JP4933229B2 - Seismic reinforcement structure - Google Patents

Seismic reinforcement structure Download PDF

Info

Publication number
JP4933229B2
JP4933229B2 JP2006314306A JP2006314306A JP4933229B2 JP 4933229 B2 JP4933229 B2 JP 4933229B2 JP 2006314306 A JP2006314306 A JP 2006314306A JP 2006314306 A JP2006314306 A JP 2006314306A JP 4933229 B2 JP4933229 B2 JP 4933229B2
Authority
JP
Japan
Prior art keywords
reinforcing
reinforcement structure
seismic reinforcement
existing building
tendon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006314306A
Other languages
Japanese (ja)
Other versions
JP2008127856A (en
Inventor
侑弘 五十殿
光夫 真嶋
玄之 荒木
智文 関口
▲徳▼博 長尾
昇孝 菅野
恭哉 田中
則光 林田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2006314306A priority Critical patent/JP4933229B2/en
Publication of JP2008127856A publication Critical patent/JP2008127856A/en
Application granted granted Critical
Publication of JP4933229B2 publication Critical patent/JP4933229B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Working Measures On Existing Buildindgs (AREA)

Description

この発明は、既存建物の耐震強度を向上させるために付設する耐震補強構造に関するものである。   The present invention relates to a seismic reinforcement structure provided to improve the seismic strength of existing buildings.

従来、耐震補強構造は既存建物の耐震強度を向上させるために、フレームの構面内や構面外にブレースまたはブレースを含んだ構造が種々提案されている。例えば、特許文献1に開示されたものは、柱と梁から成るフレームに一部に降伏部を有するブレースを取り付けた構造であり、震災時に降伏して役目を終えた降伏部材のみを交換可能としたものである。また、引用文献2に開示されたものは、補強柱と補強基礎を緊張材を介して緊張した構造である。また、引用文献3に開示されたものは、PCアウトフレームを既存建物の構面に設置して耐震強度を増すものである。
特開平11−61982号公報 特開平2005−163432号公報 「プレストレストコンクリート」Vol.48,No.4,July 2006、P62-65、技報堂出版株式会社、社団法人プレストレストコンクリート技術協会
Conventionally, various structures including braces or braces have been proposed for the seismic reinforcement structure in order to improve the seismic strength of existing buildings. For example, the one disclosed in Patent Document 1 is a structure in which a brace having a yielding part is attached to a frame composed of columns and beams, and it is possible to replace only the yielding member that has surrendered in the event of an earthquake and finished its role. It is what. Moreover, what was disclosed by the cited reference 2 is the structure which tensioned the reinforcement pillar and the reinforcement foundation via the tension material. Moreover, what was disclosed by the cited reference 3 installs a PC out frame in the construction surface of the existing building, and increases seismic strength.
Japanese Patent Laid-Open No. 11-61982 Japanese Patent Laid-Open No. 2005-163432 "Prestressed concrete" Vol.48, No.4, July 2006, P62-65, Gihodo Publishing Co., Ltd., Prestressed Concrete Technology Association

しかし、上記従来の耐震補強構造において、例えば、特許文献1に開示されたものにあっては、ブレースの幅が採光性や通風性の妨げになると云う欠点が存在した。
また、特許文献2に開示されたものにあっては、補強基礎と補強柱によって緊張材を緊張する構造であるために、大きくて丈夫な基礎構造とする必要があった。また、3階建の建物に施工する場合には、補強基礎の桁行き方向の長さが25m以上必要であった。
更に、非特許文献1に開示されたものにあっては、PCアウトフレームの太さ寸法を太くする必要があった。また、それに従って、基礎の重量も大きくなる必要があった。
However, in the conventional seismic reinforcement structure described above, for example, the one disclosed in Patent Document 1 has a drawback that the width of the brace hinders daylighting and ventilation.
Moreover, in what was disclosed by patent document 2, since it was the structure which tensions a tension material with a reinforcement foundation and a reinforcement pillar, it was necessary to make it a large and strong foundation structure. In addition, when constructing in a three-story building, the length of the reinforcing foundation in the direction of girder was required to be 25 m or more.
Furthermore, in what was disclosed by the nonpatent literature 1, it was necessary to enlarge the thickness dimension of PC out frame. Also, the weight of the foundation had to be increased accordingly.

この発明は上記に鑑み提案されたもので、採光性や通風性に優れるとともに、補強基礎の重量や長さを大きくすることなく、柱や梁の太さ寸法を細くする耐震強度を増強することのできる耐震補強構造を提供することを目的とする。   This invention has been proposed in view of the above, and is excellent in daylighting and ventilation, and enhances seismic strength by reducing the thickness of columns and beams without increasing the weight and length of the reinforcing foundation. An object is to provide a seismic reinforcement structure that can be used.

上記目的を達成するために、本発明は既存建物の構面に沿って構築される耐震補強構造であって、既存建物の窓部以外の位置に配置された縦筋及びコンクリートから成る補強柱と、既存建物の窓部以外の位置に配置された鉄筋及びコンクリートから成る補強梁と、前記補強柱の立設されるとともに水平方向に延設された補強基礎部とから成るとともに、前記補強柱の補強梁との交差部に断面多角形の筒状の締着金具を埋設し、前記補強柱と補強梁で構成されるフレーム構造の対向する隅部の少なくとも一対に前記締着金具を介して緊張材を張架したことを特徴とする。 In order to achieve the above-mentioned object, the present invention is an earthquake-proof reinforcement structure constructed along the construction surface of an existing building, and includes reinforcing bars made of vertical bars and concrete arranged at positions other than the windows of the existing building, and existing a reinforcing beam made of reinforcing bars and concrete is placed in a position other than the window of the building, formed Rutotomoni reinforcement base portion and extended in the horizontal direction while being vertically of the reinforcing pillars, the reinforcing post A cylindrical fastening bracket having a polygonal cross section is embedded at the intersection with the reinforcing beam, and at least a pair of opposing corners of the frame structure composed of the reinforcing column and the reinforcing beam is interposed via the fastening bracket. It is characterized by stretching a tension material.

また、本発明において、前記締着金具は、断面が短辺と長辺から成る不等辺の八角形の筒状であり、この八角形の長辺で緊張材の端部を保持固定することを特徴とする。 Further, in the present invention, the fastening bracket is an unequal side octagonal cylinder having a short side and a long side in cross section, and holding and fixing the end of the tendon with the long side of the octagon. Features.

また、本発明において、前記緊張材は、フレーム構造の対向する隅部間に交差して配設されるとともに前記交差する緊張材は、奥行き方向の位置をずらせて配設したことを特徴とする。 Further, in the present invention, the tendon, tendon opposite arranged to intersect between the corners of Rutotomoni the intersection of the frame structure, and characterized by being arranged by shifting the position in the depth direction To do.

この発明は上記した構成からなるので、以下に説明するような効果を奏することができる。   Since this invention consists of an above-described structure, there can exist an effect which is demonstrated below.

本発明では、既存建物の構面に沿って構築される耐震補強構造であって、既存建物の窓部以外の位置に配置された縦筋及びコンクリートから成る補強柱と、既存建物の窓部以外の位置に配置された鉄筋及びコンクリートから成る補強梁と、前記補強柱の立設されるとともに水平方向に延設された補強基礎部とから成るとともに、前記補強柱の補強梁との交差部に断面多角形の筒状の締着金具を埋設し、前記補強柱と補強梁で構成されるフレーム構造の対向する隅部の少なくとも一対に前記締着金具を介して緊張材を張架したので、既存建物の耐震性を増すとともに採光性や通風性に優れ使用環境の低下をもたらす虞れがない。また、補強基礎部の自重を従来に比べて小さくすることができる。更に、補強基礎部の長さを通常の補強梁と同じにすることができ、軽量化を図ることができる。また、補強柱や補強梁の軽量化を達成できる。また、本発明では、前記補強柱の補強梁との交差部に多角形状の締着金具を配設し、この締着金具を介して緊張材を締着したので、緊張材の先端を効率よく、しかも確実に締着することができる。 In the present invention, the seismic reinforcement structure is constructed along the construction surface of the existing building, and the reinforcement pillars made of vertical bars and concrete arranged at positions other than the window part of the existing building and the window part of the existing building a reinforcing beam made of arranged reinforcing bars and concrete position of the reinforcing pillars erected is formed from a reinforcing base portion that extends in the horizontal direction together with Rutotomoni, intersection of the reinforcing beam of the reinforcing pillar A cylindrical fastening member having a polygonal cross section is embedded in the tension member, and a tension member is stretched over the fastening member through at least a pair of opposing corners of the frame structure composed of the reinforcing column and the reinforcing beam. In addition, the earthquake resistance of the existing building is increased, and there is no possibility of causing deterioration in the use environment because of excellent daylighting and ventilation. Moreover, the self-weight of a reinforcement base part can be made small compared with the past. Furthermore, the length of the reinforcing foundation can be made the same as that of a normal reinforcing beam, and the weight can be reduced. Moreover, weight reduction of the reinforcing column and the reinforcing beam can be achieved. Further, in the present invention, a polygonal fastening bracket is disposed at the intersection of the reinforcing column with the reinforcing beam, and the tension member is fastened through the fastening bracket. And it can be securely fastened.

また、本発明では、前記締着金具は、断面が短辺と長辺から成る不等辺の八角形の筒状であり、この八角形の長辺で緊張材の端部を保持固定するので、緊張材の端部を締着する際に緊張材に対して何れかの辺が直角となり、確実に締着することができる。 In the present invention, the fastening bracket is an unequal side octagonal cylinder having a short side and a long side in cross section, and the end of the tendon is held and fixed by the long side of the octagon . When fastening the end of the tendon, either side is perpendicular to the tendon and can be securely fastened.

また、本発明では、前記緊張材は、フレーム構造の対向する隅部間に交差して配設されるとともに前記交差する緊張材は、奥行き方向の位置をずらせて配設したので、耐震性能を向上することができる。また、交差する緊張材を互いに非接触とすることができ、緊張に際して悪影響を与える虞れがない。 In the present invention, the tendon, tendon facing crossed are arranged Rutotomoni the cross between corners of the frame structure, since the arranged by shifting the position in the depth direction, seismic performance Can be improved. Moreover, the crossing tendons can be made non-contact with each other, and there is no possibility of adversely affecting the tension.

補強柱と補強梁と補強基礎部とから成り、補強柱と補強梁で構成されるフレーム構造の対向する隅部の少なくとも一対に緊張材を張架したので、補強柱や補強梁の重量増加を抑制するとともに、採光性や通風性を確保することができる。   The tension column is composed of a reinforcement column, a reinforcement beam, and a reinforcement foundation, and tension material is stretched at least a pair of opposing corners of the frame structure composed of the reinforcement column and the reinforcement beam. While suppressing, it can ensure lighting property and ventilation.

以下、一実施の形態を示す図面に基づいて本発明を詳細に説明する。図1は本発明に係る耐震補強構造の正面図、図2は本発明の耐震補強構造の要部拡大正面図である。ここで、耐震補強構造10は、既存建物の構面に沿って構築されるものであって、既存建物の窓部以外の位置に配置された補強柱11と、既存建物の窓部以外の位置に配置された補強梁12と、補強基礎部13とから成り、前記補強柱11と補強梁12で構成されるフレーム構造の対向する隅部の少なくとも一対に緊張材14を張架して構成される。   Hereinafter, the present invention will be described in detail with reference to the drawings illustrating an embodiment. FIG. 1 is a front view of a seismic reinforcement structure according to the present invention, and FIG. 2 is an enlarged front view of a main part of the seismic reinforcement structure of the present invention. Here, the seismic reinforcement structure 10 is constructed along the construction surface of the existing building, and the reinforcing pillar 11 arranged at a position other than the window part of the existing building and the position other than the window part of the existing building. The reinforcing beam 12 and the reinforcing base portion 13 are arranged on each other, and tension members 14 are stretched around at least a pair of opposing corners of the frame structure constituted by the reinforcing column 11 and the reinforcing beam 12. The

また、図2に示すように補強柱11の補強梁12との交差部に多角形状の締着金具15を配設し、この締着金具15を介して緊張材14が締着されている。つまり、締着金具15は、補強柱11を構成する縦筋16a、16bの間でかつ、補強梁12を構成する鉄筋17a、17bの間に配設される。締着金具15は、例えば、八角形をしており八角形の一辺が緊張材14に対して直交するように構成されている。締着金具15は、シース18を介して引き込まれた緊張材14の端部を座金19及びナット20で締着する。また、図3に示すように締着金具15は、緊張材14の奥行き方向の位置をずらせて配設するべく、左右の緊張材14を引き込む挿通穴21a、21bの位置を奥行き方向にずらしている。   Further, as shown in FIG. 2, a polygonal fastening member 15 is disposed at the intersection of the reinforcing column 11 with the reinforcing beam 12, and the tension member 14 is fastened through the fastening member 15. That is, the fastening bracket 15 is disposed between the longitudinal bars 16 a and 16 b constituting the reinforcing column 11 and between the reinforcing bars 17 a and 17 b constituting the reinforcing beam 12. The fastening fitting 15 has, for example, an octagon shape and is configured such that one side of the octagon is orthogonal to the tendon material 14. The fastening bracket 15 fastens the end of the tension member 14 drawn through the sheath 18 with a washer 19 and a nut 20. Further, as shown in FIG. 3, the fastening bracket 15 is arranged by shifting the positions of the insertion holes 21 a and 21 b into which the left and right tension members 14 are drawn in the depth direction so that the positions of the tension members 14 are shifted in the depth direction. Yes.

図4は、本発明の耐震補強構造に使用される緊張機構22を示す説明図である。本実施例において、緊張機構22は、断面コ字状の反力治具23と、ジャッキ24と支圧板25とナット26、27とカプラ28等から構成されている。反力治具23の両端板から挿通された緊張材14の一端は、ナット27で螺合されるとともに、他端はジャッキ24、支圧板25、カプラ28を介して螺合されている。緊張材14は、所定の隙間、例えば、25mm程度を有して仮止めされている。このような状態でジャッキ24を伸張し、緊張材を緊張して隙間を無くした後にカプラ28で接続する。緊張材14をカプラ28で接続後、反力治具23を取り除き被覆管29を被せる。   FIG. 4 is an explanatory view showing a tension mechanism 22 used in the seismic reinforcement structure of the present invention. In the present embodiment, the tension mechanism 22 includes a reaction force jig 23 having a U-shaped cross section, a jack 24, a bearing plate 25, nuts 26 and 27, a coupler 28, and the like. One end of the tension member 14 inserted from both end plates of the reaction force jig 23 is screwed with a nut 27, and the other end is screwed with a jack 24, a pressure plate 25, and a coupler 28. The tendon 14 is temporarily fixed with a predetermined gap, for example, about 25 mm. In such a state, the jack 24 is extended, the tension material is tensioned to eliminate the gap, and then the coupler 28 is connected. After the tendon member 14 is connected by the coupler 28, the reaction force jig 23 is removed and the cladding tube 29 is covered.

図5は本発明の耐震補強構造に使用される緊張機構の他の実施例を示す説明図である。本実施例において、緊張機構30は、支持桿31に回動可能に軸支された2枚の支圧板32a、32bと、この支圧板を回動軸を中心に回動可能に取り付けられたジャッキ33と、ナット34、35とカプラ36等から構成されている。このように構成された緊張機構30は、支圧板32aの取り付け溝32cに緊張材14を挿通し、ナット34で仮止めするとともに、カプラ36を螺合する。また、支圧板32bの取り付け溝32dには、緊張材14の他端を挿通しナット35で仮止めする。この際、緊張材14の間隔は、前述のように所定の隙間、例えば、25mm程度である。次に、ジャッキ33を操作して緊張材14を仮止めした側の支圧板32a、32bの間隔が近づくようにする。互いの緊張材14が近づいて、緊張された場合にカプラ36を操作して、両者を接続する。緊張材14をカプラ36で接続後、緊張機構30を取り除き、上から被覆管29を被せる。   FIG. 5 is an explanatory view showing another embodiment of the tension mechanism used in the seismic reinforcement structure of the present invention. In the present embodiment, the tension mechanism 30 includes two support plates 32a and 32b that are pivotally supported by a support rod 31 and a jack that is rotatably attached to the support plates about a rotation axis. 33, nuts 34 and 35, a coupler 36, and the like. The tension mechanism 30 configured as described above inserts the tension material 14 into the mounting groove 32c of the bearing plate 32a, temporarily fixes it with the nut 34, and screws the coupler 36 together. Further, the other end of the tension member 14 is inserted into the mounting groove 32d of the bearing plate 32b and temporarily fixed with a nut 35. At this time, the interval between the tendon members 14 is a predetermined gap as described above, for example, about 25 mm. Next, the jack 33 is operated so that the space between the pressure bearing plates 32a and 32b on the side where the tension member 14 is temporarily fixed is made closer. When the tension members 14 approach each other and are tensioned, the coupler 36 is operated to connect the two. After connecting the tension member 14 with the coupler 36, the tension mechanism 30 is removed and the cladding tube 29 is covered from above.

次に、以上のように構成された耐震補強構造の施工法について説明する。先ず、図6(a)に示すように既存建物に平行して補強基礎部(地中梁)13を施工する。補強基礎部13には、所定の位置に先端の締着された緊張材(アンカー)14を埋設しておく。補強基礎部13が硬化した後、図6(b)に示すように補強柱11を所定間隔で立設する。補強柱11は、PCa部材として工場で予め製造し、緊張材14を埋設しておく。次に、図6(c)に示す補強梁12を補強柱11の間に取り付ける。補強梁12もPCa部材として工場で予め製造しておく。図6(d)では、補強柱11と補強梁12の接合部に無収縮モルタル等で目地を施工するとともに、補強柱11と補強梁12にPC鋼材を挿通した後緊張する。また、柱脚部は、グラウトする。以上のようにして補強柱と補強梁でフレーム構造が形成された後、図6(e)に示すように斜めに配設された緊張材14を緊張して完成する。   Next, the construction method of the seismic reinforcement structure comprised as mentioned above is demonstrated. First, as shown in FIG. 6 (a), a reinforcing foundation (underground beam) 13 is constructed in parallel with the existing building. A tension member (anchor) 14 having a clamped tip is embedded in the reinforcing base 13 at a predetermined position. After the reinforcing base portion 13 is cured, the reinforcing pillars 11 are erected at a predetermined interval as shown in FIG. The reinforcing pillar 11 is manufactured in advance as a PCa member at the factory, and the tension material 14 is embedded therein. Next, the reinforcing beam 12 shown in FIG. 6C is attached between the reinforcing columns 11. The reinforcing beam 12 is also manufactured in advance at the factory as a PCa member. In FIG. 6 (d), joints are applied to the joints between the reinforcing columns 11 and the reinforcing beams 12 with non-shrinking mortar and the like, and after the PC steel material is inserted into the reinforcing columns 11 and the reinforcing beams 12, the joint is strained. The column base is grouted. After the frame structure is formed with the reinforcing columns and the reinforcing beams as described above, the tension members 14 disposed obliquely are completed by being tensioned as shown in FIG.

図7は、本発明の耐震補強構造における既存建物との接続部を示す要部断面図である。本発明の耐震補強構造は、既存建物37と補強梁12を連結ボトル38で連結する。補強梁12の適宜間隔でボトル孔39を形成し、対向する既存建物37にもボトル孔40を形成する。補強梁12の既存建物37と当接する部位には、無収縮モルタル等のグラウト材を介在させる。   FIG. 7: is principal part sectional drawing which shows a connection part with the existing building in the earthquake-proof reinforcement structure of this invention. In the seismic reinforcement structure of the present invention, the existing building 37 and the reinforcing beam 12 are connected by the connecting bottle 38. Bottle holes 39 are formed at appropriate intervals between the reinforcing beams 12, and bottle holes 40 are also formed in the existing building 37 facing each other. A grout material such as a non-shrink mortar is interposed at a portion of the reinforcing beam 12 that comes into contact with the existing building 37.

図8は、本発明の耐震補強構造を既存建物に設置した例を示す説明図である。本発明の耐震補強構造10は、既存建物37の例えば、正面側の窓部以外の位置に補強柱11、補強梁12、補強基礎部13を配置している。このように配設することで、採光性、通風性を損なうことなく、耐震強度を向上することができる。尚、以上の実施例では、耐震補強構造を既存建物の構面の一部に設置する場合について説明したが、構面の全体に設置してもよい。   FIG. 8 is an explanatory diagram showing an example in which the seismic reinforcement structure of the present invention is installed in an existing building. In the seismic reinforcement structure 10 of the present invention, the reinforcing pillar 11, the reinforcing beam 12, and the reinforcing foundation part 13 are arranged at a position other than the window part on the front side of the existing building 37, for example. By disposing in this way, the seismic strength can be improved without impairing the daylighting property and ventilation. In addition, although the above example demonstrated the case where an earthquake-proof reinforcement structure was installed in a part of construction surface of the existing building, you may install in the whole construction surface.

図1は、本発明に係る耐震補強構造の正面図である。FIG. 1 is a front view of a seismic reinforcement structure according to the present invention. 図2は、同耐震補強構造の要部拡大正面図である。FIG. 2 is an enlarged front view of the main part of the seismic reinforcement structure. 図3は、同耐震補強構造における柱部を示す横断面図である。FIG. 3 is a cross-sectional view showing a column portion in the seismic reinforcement structure. 図4は、同耐震補強構造に使用される緊張機構を示す説明図である。FIG. 4 is an explanatory view showing a tension mechanism used in the seismic reinforcement structure. 図5は、同耐震補強構造に使用される緊張機構の他の実施例を示す説明図である。FIG. 5 is an explanatory view showing another embodiment of the tension mechanism used in the seismic reinforcement structure. 図6は、同耐震補強構造における施工手順を示す説明図である。FIG. 6 is an explanatory view showing a construction procedure in the seismic reinforcement structure. 図7は、同耐震補強構造における既存建物との接続部を示す要部断面図である。FIG. 7: is principal part sectional drawing which shows a connection part with the existing building in the same earthquake-proof reinforcement structure. 図8は、同耐震補強構造を既存建物に設置した例を示す説明図である。FIG. 8 is an explanatory diagram showing an example in which the seismic reinforcement structure is installed in an existing building.

符号の説明Explanation of symbols

10 耐震補強構造
11 補強柱
12 補強梁
13 補強基礎部
14 緊張材
15 締着金具
16 縦筋
17 鉄筋
18 シース
19 座金
20 ナット
21a、b 挿通穴
22、30 緊張機構
23 反力治具
24 ジャッキ
25 支圧板
26、27 ナット
28 カプラ
29 被覆管
31 支持桿
32 支圧板
33 ジャッキ
36 カプラ
37 既存建物
38 連結ボトル
39 ボトル孔
DESCRIPTION OF SYMBOLS 10 Seismic reinforcement structure 11 Reinforcement pillar 12 Reinforcement beam 13 Reinforcement base part 14 Tension material 15 Fastening bracket 16 Long bar 17 Reinforcement 18 Sheath 19 Washer 20 Nut 21a, b Insertion hole 22, 30 Tension mechanism 23 Reaction force jig 24 Jack 25 Support plate 26, 27 Nut 28 Coupler 29 Clad tube 31 Support rod 32 Support plate 33 Jack 36 Coupler 37 Existing building 38 Connected bottle 39 Bottle hole

Claims (3)

既存建物の構面に沿って構築される耐震補強構造であって、既存建物の窓部以外の位置に配置された縦筋及びコンクリートから成る補強柱と、既存建物の窓部以外の位置に配置された鉄筋及びコンクリートから成る補強梁と、前記補強柱の立設されるとともに水平方向に延設された補強基礎部とから成るとともに、前記補強柱の補強梁との交差部に断面多角形の筒状の締着金具を埋設し、前記補強柱と補強梁で構成されるフレーム構造の対向する隅部の少なくとも一対に前記締着金具を介して緊張材を張架したことを特徴とする耐震補強構造。 It is a seismic reinforcement structure that is built along the construction surface of an existing building, and is placed at a position other than the window of the existing building, and a reinforcing column made of vertical streaks and concrete placed at a position other than the window of the existing building. a reinforcing beam made of the rebar and concrete, the reinforcing pillars erected consists a reinforcing base portion that extends in the horizontal direction together with the Rutotomoni, polygonal cross section at the intersection of the reinforcing beam of the reinforcing pillar And a tension member is stretched over at least a pair of opposing corners of the frame structure composed of the reinforcing column and the reinforcing beam. Seismic reinforcement structure. 前記締着金具は、断面が短辺と長辺から成る不等辺の八角形の筒状であり、この八角形の長辺で緊張材の端部を保持固定することを特徴とする請求項1に記載の耐震補強構造。 2. The fastening bracket is an octagonal cylinder having an unequal side having a short side and a long side in cross section, and the end of the tendon is held and fixed by the long side of the octagon. Seismic reinforcement structure described in 1. 前記緊張材は、フレーム構造の対向する隅部間に交差して配設されるとともに前記交差する緊張材は、奥行き方向の位置をずらせて配設したことを特徴とする請求項1または2に記載の耐震補強構造。 The tendon, tendon facing crossed are arranged Rutotomoni the cross between corners of the frame structure according to claim 1 or 2, characterized in that arranged by shifting the position in the depth direction Seismic reinforcement structure described in 1.
JP2006314306A 2006-11-21 2006-11-21 Seismic reinforcement structure Active JP4933229B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006314306A JP4933229B2 (en) 2006-11-21 2006-11-21 Seismic reinforcement structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006314306A JP4933229B2 (en) 2006-11-21 2006-11-21 Seismic reinforcement structure

Publications (2)

Publication Number Publication Date
JP2008127856A JP2008127856A (en) 2008-06-05
JP4933229B2 true JP4933229B2 (en) 2012-05-16

Family

ID=39553980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006314306A Active JP4933229B2 (en) 2006-11-21 2006-11-21 Seismic reinforcement structure

Country Status (1)

Country Link
JP (1) JP4933229B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106522576A (en) * 2016-11-25 2017-03-22 河北建筑工程学院 Reinforcing method and structure for ancient city wall door opening

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5193090B2 (en) * 2009-02-23 2013-05-08 大成建設株式会社 Reinforcement structure of existing building

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3608131B2 (en) * 1996-07-02 2005-01-05 清水建設株式会社 Building reinforcement structure
JPH10176425A (en) * 1996-12-17 1998-06-30 Ohbayashi Corp Reinforcing construction of wooden building
JP4276007B2 (en) * 2003-07-09 2009-06-10 恒一 高橋 Reinforced structural material for wooden reinforced structures and buildings
JP2006022572A (en) * 2004-07-08 2006-01-26 Oriental Construction Co Ltd Outer frame type aseismic reinforcement structure of existing building

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106522576A (en) * 2016-11-25 2017-03-22 河北建筑工程学院 Reinforcing method and structure for ancient city wall door opening

Also Published As

Publication number Publication date
JP2008127856A (en) 2008-06-05

Similar Documents

Publication Publication Date Title
JP4428304B2 (en) Plastic hinge part of RC structure
JP4957295B2 (en) Seismic control pier structure
KR100949585B1 (en) Construction method of pre-stressed concrete beam
KR102168938B1 (en) Seismic retrofit using strand and length adjustable truss
JP4933229B2 (en) Seismic reinforcement structure
JP2022160200A (en) Connection structure
KR101347038B1 (en) Structural strengthening method using fiber reinforcing fiber
JP4431986B2 (en) Seismic reinforcement structure of building and seismic reinforcement method
JP2005083136A (en) Composite structure support
JP2005264564A (en) Seismic strengthening material
JP2005330657A (en) Joint structure of precast concrete column and beam
JP2003129676A (en) Method of reinforcing concrete frame
JP2006188898A (en) Aseismatic reinforcing method for existing structure, structure based on the aseismatic reinforcing method, and structure equipped with the structure
JPH11303416A (en) Fixing construction of vibration isolation
JP3490976B2 (en) Reinforcement structure of existing building
JP3924231B2 (en) Reinforced structure of reinforced concrete members
JP2007085098A (en) Earthquake resistant reinforcing brace structure
KR200240385Y1 (en) PSC Girder having Anchoring Sleeves
JP3909488B2 (en) Seismic reinforcement structure of existing building and its construction method
KR20010068055A (en) PSC Girder having Anchoring Sleeves and Strengthening Method
KR100356765B1 (en) Post-tension Type Corbel Structure and Contructuring Method thereof
KR100825090B1 (en) Temporary bent structure available strong support
JP2012117364A (en) Vibration control bridge pier structure
CN113123459B (en) Energy-consuming support structure, energy-consuming support frame system and construction method thereof
JP7107484B2 (en) Column-beam frame

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120216

R150 Certificate of patent or registration of utility model

Ref document number: 4933229

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250