC造の梁 12 耐震壁(後打ちRC造の壁) 13 炭素繊維補強材 14 アンカー筋 16 平鋼板(鋼板部材) Reference Signs List 10 RC column 11 RC beam 12 Earthquake-resistant wall (post-cast RC wall) 13 Carbon fiber reinforcement 14 Anchor bar 16 Flat steel plate (steel plate member)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 既存のコンクリート系の建物に対する補
強構造であって、上記建物の柱の少なくとも上下端部
に、炭素繊維補強材を巻回して当該部分を補強するとと
もに、上記柱と梁との間に後打ち鉄筋コンクリート造の
壁を、上記梁とアンカー筋を介して一体化させ、かつ上
記柱とは一体化させずに構築してなることを特徴とする
既存建物の補強構造。
1. A reinforcing structure for an existing concrete building, wherein a carbon fiber reinforcing material is wound around at least upper and lower ends of columns of the building to reinforce the portion, and the column and the beam are connected to each other. A reinforcing structure for an existing building, wherein a post-reinforced reinforced concrete wall is interposed between the beam and the anchor bar, and is not integrated with the pillar.
【請求項2】 上記建物の柱の少なくとも上下端部に、
上記炭素繊維補強材に代えて鋼板部材を配設して当該部
分を補強したことを特徴とする請求項1に記載の既存建
物の補強構造。
2. At least at the upper and lower ends of the pillars of the building,
The reinforcing structure for an existing building according to claim 1, wherein a steel plate member is provided instead of the carbon fiber reinforcing material to reinforce the portion.
【請求項3】 上記後打ち鉄筋コンクリート造の壁の少
なくとも上下部と上記柱とに緊張材を挿通してプレスト
レスを導入したことを特徴とする請求項1または2に記
載の既存建物の補強構造。
3. The reinforcing structure for an existing building according to claim 1, wherein a tension member is inserted into at least the upper and lower portions of the post-cast reinforced concrete wall and the column to introduce prestress. .
JP8199811A 1996-07-10 1996-07-10 Reinforcing structure of existing building Pending JPH1025909A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8199811A JPH1025909A (en) 1996-07-10 1996-07-10 Reinforcing structure of existing building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8199811A JPH1025909A (en) 1996-07-10 1996-07-10 Reinforcing structure of existing building

Publications (1)

Publication Number Publication Date
JPH1025909A true JPH1025909A (en) 1998-01-27

Family

ID=16414039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8199811A Pending JPH1025909A (en) 1996-07-10 1996-07-10 Reinforcing structure of existing building

Country Status (1)

Country Link
JP (1) JPH1025909A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101016405B1 (en) 2010-11-03 2011-02-18 (주)다음기술단 Structure earthquake-proof reinforcing method
KR101045821B1 (en) 2010-12-08 2011-07-01 주식회사 전양건설 Construction method of brace assembly for seismic retrofitting

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101016405B1 (en) 2010-11-03 2011-02-18 (주)다음기술단 Structure earthquake-proof reinforcing method
KR101045821B1 (en) 2010-12-08 2011-07-01 주식회사 전양건설 Construction method of brace assembly for seismic retrofitting

Similar Documents

Publication Publication Date Title
CN108487461A (en) Precast prestressed concrete frame bean column node with additional bar and sleeve
JP2008266910A (en) Projection structure of anchorage or deviator of tendon, and construction method therefor
JP5816514B2 (en) Outframe reinforcement method and its reinforcement structure
JP2005054532A (en) Reinforcing structure of concrete structure, and method of reinforcing concrete structure
CN110924522A (en) Steel plate interface connecting structure and connecting method for reinforced concrete beam and column
JP2003227236A (en) Permanent and emergent aseismatic reinforcement method for column with wall
KR102408922B1 (en) Seismic retrofit structure using PC panels
JPH1025909A (en) Reinforcing structure of existing building
JP2004263497A (en) Semi-rigid connection structure for foundation of structure
JP2011084886A (en) Seismic strengthening structure
CN112012356B (en) Embedded shear-energy consumption dual-function sleeve reinforced beam-column joint
JPH09151611A (en) Reinforcing method for reinforced concrete column
JP2729129B2 (en) Core pillar
JPH03191149A (en) Structure for joining steel pipe column and slab in flat slab structure
JP3759995B2 (en) Concrete structure
JP4933229B2 (en) Seismic reinforcement structure
JP2009144500A (en) Shearing reinforcement structure for column-beam joint part of uppermost story
JP5095967B2 (en) Joint structure of column beam joint
JP2762906B2 (en) RC frame
JPH0960194A (en) Precast concrete structure
JP2536361B2 (en) Column-beam joint structure of RC structure
JPH0718877A (en) Method for preventing wall joint from cracking
JP2000170263A (en) Panel point structure of steel-concrete composite structure
JPS61179949A (en) Reinforced concrete pillar
JPH09324543A (en) Reinforcing structure of existing building

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051206

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060404