KR101016405B1 - Structure earthquake-proof reinforcing method - Google Patents

Structure earthquake-proof reinforcing method Download PDF

Info

Publication number
KR101016405B1
KR101016405B1 KR1020100108699A KR20100108699A KR101016405B1 KR 101016405 B1 KR101016405 B1 KR 101016405B1 KR 1020100108699 A KR1020100108699 A KR 1020100108699A KR 20100108699 A KR20100108699 A KR 20100108699A KR 101016405 B1 KR101016405 B1 KR 101016405B1
Authority
KR
South Korea
Prior art keywords
reinforcement
seismic
steel wire
earthquake
reinforcing
Prior art date
Application number
KR1020100108699A
Other languages
Korean (ko)
Inventor
박철
민대홍
Original Assignee
(주)다음기술단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)다음기술단 filed Critical (주)다음기술단
Priority to KR1020100108699A priority Critical patent/KR101016405B1/en
Application granted granted Critical
Publication of KR101016405B1 publication Critical patent/KR101016405B1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/021Bearing, supporting or connecting constructions specially adapted for such buildings
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D27/00Foundations as substructures
    • E02D27/32Foundations for special purposes
    • E02D27/34Foundations for sinking or earthquake territories
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/027Preventive constructional measures against earthquake damage in existing buildings
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/14Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate against other dangerous influences, e.g. tornadoes, floods

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Environmental & Geological Engineering (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • General Engineering & Computer Science (AREA)
  • Working Measures On Existing Buildindgs (AREA)

Abstract

PURPOSE: An earthquake-resistant performance reinforcing method of a structure is provided to suppress the destroying and breaking down of a structure due to earthquake or typhoon by integrating a H-beam and the established building. CONSTITUTION: An earthquake-resistant performance reinforcing method of a structure is composed like next. A reinforcement body(110) is buried in the foundation of a structure. A reinforcing material, a H-beam, is integrally formed on the structure by using an anchor block(111). The top of the unified H-beam is interlinked with a steel wire(120).

Description

구조물의 내진보강공법{Structure earthquake-proof reinforcing method}Structure earthquake-proof reinforcing method

본 발명은 구조물의 내진보강공법에 관한 것으로, 기존의 노후 콘크리트 구조물에 내진성능 보강하여 지진이나 태풍 등에 의해 구조물이 크게 진동되더라도 콘크리트 구조물이 파손이나 붕괴를 억제할 수 있도록 하는 구조물의 내진보강공법에 관한 것이다.
The present invention relates to a seismic reinforcing method of the structure, to the seismic reinforcement method of the structure to be able to suppress the damage or collapse of the concrete structure even if the structure is greatly vibrated by earthquake or typhoon by reinforcing the seismic performance of the existing aging concrete structure It is about.

최근 이웃 일본을 비롯하여 대만, 인도, 터키 등 세계 여러 나라에서 강진으로 인해 많은 인명피해와 교량 등의 국가 기반시설의 피해가 속출하고 있는 실정이다. Recent earthquakes in many countries around the world, including neighboring Japan, Taiwan, India, and Turkey, have caused damage to many national infrastructures such as human damage and bridges.

지진에 대하여 대체적으로 안전지대라고 생각되었던 우리나라에서도 1978년 발생한 홍성지진, 1982년에 발생한 사리원지진, 최근 1996년의 진도 약 4.0 이상의 경주 영월지진 등의 연이은 중, 소규모의 지진발생 뿐만 아리라 백두산의 화산의 폭발 등으로 한반도도 지진에 대해서 안전한 지역이 아니라는 인식이 일어나고 있다. In Korea, which was generally considered a safe zone for earthquakes, the volcanic mountains of Mt. Aribaek, as well as a series of small and medium-sized earthquakes, including the Hongseong Earthquake in 1978, the Sariwon Earthquake in 1982, and the Yeongwol Earthquake in Gyeongju, Korea, with a magnitude of more than 4.0 in 1996. Due to the explosion, the perception of the Korean Peninsula is not safe for earthquakes.

더욱이 학교나 관공서 등의 공공시설물과 빌라나 저층빌딩 등의 일반시설물은 모르타르 등으로 기둥과 슬래브를 형성하고 이렇게 형성된 좌우 기둥과 상하 슬래브 사이에 조적블록을 쌓아 순차적으로 적층한 형태가 보편적인 것으로, 시공된 대부분의 공공 시설물이나 일반시설물은 지진에 견딜 수 있는 내진 설계가 되어 있지 않은 상태이다 In addition, public facilities such as schools and government offices, and general facilities such as villas and low-rise buildings are commonly formed by forming mortars and slabs and sequentially stacking masonry blocks between the left and right pillars and the upper and lower slabs. Most public and general facilities that have been constructed are not designed to be earthquake-resistant to withstand earthquakes

따라서 이러한 종래의 각종 시설물은 태풍이나 지진에 무방비로 노출되어 자연재해의 발생 시 심각한 피해가 우려되므로 시급한 대책이 절실하게 요구되어 왔다.
Therefore, these various conventional facilities have been exposed to typhoons and earthquakes unprotected, and serious damage is a concern when a natural disaster occurs, so urgent measures are urgently required.

본 발명의 주목적은 상기와 같은 종래의 실정을 감안하여 기존 구조물에 H-빔을 일체화시켜 내진 성능을 향상시킴으로써 지진이나 태풍 등으로 인하여 구조물이 파손이나 붕괴되는 것을 억제하도록 하는 구조물의 내진보강공법을 제공하는 데 있다.The main object of the present invention is to improve the seismic performance by integrating the H-beam to the existing structure in consideration of the conventional situation as described above to improve the seismic reinforcement method of the structure to suppress the damage or collapse of the structure due to earthquake or typhoon To provide.

본 발명의 다른 목적은 기존 구조물에 일체화된 H-빔의 상부를 강선으로 연결하되 강성을 인장하여 고유진동수의 차이로 인한 위상각이 달라져 내진 저항력이 증대되도록 하는 구조물의 내진보강공법을 제공하는 데 있다.Another object of the present invention is to provide a seismic reinforcement method of the structure to connect the upper portion of the H-beam integrated in the existing structure with a steel wire to increase the seismic resistance by varying the phase angle due to the difference in natural frequency by tensioning the rigidity have.

본 발명의 다른 목적은 구조물과 H-빔 사이에 댐퍼를 밀착 설치하여 하중에너지를 흡수하도록 하는 구조물의 내진보강공법을 제공하는 데 있다.Another object of the present invention is to provide a seismic reinforcing method for the structure to absorb the load energy by installing a damper in close contact between the structure and the H-beam.

본 발명의 다른 목적은 구조물과 H-빔을 랩핑하여 일체화시키므로 하중에너지에 대하여 내진 저항력을 향상시킬 수 있도록 하는 구조물의 내진보강공법을 제공하는 데 있다.
Another object of the present invention is to provide a seismic reinforcing method for the structure to improve the seismic resistance to the load energy because it is integrated by wrapping the structure and the H-beam.

상기한 목적을 달성하기 위하여 본 발명의 구조물의 내진보강공법은 구조물의 기초에 매설하거나 지반에 매립하여 세워 설치하는 보강체 설치단계와, 상기 보강체 설치단계에서 구조물의 기초에 앵커블록으로 H-빔을 결합하는 보강체 일체화단계와, 상기 보강체 일체화 단계에서 일체화된 H-빔의 상부를 강선으로 연결하는 보강체 수평연결단계, 및 상기 보강체 수평연결단계에서 강선을 인장하여 긴장시키는 강선 긴장단계를 포함하여 구성함을 그 기술적 구성상의 기본 특징으로 한다.
Seismic reinforcement method of the structure of the present invention to achieve the above object is a reinforcement installation step of laying on the foundation of the structure or buried in the ground and installed, and the anchor block on the foundation of the structure in the reinforcement installation step H- Reinforcement integration step of combining the beam, reinforcement horizontal connection step of connecting the upper portion of the H-beam integrated in the reinforcement integration step with a steel wire, and wire tension to tension and tension the steel wire in the reinforcement horizontal connection step The configuration including the steps is a basic feature of the technical configuration.

본 발명의 구조물의 내진보강공법은 내진 설계를 반영하지 못한 기존의 구조물 기초에 앵커블록으로 보강체를 견고하게 세워 설치하여 일체화시킴으로 종합적 거동으로 지진이나 태풍 등에 효과적으로 대비할 수 있도록 하는 것입니다,The seismic reinforcement method of the structure of the present invention is to install the reinforcement firmly with an anchor block on the foundation of the existing structure, which does not reflect the seismic design, so that it can effectively prepare for earthquakes or typhoons as a comprehensive behavior.

특히 보강체인 H-빔의 상부를 강선으로 상호 연결하여 긴장시킴으로써 구조물과 서로 다른 별도의 보강체가 형성되도록 하여 고유진동수의 차이로 위상각이 상이하도록 유도한다. 즉, 구조물에 인접한 새로운 보강체(H-빔)를 제작하여 구조물과 보강체(H-빔)의 고유진동수 및 위상각에 차이를 발생시켜 상호변위 및 가속도를 감쇄시키도록 한다. 이러한 위상각 및 고유진동수는 해당 구조물에 대해 내진해석을 실시하고, 가장 효과적으로 상쇄할 수 있는 보강체를 내진해석을 통해 결정하도록 하는 것이다. 또는 구조물과 보강체를 보강섬유판으로 랩핑하여 보강체와 구조물을 일체화시켜 하중에너지에 대하여 내진 저항력을 향상시킬 수 있도록 할 뿐만 아니라 구조물과 보강체 사이에 댐퍼를 설치하여 상부에서 전달되는 하중에너지를 효과적으로 흡수할 수 있도록 하여 구조물을 안전하게 보호할 수 있도록 함으로써, 기존의 노후화된 각종 건축물을 효과적으로 보강하여 지진이나 태풍 등으로 인하여 구조물이 크게 진동되더라도 파손이나 붕괴되는 것을 효과적으로 억제할 수 있도록 하는 것이다.
In particular, the upper part of the H-beam, which is a reinforcing body, is connected to each other by a steel wire so that a structure and a separate reinforcing body are formed, thereby inducing a phase angle different from the natural frequency. That is, a new reinforcement (H-beam) adjacent to the structure is fabricated to generate a difference in natural frequencies and phase angles of the structure and the reinforcement (H-beam) to reduce mutual displacement and acceleration. These phase angles and natural frequencies are to be subjected to the seismic analysis of the structure and to determine the reinforcement that can be most effectively offset through the seismic analysis. Alternatively, the structure and the reinforcement can be wrapped with reinforcing fiberboard to integrate the reinforcement and the structure to improve the seismic resistance against load energy, and a damper is installed between the structure and the reinforcement to effectively absorb the load energy transmitted from the top. By absorbing so that the structure can be safely protected, it is to effectively reinforce the existing aging of various buildings to effectively suppress the damage or collapse even if the structure is greatly vibrated by earthquakes or typhoons.

도 1 은 본 발명에 따른 구조물의 내진보강공법을 설명하기 위한 사시도.
도 2 는 본 발명에 따른 구조물의 내진보강공법을 설명하기 위한 정면도.
도 3 은 본 발명에 따른 구조물의 내진보강공법을 설명하기 위한 구조물과 보강체의 변위감쇄에 대한 원리를 나타낸 것으로,
a)도는 구조물을 나타낸 것이고,
b)도는 보강체를 나타낸 것이며,
c)도는 구조물과 보강체의 일체화 상태를 나타낸 것이다.
도 4 는 본 발명에 따른 내진보강공법의 다른 실시 예를 설명하기 위한 정면도.
도 5 는 본 발명에 따른 내진보강공법의 다른 실시 예를 설명하기 위한 단면도.
도 6 은 본 발명에 따른 내진보강공법의 다른 실시 예를 설명하기 위한 정면도.
1 is a perspective view for explaining the seismic reinforcement method of the structure according to the present invention.
Figure 2 is a front view for explaining the seismic reinforcement method of the structure according to the present invention.
Figure 3 shows the principle of the displacement attenuation of the structure and the reinforcement for explaining the seismic reinforcement method of the structure according to the present invention,
a) shows a structure,
b) shows the reinforcement,
c) shows the integrated state of the structure and the reinforcement.
Figure 4 is a front view for explaining another embodiment of the seismic reinforcing method according to the present invention.
Figure 5 is a cross-sectional view for explaining another embodiment of the seismic reinforcing method according to the present invention.
Figure 6 is a front view for explaining another embodiment of the seismic reinforcing method according to the present invention.

이하, 첨부된 도면을 참조하면서 본 발명의 실시 예를 설명하면 다음과 같다.Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

도 1 내지 도 6 에 나타낸 바와 같이, 구조물의 내진보강공법은 구조물(100)에 대해 내진해석을 실시하되 가장 효과적으로 에너지를 상쇄할 수 있는 보강체(110)를 내진해석으로 결정하는 보강체 결정단계와, 상기 보강체 결정단계에서 결정된 보강체(110)를 구조물(100)의 기초에 매설하거나 지반에 매립하여 설치하는 보강체(110) 설치단계와, 상기 보강체(110) 설치단계에서 설치되는 보강체(110)인 H-빔을 구조물(100)에 앵커블록(111)으로 결합하는 보강체(110) 일체화단계와, 상기 보강체(110)일체화 단계에서 일체화된 H-빔의 상부를 강선(120)으로 연결하는 보강체 수평연결단계, 및 상기 보강체(110) 수평연결단계에서 강선(120)을 인장하는 강선(120) 긴장단계를 포함하여 구성한다.As shown in Figures 1 to 6, the seismic reinforcement method of the structure is subjected to the seismic analysis for the structure 100, but the reinforcement determination step to determine the reinforcement 110 that can effectively cancel the energy to the seismic analysis And, the reinforcement 110 is determined in the reinforcement determination step is installed in the reinforcement 110 is installed in the foundation of the structure 100, or embedded in the ground and installed in the reinforcement 110 installation step Integrating the reinforcement 110 to the H-beam that is the reinforcement 110 to the structure 100 to the anchor block 111, and the upper portion of the H-beam integrated in the reinforcement 110 integration step It comprises a reinforcing body horizontal connection step to connect to 120, and the steel wire 120 tension step to tension the steel wire 120 in the reinforcement 110 horizontal connection step.

상기 보강체(110) 결정단계는 보강체(110)의 위상각 및 고유진동수를 결정하는 것으로, 해당 구조물(100)에 대하여 이상적인 통상의 방법으로 내진해석을 실시하고, 가장 효과적으로 위상각 및 고유진동수를 반응하여 지진이나 태풍에 따른 각종 에너지를 상쇄시킬 수 있도록 보강체(110)를 설계한다.The step of determining the reinforcement 110 is to determine the phase angle and the natural frequency of the reinforcement 110, to perform the seismic analysis in the ideal conventional method for the structure 100, the most effective phase angle and natural frequency The reinforcement 110 is designed to offset the various energy due to the earthquake or typhoon in response to.

상기 보강체(110)설치단계는 기존 시설의 구조물(100) 기초에 앵커블록(111)을 설치하여 H-빔의 하부를 견고하게 결합하여 일체화시키되, 이때 H-빔의 일측면이 구조물(110)의 대응면에 밀착되게 하여 일체화가 유리하도록 유도함이 바람직하다.The reinforcement 110 installation step is to install the anchor block 111 on the base of the structure 100 of the existing facility to firmly combine the lower portion of the H-beam, where one side of the H-beam structure 110 It is preferable to induce the integration to be advantageous by bringing it into close contact with the corresponding surface of

상기 보강체(110) 일체화단계는 기존의 구조물에 보강섬유판(130)으로 랩핑하여 일체화 할 수 있는 것으로 랩핑용 소재를 한정하지 것은 아니며 다양한 랩핑용 소재를 선택적으로 사용할 수 있는 것이다. 나아가, 보강체(110) 일체화단계는 보강체(100)와 기둥 사이에 댐퍼(120)를 상호 연결하여 결합하므로 구조물(100)에 가해지는 하중에너지를 다양한 댐퍼(120)의 슬라이딩이나 절곡 등 작용을 통하여 효과적으로 흡수할 수 있도록 할 수도 있다.The reinforcement 110 integration step is to be able to integrate by wrapping the reinforcing fiber plate 130 to the existing structure is not limited to the material for lapping, it is to be able to selectively use a variety of wrapping material. In addition, the reinforcement 110 integration step is connected to the damper 120 between the reinforcement 100 and the pillars are connected to each other, so that the load energy applied to the structure 100 acts by sliding or bending the various dampers 120. Can also be effectively absorbed through.

상기 보강체(110) 수평연결단계는 대응되는 H-빔의 상부에 강선(120)의 양단을 각각 결합하여 연결하므로 수평에너지를 효과적으로 흡수할 수 있도록 한다.In the horizontal connection step of the reinforcement 110, the both ends of the steel wire 120 are respectively coupled to the upper portion of the corresponding H-beam to effectively absorb the horizontal energy.

상기 강선(120) 긴장단계는 H-빔(110)의 상부를 연결한 강선(120)의 양단을 인장하여 긴장시키고 이로 인하여 고유진동수 차이로 지진 등에 따른 충격파를 효과적으로 상쇄할 수 있도록 한다.The tensioning step of the steel wire 120 tensions both ends of the steel wire 120 connecting the upper portion of the H-beam 110, thereby effectively canceling the shock wave due to the earthquake due to the difference in natural frequency.

이러한 본 발명은 내진 설계를 반영하지 못한 기존의 다양한 구조물(100)의 기초에 보강체(110)인 H-빔을 수직으로 세워 견고하게 결합하되 앵커블록(111)으로 H-빔을 결합하여 일체화시켜 종합적 거동으로 지진이나 태풍 등에 대비할 수 있도록 한다.The present invention is firmly coupled to the H-beam that is the reinforcement 110 vertically on the basis of the existing various structures 100 that do not reflect the seismic design, but combines the H-beam with the anchor block 111 to integrate It is to be prepared for an earthquake or typhoon due to its comprehensive behavior.

더욱이, 보강체의 상부를 강선(120)으로 상호 연결하여 긴장시킴으로써 구조물(100)과 서로 다른 별도의 보강체가 형성되도록 하는 것으로, 고유진동수의 차이로 위상각이 상이하여 내진 저항력이 향상되도록 하는 것이다.Furthermore, by connecting the upper part of the reinforcement with the steel wire 120 and tensioning the structure 100 and a separate reinforcement from each other, the seismic resistance is improved by different phase angles due to differences in natural frequencies. .

나아가, 구조물(100)의 기둥 등과 보강체(110)를 랩핑 장치로 랩핑하되 둘레에 따라 수평방향으로 랩핑하여 보강체(110)와 기둥 등을 일체화시킴으로써 지진이나 태풍 등에 의한 하중에너지에 대하여 내진 저항력을 향상시킬 수 있도록 하는 것이다.Further, by wrapping the pillars and the reinforcement 110 of the structure 100 with a lapping device, by lapping in the horizontal direction along the circumference to integrate the reinforcement 110 and the pillars, the seismic resistance against the load energy due to earthquakes or typhoons, etc. It is to help improve.

더불어 구조물(100)의 기둥 등과 보강체(110) 사이에는 댐퍼(112)를 설치함으로써 지진이나 태풍 등으로 인하여 상부에서 전달되는 하중에너지를 댐퍼(112)가 슬라이딩 작용이나 절곡 작용 등으로 흡수할 수 있도록 하여 구조물(100)을 안전하게 보호할 수 있도록 하는 것이다.In addition, by installing the damper 112 between the pillar and the reinforcement 110 of the structure 100, the damper 112 can absorb the load energy transmitted from the upper portion due to the earthquake or typhoon due to the sliding action or the bending action. It is to ensure that the structure 100 is safe.

따라서 본 발명의 구조물의 내진보강공법은 기존의 노후화된 각종 건축물을 효과적으로 보강하여 지진이나 태풍 등으로 구조물(100)이 크게 진동되더라도 파손이나 붕괴는 것을 효과적으로 방지할 수 있도록 하는 것이다.Therefore, the seismic reinforcing method of the structure of the present invention effectively reinforces various existing buildings to effectively prevent damage or collapse even when the structure 100 is greatly vibrated by an earthquake or typhoon.

특히 구조물(100)과 보강체(110)에 대해 내진해석을 실시하여 가장 효과적으로 상쇄할 수 있는 보강체(110)를 결정하도록 하는 것으로 구조물(100)에 일체화시키는 보강체(110)를 제작하여 구조물(100)과 보강체(110)의 고유진동수 및 위상각에 차이를 발생시켜 상호변위 및 가속도를 감쇄시키도록 하는 것이다.In particular, the structure 100 and the reinforcement 110 by performing a seismic analysis to determine the reinforcement 110 that can be most effectively offset by making a reinforcement 110 to integrate the structure 100 to the structure It is to attenuate the mutual displacement and acceleration by generating a difference in the natural frequency and the phase angle of the 100 and the reinforcement 110.

더욱이 이러한 본 발명은 내진설계가 반영되지 않는 저층의 조적조 구조물 등 다양한 구조물(100)을 효과적으로 내진 보강할 수 있는 것이다.
In addition, the present invention can effectively seismic reinforcement of various structures 100, such as low-rise masonry structure is not reflected seismic design.

100 : 구조물 110 : 보강체
111 : 앵커블록 112 : 댐퍼
120 : 강선 130 : 보강섬유판
100: structure 110: reinforcement
111: anchor block 112: damper
120: steel wire 130: reinforcing fiber board

Claims (3)

구조물(100)에 대해 내진해석을 실시하되 가장 효과적으로 상쇄할 수 있는 보강체(110)를 내진해석으로 결정하는 보강체(110) 결정단계와,
상기 보강체(110) 결정단계(110)에서 결정된 보강체(110)를 구조물(100)의 기초에 매설하거나 지반에 매립하여 설치하는 보강체(110) 설치단계와,
상기 보강체(110)설치단계에서 구조물(100)의 기초에 앵커블록(111)으로 H-빔을 결합하는 보강체(110) 일체화단계와,
상기 보강체 일체화 단계에서 일체화된 H-빔의 상부를 강선(120)으로 연결하는 보강체(110) 수평연결단계, 및
상기 보강체(110) 수평연결단계에서 강선(120)을 인장하여 긴장상태를 유지시키는 강선(120) 긴장단계를 포함하여 구성한 것을 특징으로 하는 구조물의 내진보강공법.
Determination step of the reinforcement 110 to determine the seismic analysis of the reinforcement 110 that can be most effectively offset, but the seismic analysis for the structure 100,
A reinforcement 110 for installing the reinforcement 110 determined in the determination step 110 of the reinforcement 110 or installing the reinforcement 110 embedded in the ground or embedded in the ground;
In the step of installing the reinforcement 110 and the reinforcement 110 integration step of coupling the H-beam to the anchor block 111 on the base of the structure 100,
A horizontal connection step of the reinforcement 110 connecting the upper portion of the H-beam integrated in the reinforcement integration step with the steel wire 120, and
Seismic reinforcement method of the structure characterized in that it comprises a steel wire 120 tension step to maintain the tension state by tensioning the steel wire 120 in the horizontal connection step of the reinforcement (110).
제 1 항에 있어서,
상기 보강체(110) 일체화단계는 구조물(100)과 보강체(110)를 보강섬유판(130)으로 수평 랩핑하여 하중에너지에 대한 내진 저항력을 향상시킬 수 있도록 구성한 것을 특징으로 하는 구조물의 내진보강공법.
The method of claim 1,
The reinforcing body 110 integration step is the seismic reinforcement method of the structure, characterized in that configured to improve the seismic resistance to load energy by horizontally wrapping the structure 100 and the reinforcement 110 with a reinforcing fiber plate 130 .
제 1 항에 있어서,
상기 보강체 일체화단계는 보강체(110)와 구조물(100) 사이에 댐퍼(120)를 상호 연결하여 결합하므로 구조물(100)에 가해지는 하중에너지를 효과적으로 흡수할 수 있도록 구성한 것을 특징으로 하는 구조물의 내진보강공법.
The method of claim 1,
The reinforcing unit integration step of the structure, characterized in that configured to effectively absorb the load energy applied to the structure 100 because the damper 120 is coupled to each other between the reinforcement 110 and the structure 100 Seismic reinforcement method.
KR1020100108699A 2010-11-03 2010-11-03 Structure earthquake-proof reinforcing method KR101016405B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100108699A KR101016405B1 (en) 2010-11-03 2010-11-03 Structure earthquake-proof reinforcing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100108699A KR101016405B1 (en) 2010-11-03 2010-11-03 Structure earthquake-proof reinforcing method

Publications (1)

Publication Number Publication Date
KR101016405B1 true KR101016405B1 (en) 2011-02-18

Family

ID=43777735

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100108699A KR101016405B1 (en) 2010-11-03 2010-11-03 Structure earthquake-proof reinforcing method

Country Status (1)

Country Link
KR (1) KR101016405B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1025909A (en) 1996-07-10 1998-01-27 Taisei Corp Reinforcing structure of existing building
KR20070036244A (en) * 2005-09-29 2007-04-03 쌍용건설 주식회사 Pit working method forr undergrund floor railroad operation of elevator
JP2007177531A (en) 2005-12-28 2007-07-12 Mitani Sekisan Co Ltd Aseismatic reinforcing structure of existing building
KR100767952B1 (en) 2005-08-26 2007-10-17 이창남 Pass way construction method below the existing foundation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1025909A (en) 1996-07-10 1998-01-27 Taisei Corp Reinforcing structure of existing building
KR100767952B1 (en) 2005-08-26 2007-10-17 이창남 Pass way construction method below the existing foundation
KR20070036244A (en) * 2005-09-29 2007-04-03 쌍용건설 주식회사 Pit working method forr undergrund floor railroad operation of elevator
JP2007177531A (en) 2005-12-28 2007-07-12 Mitani Sekisan Co Ltd Aseismatic reinforcing structure of existing building

Similar Documents

Publication Publication Date Title
Arya et al. Guidelines for earthquake resistant non-engineered construction
Clemente et al. Seismically isolated buildings in Italy: State-of-the-art review and applications
De Domenico et al. Seismic retrofitting of confined masonry-RC buildings: The case study of the university hall of residence in Messina, Italy
JP4647714B1 (en) Buildings using walled columns with seismic prestressing
Formisano et al. Seismic retrofitting by FRP of a school building damaged by Emilia-Romagna earthquake
CN102943572B (en) Single-floor masonry residential building steel-frame canopy guard structure and construction method thereof
Clemente et al. Seismic isolation in masonry buildings: Technological and economic issues
KR102192782B1 (en) Seismic isolation rubber pad for micro-pile and construction method of micro-pile using the same
KR101016405B1 (en) Structure earthquake-proof reinforcing method
JP4089717B2 (en) Earthquake-proof basement structure and its construction method
CN110331794A (en) A kind of masonry or reinforced concrete structure of antidetonation
JP3297413B2 (en) Damping frame with friction damping mechanism
Mendis et al. Performance and Retrofitting of Unreinforced Masonry Buildings against Natural Disasters–A Review Study
KR20130141892A (en) Src aseismatic structure and method using steel rod
JP5270739B2 (en) Seismic isolation structure for floor slabs
Shrestha Reconnaissance Investigation on the damages of the 2015 Gorkha Earthquake, Nepal
Vlad et al. Behavior of dwellings during strong earthquakes in Romania
JP2016505733A (en) Seismic building system
KR100736869B1 (en) A shock absorption ground structure
JP2006274733A (en) Triple tube structure and vibration control system thereof
JP2015206227A (en) Method for introducing ps into constructed building and building reinforced by the same
CN216380070U (en) Shockproof system with house shock insulation ring beam and shock attenuation stock
Iskhakov et al. Using seismic isolation systems for retrofitting historic buildings
Parvathi A Review of Construction Techniques in Earthquake Engineering
Iordachescu et al. Seismic rehabilitation of Bucharest City Hall building through base isolation method

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee