JP2005264564A - Seismic strengthening material - Google Patents

Seismic strengthening material Download PDF

Info

Publication number
JP2005264564A
JP2005264564A JP2004078828A JP2004078828A JP2005264564A JP 2005264564 A JP2005264564 A JP 2005264564A JP 2004078828 A JP2004078828 A JP 2004078828A JP 2004078828 A JP2004078828 A JP 2004078828A JP 2005264564 A JP2005264564 A JP 2005264564A
Authority
JP
Japan
Prior art keywords
portions
column
curved
load
building
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004078828A
Other languages
Japanese (ja)
Other versions
JP4177776B2 (en
Inventor
Takeshi Yamamoto
猛 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HOKUEI KENSETSU KK
Original Assignee
HOKUEI KENSETSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HOKUEI KENSETSU KK filed Critical HOKUEI KENSETSU KK
Priority to JP2004078828A priority Critical patent/JP4177776B2/en
Publication of JP2005264564A publication Critical patent/JP2005264564A/en
Application granted granted Critical
Publication of JP4177776B2 publication Critical patent/JP4177776B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Working Measures On Existing Buildindgs (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compactly designed seismic strengthening material which enhances earthquake resistance of a building, and which can simplify work for being mounted on a column etc. <P>SOLUTION: This seismic strengthening material 1 mainly comprises: a pair of plate parts 2a and 2b which present a plate shape and which are fixed to respective opposed surfaces 6 of the column 4 and a beam 5, orthogonal to each other; and an elastically deformable leaf spring part 11 which has linear extension parts 10a and 10b each extended from an approximately arc-shaped curved part 8 protrusively curved toward a crossing part 7 where the column 4 and the beam 5 cross each other, and curved ends 9a and 9b at both the ends of the curved part 8, and which connects the pair of plate parts 2a and 2b together. Both a compressive load and a tensile load, which are brought about by a shock caused by earthquakes etc., are absorbed by the elastic deformation of the leaf spring part 11, so that the earthquake resistance of the building can be enhanced. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、耐震補強材に関するものであり、特に、板ばねの弾性反発力を利用して、地震等によって建築物に加わる衝撃及び荷重を吸収し、建築物の倒壊等を防ぐことが可能な耐震補強材に関するものである。   The present invention relates to a seismic reinforcement, and in particular, by utilizing the elastic repulsive force of a leaf spring, it is possible to absorb the impact and load applied to the building due to an earthquake or the like and prevent the building from collapsing. It relates to seismic reinforcement.

従来から、建築物に対し、地震などによって揺れや強い衝撃が加わった場合でも変形や倒壊を防止することができるように、耐震性を与えた設計がなされており、建築基準法等の各種法令によって、それらの耐震基準や強度が厳格に定められている。そのため、建築設計者及び建築業者等は、係る基準を遵守して建築物の施工を行っている。   Conventionally, the building has been designed to be earthquake resistant so that it can be prevented from being deformed or collapsed even when the building is shaken or subjected to a strong impact due to an earthquake, etc. Therefore, their seismic standards and strengths are strictly defined. Therefore, building designers, contractors, etc. are performing construction of buildings in compliance with such standards.

一般に、木造建築物などでは、土台に対してほぞ孔を穿設し、該ほぞ孔の内周形状に合わせて形成された柱の一部(ほぞ)を挿入し、土台に柱を直交させた状態で立設させる。そして、係る立設状態で柱及び土台の接合を強固なものとするために、かすがいなどの固定手段が利用される。また、柱に梁を架渡す場合にも、上述の土台に対する場合と同様である。さらに、柱及び梁、土台等から構成された四角形の対角線に沿って斜めに架渡した所謂「筋交い」を連結し、建築物の強度を向上させることが一般に行われている。そして、これらの耐震補強工事を行った上で、柱及び梁等が居住者の視覚に直接入らないように、壁材などで被覆し、室内の外観を良くしている。   Generally, in wooden buildings, a mortise hole is drilled in the base, and a part of the pillar (tenon) formed in accordance with the inner peripheral shape of the mortise is inserted, and the pillar is orthogonal to the base. Let stand in the state. And in order to strengthen the joining of the pillar and the foundation in such a standing state, a fixing means such as a gravel is used. In addition, when a beam is laid over a column, it is the same as that for the above-mentioned foundation. Furthermore, it is a common practice to improve the strength of buildings by connecting so-called “bars” that are diagonally crossed along a diagonal of a quadrangle composed of columns, beams, foundations, and the like. After these seismic reinforcement work, the exterior of the room is improved by covering it with wall materials so that the pillars and beams do not directly enter the occupant's vision.

なお、上述した木造建築物に限らず、RC工法などによって施工されたコンクリート建築物に対しても種々の耐震補強工事がなされ、通常の震度の地震に対しては十分耐えうることができるようになっている。   In addition, not only the above-mentioned wooden buildings, but also various earthquake-resistant reinforcement works are made for concrete buildings constructed by the RC method, etc., so that they can sufficiently withstand earthquakes of ordinary seismic intensity. It has become.

一方、上述した筋交い等によって耐震のための対策を施した上で、さらに柱及び梁等の間に伸縮性部材(例えば、コイルばね等のダンパ、或いはショックアブソーバなどの衝撃緩衝材)を介設し、地震等によって建築物に加わる荷重(負荷)に対し、伸縮性部材の伸張及び圧縮による変形によって該荷重を吸収し、さらに伸縮性部材の復元力によって建築物の変形及び倒壊を防ぐものが開示されている(特許文献1参照)。   On the other hand, after taking measures for earthquake resistance by the bracing described above, an elastic member (for example, a damper such as a coil spring or an impact buffer such as a shock absorber) is interposed between the pillar and the beam. However, the load (load) applied to the building due to an earthquake or the like absorbs the load by deformation of the elastic member due to expansion and compression, and further prevents the deformation and collapse of the building by the restoring force of the elastic member. It is disclosed (see Patent Document 1).

特開2004−36139号公報JP 2004-36139 A

しかしながら、上述のかすがい、及び筋交い等の従来から利用されている耐震補強用の部材は、建築物の強度を向上するために、柱及び梁等の間の接合を単純に剛直な部材によって補強したものにすぎなかった。そのため、予め設計上で想定した荷重までは、その効果を十分に発揮し、建築物に対して付与することができるものの、一端、想定した荷重を越える負荷を受けた場合には、柱及び梁等の接合状態が崩壊し、建築物の変形若しくは倒壊を免れないケースがあった。特に、限界の荷重を僅かに越えた場合には、柱及び梁等の間の角度は変形し、元の状態(柱及び梁等が直交し、90度を保持している状態)に戻すことができなかった。そのため、建物の変形に対する復元力(弾性回復力)が作用することがなく、変形の開始とともに建築物の倒壊につながったり、或いは変形した状態に建築物が保たれることがあった。その結果、地震等による被害が拡大し、さらに建築物の補修に多大な費用を要することがあった。   However, the conventional seismic reinforcement members such as the above-mentioned shading and bracing are reinforced by simply rigid members in order to improve the strength of the building. It was just what I did. Therefore, up to the load assumed in the design in advance, the effect can be fully exerted and applied to the building. However, when a load exceeding the assumed load is applied, the column and beam There was a case where the joint state such as, etc. collapsed, and the deformation or collapse of the building was inevitable. In particular, when the limit load is slightly exceeded, the angle between the column and the beam will be deformed and returned to the original state (the state where the column and the beam are orthogonal and holding 90 degrees). I could not. Therefore, the restoring force (elastic recovery force) against the deformation of the building does not act, leading to the collapse of the building as the deformation starts, or the building may be kept in a deformed state. As a result, damage caused by earthquakes and the like has increased, and in addition, the construction of the building has been costly.

一方、柱及び梁等の間にコイルばねや弾性体などの伸縮性部材を介設するものは、係る伸縮性部材の伸縮変形によって、一端、荷重が加わった場合でも復元力によって柱及び梁等を元の状態に復帰させることができた。ところが、これらの伸縮性部材は、一般に柱及び梁等に対して斜め方向に架渡した状態で配され、その伸縮方向は伸縮性部材の長手方向に略一致している。そのため、例えば、伸縮性部材としてコイルばねを利用した場合、コイルばねが伸張する方向(コイルピッチが拡がる方向)、及びコイルばねが圧縮される方向(コイルピッチが狭くなる方向)のいずれかの方向に荷重が加わったときに変形していた。   On the other hand, a member having a stretchable member such as a coil spring or an elastic body interposed between a column and a beam, etc., due to the elastic deformation of the stretchable member, the column and the beam etc. by a restoring force even when a load is applied. Was able to be restored to its original state. However, these elastic members are generally arranged in a state where they are bridged in an oblique direction with respect to columns, beams, and the like, and the expansion / contraction direction substantially coincides with the longitudinal direction of the elastic members. Therefore, for example, when a coil spring is used as the stretchable member, one of the direction in which the coil spring extends (direction in which the coil pitch expands) and the direction in which the coil spring is compressed (direction in which the coil pitch decreases). Was deformed when a load was applied.

したがって、特に、コイルばねが圧縮される方向に荷重が加わった場合、徐々にコイルピッチが狭くなり、最終的にはコイルピッチがゼロになることがあった。すなわち、コイルばねのばね同士が密接した状態(ばねが完全に縮んだ状態)になり、それ以上の変形ができなくなった。これにより、地震等による荷重を十分に吸収することができなかった。換言すると、柱及び梁等の間の角度が小さくなるような荷重が加わった場合、コイルばねによっては許容可能な角度(例えば、80度から90度の間など)が制限されており、伸縮性部材による弾性変形及び復元力の作用を十分に享受することができず、建築物の倒壊等につながるおそれがあった。   Therefore, in particular, when a load is applied in the direction in which the coil spring is compressed, the coil pitch gradually becomes narrower and eventually the coil pitch may become zero. That is, the springs of the coil springs are in close contact (a state in which the springs are completely contracted), and no further deformation is possible. As a result, the load due to an earthquake or the like could not be sufficiently absorbed. In other words, when a load is applied that reduces the angle between the column and the beam, the allowable angle (for example, between 80 degrees and 90 degrees) is limited depending on the coil spring, and the elasticity The effects of elastic deformation and restoring force due to the members could not be fully enjoyed, which could lead to collapse of the building.

加えて、一般にこれらの伸縮性部材を、柱及び梁等の間に介設する際には、予め作業者の手によって、所定の方向に伸張若しくは圧縮した状態で取付けることが多かった。つまり、荷重の加わっていない通常の状態では、コイルばね等に若干の張力を発生させた状態で、すなわち、コイルばねを初期状態からわずかに伸張させたり、或いは圧縮を加えて、柱及び梁等の間の接合を強固にするとともに、設置時におけるコイルばね自体の振動を抑制することが行われていた。そのため、係る取付け作業時には、コイルばね等の伸張を行う作業者に、多大な労力の負担を強いることがあり、取付作業時間も多く必要となった。そのため、耐震補強材の取付作業を容易にすることができるようなものが望まれていた。   In addition, in general, when these elastic members are interposed between columns and beams, they are often attached in a state of being stretched or compressed in a predetermined direction by an operator's hand in advance. In other words, in a normal state where no load is applied, a slight tension is applied to the coil spring or the like, that is, the coil spring is slightly extended from the initial state, or is compressed, and the columns and beams etc. In addition to strengthening the bonding between the two, the vibration of the coil spring itself during installation is suppressed. Therefore, at the time of such attachment work, a worker who stretches the coil spring or the like may be burdened with a great deal of labor, and a lot of attachment work time is required. Therefore, the thing which can make attachment work of an earthquake-proof reinforcement material easy was desired.

また、これらの柱及び梁等の交錯部の近傍は、上述した筋交いや、ガス、水道、及び電気等に関する種々の線や配管が通っていることがあった。また、柱及び梁等は、前述した壁材によって被覆されているため、耐震補強材は、これらの壁材の幅の中に収まり、かつ十分な耐震性能を備えるとともに、前述の配管等に影響を与えないように、できるだけコンパクトに形成する必要があった。   In addition, in the vicinity of the intersections of these columns and beams, various lines and pipes related to the above described braces, gas, water supply, electricity, and the like may pass. In addition, since the columns and beams are covered with the above-mentioned wall materials, the seismic reinforcement is within the width of these wall materials and has sufficient seismic performance, and affects the above-mentioned piping and the like. It was necessary to form as compact as possible.

そこで、本発明は、上記実情に鑑み、建築物の耐震性を向上させるとともに、柱等への取付け作業を簡易に行うことができるコンパクトに設計された耐震補強材の提供を課題とするものである。   Therefore, in view of the above circumstances, the present invention has an object to provide a seismic reinforcing material designed in a compact manner that can improve the earthquake resistance of a building and can be easily attached to a pillar or the like. is there.

上記の課題を解決するため、本発明の耐震補強材は、「柱、及び前記柱に直交して配される梁及び土台を含む横架材が交錯する交錯部近傍に設けられ、前記交錯部の交錯点から各々の一端部を離間させた状態で、互いに対向する前記柱及び前記横架材の対向面にそれぞれ固定される略板状を呈する一対の支持板部と、前記交錯点に対向して凸状に湾曲した略円弧形状の湾曲部、及び前記湾曲部の湾曲端部からそれぞれ延設された一対の延設部を有し、前記支持板部の間を各々の前記延設部によって連結した弾性変形可能な板ばね部と」を具備して主に構成されている。   In order to solve the above-mentioned problem, the seismic reinforcing material of the present invention is provided in the vicinity of a crossing portion where a horizontal member including a column and a beam and a base arranged orthogonal to the column crosses, and the crossing portion A pair of support plate portions each having a substantially plate shape fixed to the opposing surfaces of the column and the horizontal member facing each other, with the respective one end portions separated from the intersection point, and opposed to the intersection point A curved portion having a substantially arc shape that is curved in a convex shape, and a pair of extended portions that are respectively extended from the curved end portions of the curved portion, and each of the extended portions is provided between the support plate portions. And an elastically deformable leaf spring portion connected by a main body.

ここで、支持板部とは、板ばね部と柱及び梁または土台等の横架材との間に固定され、板ばね部を支持するための板状(プレート状)のものであり、主として鋼板などの強固な材質によって構成されている。そして、これらの支持板部は、ビスなどの従来から建築物においては周知の固定手段によって柱等に固定されている。なお、このとき、支持板部の一端部は、柱及び横架材の交錯した交錯部の交錯点から、それぞれ所定の間隔だけ離間した状態で形成されている。そのため、荷重が加わった場合における、柱及び横架部の変形を阻害することがなく、揺れによる力を後述する板ばね部にそのまま伝達することができる。   Here, the support plate portion is a plate-like (plate shape) that is fixed between the plate spring portion and a horizontal member such as a column and a beam or a base, and supports the plate spring portion. It is made of a strong material such as a steel plate. And these support board parts are conventionally fixed to the pillar etc. by the well-known fixing means in buildings, such as a screw. At this time, the one end portion of the support plate portion is formed in a state of being separated from the crossing point of the crossing portion where the pillar and the horizontal member cross each other by a predetermined distance. Therefore, the deformation due to the column and the horizontal portion when a load is applied is not hindered, and the force caused by the vibration can be transmitted to the leaf spring portion described later as it is.

一方、板ばね部は、略円弧形状に湾曲した湾曲部及び湾曲部の両端の湾曲端部からそれぞれ延設された延設部を有している。そして、係る構成により、互いの延設部を近接させるような荷重(圧縮荷重)が加えられた場合、及び互いの延設部を離間させるような荷重(引張荷重)が加えられた場合の双方において、弾性変形可能な湾曲部が変形することにより、これらの荷重を吸収することができる。そして、係る板ばね部が、円弧形状に湾曲した湾曲部を柱及び横架材の交錯する交錯部に対して凸状に突出するように向けて延設部が各々の支持板部に接続されている。なお、延設部及び支持板部の接続は、特に限定されないが、例えば、支持板部に貫設された貫設孔を通して、皿ねじ及びナットによって固定するものを例示することができる。これにより、延設部のみが支持板部に当接し、湾曲部のほぼ大半が支持板部の板面から離間するような状態で柱及び梁等の横架材に対して耐震補強材が介設される。   On the other hand, the leaf | plate spring part has the extending part extended from the curved part which curved in the substantially circular arc shape, and the curved edge part of the both ends of a curved part, respectively. And by the structure which concerns, both when a load (compressive load) which makes a mutual extension part approach is applied, and when a load (tensile load) which makes a mutual extension part separate is applied In (1), these loads can be absorbed when the elastically deformable bending portion is deformed. The extending portions are connected to the respective support plate portions so that the leaf spring portions project in a convex shape with respect to the intersecting portions where the pillars and the horizontal members intersect with each other. ing. The connection between the extending portion and the support plate portion is not particularly limited, and examples thereof include fixing by a countersunk screw and a nut through a through hole penetrating the support plate portion. As a result, the seismic reinforcement is interposed against the horizontal members such as columns and beams in such a state that only the extended portion is in contact with the support plate portion and almost the curved portion is separated from the plate surface of the support plate portion. Established.

したがって、本発明の耐震補強材によれば、柱と、梁または土台を含む横架材とが交錯する交錯部の近傍に耐震補強材が取付けられている。そして、耐震補強材には、弾性変形可能な板ばね部を有し、係る板ばね部の延設部は、それぞれの支持板部を間に挟んだ状態で、柱及び横架材の長手方向に略一致するように固定されている。これにより、柱及び横架材の変形に伴って、板ばね部に係る変形による荷重が伝達されるようになる。このとき、地震等によって柱及び横架材に荷重が加えられ、柱及び柱に直交する横架材の間の角度が変形する場合であって、該角度が拡がる場合(すなわち、90度以上に変形する場合)、支持板部に接続された板ばね部は、一対の延設部が互いに離間するように拡がって変形する。そして、一端拡がった延設部の間の距離は、弾性変形可能な板ばね部の作用によって再びもとの状態に復元する。一方、該角度が狭くなる場合(すなわち、90度以下に変形する場合)、支持板部に接続された板ばね部は、一対の延設部が互いに接近するように変形する。そして、一端近づいた延設部の距離は、弾性変形可能な板ばね部の作用によって再びもとの状態に復元する。これにより、地震等によって柱及び横架材に加えられた荷重を、板ばね部の弾性力によって吸収し、衝撃を緩衝することができる。その結果、建築物の変形及び倒壊につながるおそれを回避することが可能となる。   Therefore, according to the seismic reinforcing material of the present invention, the seismic reinforcing material is attached in the vicinity of the intersection where the column and the horizontal member including the beam or the base intersect. The seismic reinforcement has a leaf spring portion that can be elastically deformed, and the extension portion of the leaf spring portion is in the longitudinal direction of the column and the horizontal member with the respective support plate portions sandwiched therebetween. It is fixed so as to substantially match. Thereby, the load by the deformation | transformation which concerns on a leaf | plate spring part comes to be transmitted with a deformation | transformation of a pillar and a horizontal member. At this time, when a load is applied to the column and the horizontal member due to an earthquake or the like, the angle between the horizontal member perpendicular to the column and the column is deformed, and the angle is widened (that is, 90 degrees or more). In the case of deformation), the leaf spring portion connected to the support plate portion expands and deforms so that the pair of extending portions are separated from each other. And the distance between the extended parts which expanded one end restore | restores to the original state again by the effect | action of the leaf | plate spring part which can be elastically deformed. On the other hand, when the angle is narrowed (that is, when the angle is deformed to 90 degrees or less), the leaf spring portion connected to the support plate portion is deformed so that the pair of extending portions approach each other. And the distance of the extended part which approached one end restore | restores to the original state again by the effect | action of the leaf | plate spring part which can be elastically deformed. Thereby, the load applied to the column and the horizontal member due to an earthquake or the like can be absorbed by the elastic force of the leaf spring portion, and the shock can be buffered. As a result, it is possible to avoid the risk of building deformation and collapse.

加えて、板ばね部は、予めばね製造工場などによって所定の円弧径となるように湾曲した状態で製造されたものを利用することができ、作業者はこれに対し、特に力を加え、板ばね部を変形させながら支持板部に取付けるような作業を行う必要がない。そのため、板ばね部の取付作業に多くの労力を要することがなく、作業者に対し過度の作業負担を強いることがない。なお、本発明の耐震補強材は、建築物を新築する際に予め設置することが好適であるが、建築後のリフォームにおいて設置する場合も簡易に行うことができる。   In addition, the leaf spring part can be used in advance that is manufactured in a curved state so as to have a predetermined arc diameter by a spring manufacturing factory or the like. There is no need to perform an operation of attaching the support plate to the support plate while deforming the spring. Therefore, a large amount of labor is not required for the attachment work of the leaf spring portion, and an excessive work load is not imposed on the operator. In addition, although it is suitable to install the earthquake-proof reinforcing material of the present invention in advance when building a new building, it can also be easily performed when installing in a renovation after construction.

さらに、本発明の耐震補強材は、上記構成に加え、「上下対称及び左右対称のいずれか一方に相当する一対の前記交錯部の近傍にそれぞれ配設されている」ものであっても構わない。   Furthermore, in addition to the above configuration, the seismic reinforcing material of the present invention may be “arranged in the vicinity of a pair of crossing portions corresponding to either one of vertical symmetry and left-right symmetry”. .

したがって、本発明の耐震補強材によれば、上下または左右対称に位置する一対の交錯部に対して一対(一組)の耐震補強材がそれぞれ配設されている。ここで、柱及び梁等の横架材に加わえられる荷重は、柱及び横架材の間の角度が拡がる(大きくなる)、若しくは狭くなる(小さくなる)の基本的にはいずれかである。そして、これらの変形は互いに対向し、若しくは相対して隣接する各々の交錯部においては、角度の拡がり変形、及び角度の狭まり変形の現象が交互に生じている。そのため、係る変形の双方に対応可能なように、本発明の耐震補強材の一対をセットとして配設することにより、地震等による圧縮荷重及び引張荷重による変形を互い吸収することが可能となり、建築物の耐震性をさらに高めることができるようになる。   Therefore, according to the seismic reinforcing material of the present invention, a pair (one set) of seismic reinforcing materials is arranged with respect to the pair of intersecting portions positioned vertically or horizontally. Here, the load applied to the horizontal member such as a column and a beam is basically either that the angle between the column and the horizontal member expands (increases) or decreases (decreases). . These deformations occur alternately in the crossing portions that face each other or are adjacent to each other, and the phenomenon of angular expansion deformation and narrowing deformation occurs alternately. Therefore, by arranging a pair of seismic reinforcing members of the present invention as a set so as to be able to cope with both of such deformations, it becomes possible to mutually absorb deformation due to compressive load and tensile load due to earthquakes, etc. It becomes possible to further improve the earthquake resistance of objects.

さらに、本発明の耐震補強材は、上記構成に加え、「前記交錯部の交錯点から、前記支持板部の他端部までの長さが200mm以上、400mm以下に設定され、前記支持板部及び前記板ばね部の少なくともいずれか一方の幅が80mm以上、100mm以下に設定されている」ものであっても構わない。   Furthermore, the seismic reinforcing material of the present invention has, in addition to the above configuration, “the length from the intersection of the intersections to the other end of the support plate is set to 200 mm or more and 400 mm or less, and the support plate And the width of at least one of the leaf spring portions may be set to 80 mm or more and 100 mm or less.

したがって、本発明の耐震補強材によれば、交錯部の近傍に取付けられる耐震補強材のサイズが、交錯部の交錯点から支持板部の他端部までの長さが200mm以上、400mm以下、さらに好ましくは250mm以上、350mm以下、より好ましくは280mm以上、320mm以下に設定され、支持板部及び板ばね部の少なくともいずれか一方の幅が80mm以上、100mm以下、さらに好ましくは85mm以上、95mm以下に設定されている。ここで、柱及び横架材は、一般に壁材によって被覆された空間に存し、係る空間には柱及び横架材以外にも室内に対して供給する必要がある水道、ガス、電気、及び電話などの各種配管及び配線が通っている。また、前述した筋交い等の従来からの耐震補強材も設置されている。そのため、壁材の中は様々なもので密集した状態にある。加えて、部屋と部屋との間の壁の幅も約100mm程度に設計されているものが多かった。そのため、上述したコンパクトなサイズに本発明の耐震補強材をすることにより、水道等の既存の設備に影響を与えることなく、かつ、十分な耐震性を付与することが可能となる。特に木造建築物に対して美観を損ねることなく、耐震性を向上させることができる。   Therefore, according to the seismic reinforcing material of the present invention, the size of the seismic reinforcing material attached in the vicinity of the crossing portion is such that the length from the crossing point of the crossing portion to the other end of the support plate portion is 200 mm or more, 400 mm or less, More preferably, it is set to 250 mm or more and 350 mm or less, more preferably 280 mm or more and 320 mm or less, and the width of at least one of the support plate part and the leaf spring part is 80 mm or more and 100 mm or less, more preferably 85 mm or more and 95 mm or less. Is set to Here, the pillar and the horizontal member are generally present in a space covered with a wall material, and the water, gas, electricity, and the like that need to be supplied to the room in addition to the pillar and the horizontal member in the space. Various pipes and wiring such as telephones pass. In addition, conventional seismic reinforcements such as the braces mentioned above are also installed. Therefore, the wall material is in a dense state with various things. In addition, the wall width between the rooms is often designed to be about 100 mm. Therefore, by using the seismic reinforcement of the present invention in the above-described compact size, it becomes possible to impart sufficient seismic resistance without affecting existing facilities such as waterworks. In particular, the earthquake resistance can be improved without deteriorating the aesthetics of the wooden building.

本発明の効果として、板ばね部の弾性変形を利用して建築物に耐震性を付与することができる。さらに、従来の伸縮性部材を使用した場合と比べ、柱及び梁等に加わった圧縮荷重及び引張荷重の双方に対応することができ、特に、圧縮荷重の場合の変形許容量を従来のコイルばね等に比べて大きく採ることができる。その結果、耐震性が向上し、建築物の変形及び倒壊の危険性を回避することが可能となる。さらに予め所定の形状に湾曲させた板ばね部を支持板部に固定するだけで取付け作業が完了するために、作業者に対して取付作業に係る過大な労力の負担を強いることがない。加えて、比較的コンパクトに形成できるため、既存の設備及び室内の美観に影響を与えることなく設置することができ、新築の建築物に限らず、既存の建築物のリフォームの際に設置することも容易に行える。   As an effect of the present invention, it is possible to impart earthquake resistance to the building by utilizing the elastic deformation of the leaf spring portion. Furthermore, compared with the case where a conventional elastic member is used, it is possible to cope with both a compressive load and a tensile load applied to a column, a beam, and the like. It can be taken larger compared to etc. As a result, the earthquake resistance is improved and the risk of deformation and collapse of the building can be avoided. Furthermore, since the mounting operation is completed simply by fixing the leaf spring portion, which has been curved in a predetermined shape, to the support plate portion, the operator is not burdened with excessive labor related to the mounting operation. In addition, because it can be made relatively compact, it can be installed without affecting the existing facilities and the aesthetics of the room, and is not limited to newly built buildings, but should be installed when renovating existing buildings. Can also be done easily.

以下、本発明の一実施形態である耐震補強材1について、図1乃至図6に基づいて説明する。ここで、図1は本実施形態の耐震補強材1の構成を示す分解斜視図であり、図2は耐震補強材1の取付例を示す側面図であり、図3は耐震補強材1の取付例を示す正面図であり、図4はプレート部2a,2bの構成を示す正面図であり、図5は圧縮荷重P及び引張荷重Tに対する耐震補強材1の変形を模式的に示す説明図であり、図6は木造建築物3に対する適用例を模式的に示す(a)側面図、及び(b)平面図である。なお、本実施形態の耐震補強材1においては、柱4と柱4に直交する梁5との間に介設するものについて例示する。ここで、梁5が本発明における横架材に相当する。   Hereinafter, an earthquake-resistant reinforcing material 1 according to an embodiment of the present invention will be described with reference to FIGS. 1 to 6. Here, FIG. 1 is an exploded perspective view showing the configuration of the seismic reinforcement 1 according to the present embodiment, FIG. 2 is a side view showing an installation example of the seismic reinforcement 1, and FIG. Fig. 4 is a front view showing an example, Fig. 4 is a front view showing the configuration of the plate portions 2a, 2b, and Fig. 5 is an explanatory view schematically showing the deformation of the seismic reinforcement 1 with respect to the compressive load P and the tensile load T. FIG. 6 is a (a) side view and (b) plan view schematically showing an application example to the wooden building 3. In addition, in the earthquake-proof reinforcement material 1 of this embodiment, what is interposed between the pillar 4 and the beam 5 orthogonal to the pillar 4 is illustrated. Here, the beam 5 corresponds to the horizontal member in the present invention.

本実施形態の耐震補強材1は、図1乃至図4に主として示すように、互いに直交する柱4及び梁5の各々の対向面6に固定される板状を呈する一対のプレート部2a,2bと、柱4及び梁5の交錯した交錯部7に向かって凸状に湾曲した略円弧形状をなす湾曲部8、及び湾曲部8の両端の湾曲端部9a,9bからそれぞれ延設された直線状の延設部10a,10bを有し、一対のプレート部2a,2bの間を延設部10a,10bによって連結した弾性変形可能な板ばね部11とを具備して主に構成されている。   As shown mainly in FIGS. 1 to 4, the seismic reinforcement 1 of the present embodiment has a pair of plate portions 2 a and 2 b that have a plate shape fixed to the opposing surfaces 6 of the pillars 4 and the beams 5 orthogonal to each other. And a curved portion 8 having a substantially arc shape curved convexly toward the intersecting portion 7 where the columns 4 and the beams 5 intersect, and straight lines extending from the curved end portions 9a and 9b at both ends of the curved portion 8, respectively. And a plate spring portion 11 that is elastically deformable and has a plate-like extension portion 10a, 10b and is connected between the pair of plate portions 2a, 2b by the extension portions 10a, 10b. .

さらに、詳しく説明すると、プレート部2a,2bには、それぞれ柱4及び梁5に対してプレート部2a,2bを固定するための固定ビス12が挿通されるビス孔13が、縦六列及び横二列の計十二個穿設されている。また、プレート部2a,2bには、板ばね部11の延設部10a,10bを連結し、固定するための固定ボルト(皿ねじ)14a,14bが挿通される固定ボルト孔15が縦に二カ所形成されている。ここで、固定ボルト孔15は、固定ボルト14a,14bのボルト頭部の傾斜に合わせてボルト挿通方向(図1における紙面下方及び紙面左斜め下方に相当)に対して縮径して形成されている(ビス孔13も固定ビス12に対して同様に形成)。これにより、プレート部2a,2bとプレート部2a,2bのそれぞれの先端部19a,19bは、柱4及び梁5の交錯部7の交錯点7aから離間して固定されている。そのため、建築物に荷重が加わった場合の柱4及び梁5の変形を係るプレート部2a,2bによって阻害することがない。   More specifically, the plate portions 2a and 2b have screw holes 13 through which the fixing screws 12 for fixing the plate portions 2a and 2b to the columns 4 and the beams 5 are inserted, respectively, in six vertical rows and two horizontal rows. A total of twelve in two rows are drilled. The plate portions 2a and 2b have two fixing bolt holes 15 vertically through which fixing bolts (head screws) 14a and 14b for connecting and fixing the extending portions 10a and 10b of the leaf spring portion 11 are inserted. Has been formed. Here, the fixing bolt hole 15 is formed with a reduced diameter with respect to the bolt insertion direction (corresponding to the lower side of the drawing sheet and the lower left side of the drawing in FIG. 1) in accordance with the inclination of the bolt heads of the fixing bolts 14a and 14b. (The screw holes 13 are formed in the same manner as the fixed screws 12). Thereby, the front end portions 19a and 19b of the plate portions 2a and 2b and the plate portions 2a and 2b are fixed apart from the intersection 7a of the intersection portion 7 of the column 4 and the beam 5. Therefore, the plate portions 2a and 2b do not hinder the deformation of the pillar 4 and the beam 5 when a load is applied to the building.

一方、板ばね部11は、前述したように、湾曲部8及び延設部10a,10bから主として構成されており、さらに、延設部10a,10bには、プレート部2a,2bの固定ボルト孔15と相対する位置に、ばね孔16がそれぞれ穿設されている。なお、板ばね部11は、プレート部2a,2bに、前述の固定ボルト14a,14bの先端に設けられた雄ねじに対し、螺合可能に形成された雌ねじを有する固定ナット17a,17b、及び固定ナット17a等と延設部10a等との間に介入される固定ワッシャ18を利用して接合されている。   On the other hand, as described above, the leaf spring portion 11 is mainly composed of the curved portion 8 and the extending portions 10a and 10b. Further, the extending portions 10a and 10b include fixing bolt holes of the plate portions 2a and 2b. Spring holes 16 are formed at positions opposite to 15. The plate spring portion 11 is fixed to the plate portions 2a and 2b by fixing nuts 17a and 17b having female screws formed so as to be screwable with the male screws provided at the tips of the fixing bolts 14a and 14b. It joins using the fixed washer 18 intervened between nut 17a etc. and the extension part 10a etc. FIG.

なお、本実施形態の耐震補強材1の全体のサイズは、柱4及び梁5の交錯部7の交錯点7aからプレート部2a,2bのそれぞれの他端部20a,20b(板ばね部11の延設部10a,10bの延設端にも相当)までの長さが300mmになり、かつ交錯部7の交錯点7aからプレート部2a,2bの一端部19a,19bまでの長さが20mmになるようにそれぞれ設定されている。さらに、プレート部2a,2b及び板ばね部11の幅は、それぞれ90mmに設定されている。これにより、300mm×300mm×90mmの範囲に本実施形態の耐震補強材1を納めることができる。   The overall size of the seismic reinforcement 1 of the present embodiment is such that the other end portions 20a and 20b of the plate portions 2a and 2b from the crossing point 7a of the crossing portion 7 of the column 4 and the beam 5 (the leaf spring portion 11). The length from the crossing point 7a of the crossing part 7 to the one end part 19a, 19b of the plate part 2a, 2b is 20 mm. Each is set to be. Further, the widths of the plate portions 2a and 2b and the leaf spring portion 11 are set to 90 mm, respectively. Thereby, the seismic reinforcement 1 of this embodiment can be stored in the range of 300 mm x 300 mm x 90 mm.

次に、本実施形態の耐震補強材1の使用、及び荷重によって変形した場合の一例を主に図5に基づいて説明する。ここで、柱4を挟んで左右対称となるように一対の耐震補強材1が取設されている。そして、地震が発生し、本実施形態の耐震補強材1の取付けられた建築物に所定方向(例えば、図5における紙面横方向F)の揺れが生じると、該揺れによって建築物に荷重がかかり、柱4及び梁5の交錯した交錯部7において、柱4及び梁5の間をなす角が変化する。ここで、柱4及び梁5の間の角度θa(図2参照)は通常では約90度である。しかしながら、横揺れによる荷重が発生すると、図5における紙面左方向の角度θbは、90度以上に変化し、一方、紙面右方向の角度θcは、90度以下に変形する。   Next, an example of the case where the seismic reinforcement 1 according to this embodiment is used and deformed due to a load will be mainly described with reference to FIG. Here, a pair of seismic reinforcing members 1 are installed so as to be symmetric with respect to the column 4. Then, when an earthquake occurs and a swing in a predetermined direction (for example, the horizontal direction F in FIG. 5) occurs in the building to which the seismic reinforcement 1 of this embodiment is attached, a load is applied to the building due to the swing. In the intersecting portion 7 where the pillars 4 and the beams 5 intersect, the angle between the pillars 4 and the beams 5 changes. Here, the angle θa (see FIG. 2) between the column 4 and the beam 5 is usually about 90 degrees. However, when a load due to rolling occurs, the angle θb in the left direction in FIG. 5 changes to 90 degrees or more, while the angle θc in the right direction in the figure changes to 90 degrees or less.

このとき、紙面左方向の柱4及び梁5には引張荷重Tが生じ、紙面右方向の柱4及び梁5には圧縮荷重Pが生じている。そして、本実施形態の耐震補強材1は、各々の荷重T,Pを弾性変形可能な板ばね部11によって吸収し、さらに板ばね部11の復元力によって、荷重T等が消失した場合に元の状態(図2参照)に復帰させることができる。特に、図5において示したように、一対の耐震補強材1を左右対称に配することにより、双方の荷重に対して一度に対応することができ、建築物の耐震性をより向上させることができる。   At this time, a tensile load T is generated in the column 4 and the beam 5 in the left direction of the drawing, and a compressive load P is generated in the column 4 and the beam 5 in the right direction of the drawing. And the seismic reinforcement 1 of this embodiment absorbs each load T and P with the elastically deformable leaf | plate spring part 11, and when load T etc. lose | disappear with the restoring force of the leaf | plate spring part 11, it is original. (See FIG. 2). In particular, as shown in FIG. 5, by arranging the pair of seismic reinforcements 1 symmetrically, it is possible to cope with both loads at once and to further improve the earthquake resistance of the building. it can.

さらに、300mm四方のサイズ及び柱4よりも狭幅(90mm)に形成されているため、壁材の内部に通される電気配線等にそれほど影響を与えることがなく、かつ十分な耐震性を持たせることができる。特に、板ばね部11が交錯部7に向かって突出しているため、従来の柱及び梁に対して斜めに架渡されたコイルばねに比べ、電気配線等が、本発明の耐震補強材1の側に多少はみ出したとしても特に問題が生じない。そのため、係る電気配線等の配設に余裕を持つことができる。   Furthermore, because it is 300 mm square and narrower (90 mm) than the pillar 4, it does not significantly affect the electrical wiring that passes through the interior of the wall material, and has sufficient earthquake resistance. Can be made. In particular, since the leaf spring portion 11 protrudes toward the crossing portion 7, the electrical wiring and the like of the seismic reinforcing material 1 of the present invention are compared to the conventional coil springs that are slanted over the pillars and beams. Even if it protrudes to the side, there is no particular problem. Therefore, it is possible to have a margin in the arrangement of the electric wiring and the like.

加えて、本実施形態の耐震補強材1は、柱4及び梁5等に取設する際の作業にそれほどの労力を要しない。すなわち、予め所定の曲率等に湾曲された湾曲部8を有する板ばね部11をプレート部2a,2bに単純に取付けるだけであるため、従来のように、コイルばねを予め所定方向に圧縮若しくは引張って柱4及び梁5の間にテンションがかかった状態にする必要がなく、作業負担を軽減することができる。さらに、板ばね部11を変更することにより、圧縮荷重P及び引張荷重Tに対する耐荷重能力を適宜調整することができる。また、板ばね部11が直接柱4及び梁5に固定されておらず、プレート部2a,2bを介して取付られているため、前述の板ばね部11の変更をより容易に行うことができる。   In addition, the seismic reinforcement 1 according to the present embodiment does not require much labor for the work for installing the column 4 and the beam 5 or the like. That is, since the leaf spring portion 11 having the curved portion 8 curved in advance with a predetermined curvature or the like is simply attached to the plate portions 2a and 2b, the coil spring is previously compressed or tensioned in a predetermined direction as in the prior art. Thus, it is not necessary to apply a tension between the column 4 and the beam 5, and the work load can be reduced. Furthermore, by changing the leaf spring portion 11, the load bearing capacity against the compressive load P and the tensile load T can be adjusted as appropriate. Moreover, since the leaf | plate spring part 11 is not directly fixed to the pillar 4 and the beam 5, but is attached via plate part 2a, 2b, the change of the above-mentioned leaf | plate spring part 11 can be performed more easily. .

そのため、図6(a),(b)に示すように、木造建築物3の各々の柱4及び梁5若しくは土台5aに対し、それぞれの交錯部7に対して上下及び左右が対称になるように配することにより、木造建築物3全体の耐震性を高めることができる。   Therefore, as shown in FIGS. 6A and 6B, the vertical and horizontal directions are symmetrical with respect to the crossing portions 7 with respect to the pillars 4 and the beams 5 or the bases 5 a of the wooden building 3. By arranging in, the earthquake resistance of the whole wooden building 3 can be improved.

以上、本発明について好適な実施形態を挙げて説明したが、本発明はこれらの実施形態に限定されるものではなく、以下に示すように、本発明の要旨を逸脱しない範囲において、種々の改良及び設計の変更が可能である。   The present invention has been described with reference to preferred embodiments. However, the present invention is not limited to these embodiments, and various modifications can be made without departing from the spirit of the present invention as described below. And design changes are possible.

すなわち、本実施形態の耐震補強材1において、主として木造建築物3に対して適用するものを示したが、これに限定されるものではなく、その他RC工法などによって施工されたコンクリート建築物等に対して適用するものであってももちろん構わない。   That is, in the seismic reinforcement 1 of this embodiment, what was mainly applied with respect to the wooden building 3 was shown, However, It is not limited to this, For the concrete building etc. which were constructed by other RC methods etc. Of course, it does not matter even if it applies to.

耐震補強材の構成を示す分解斜視図である。It is a disassembled perspective view which shows the structure of a seismic reinforcement. 耐震補強材の取付例を示す側面図である。It is a side view which shows the example of attachment of a seismic reinforcement. 耐震補強材の取付例を示す正面図である。It is a front view which shows the example of attachment of a seismic reinforcement. プレート部の構成を示す正面図である。It is a front view which shows the structure of a plate part. 圧縮荷重及び引張荷重に対する耐震補強材の変形を模式的に示す説明図である。It is explanatory drawing which shows typically a deformation | transformation of the earthquake-proof reinforcement material with respect to a compressive load and a tensile load. 木造建築物に対する適用例を模式的に示す(a)側面図、及び(b)平面図である。It is the (a) side view and (b) top view which show typically the example of application with respect to a wooden building.

符号の説明Explanation of symbols

1 耐震補強材
2a,2b プレート部(支持板部)
3 木造建築物
4 柱
5 梁(横架材)
5a 土台(横架材)
6 対向面
7 交錯部
7a 交錯点
8 湾曲部
9a,9b 湾曲端部
10a,10b 延設部
11 板ばね部
19a,19b 一端部
20a,20b 他端部
P 圧縮荷重
T 引張荷重
1 Seismic reinforcement 2a, 2b Plate part (support plate part)
3 Wooden buildings 4 Pillars 5 Beams (horizontal materials)
5a Foundation (horizontal material)
6 opposing surface 7 crossing part 7a crossing point 8 bending part 9a, 9b bending end part 10a, 10b extension part 11 leaf spring part 19a, 19b one end part 20a, 20b other end part P compression load T tensile load

Claims (3)

柱、及び前記柱に直交して配される梁及び土台を含む横架材が交錯する交錯部近傍に設けられ、前記交錯部の交錯点から各々の一端部を離間させた状態で、互いに対向する前記柱及び前記横架材の対向面にそれぞれ固定される略板状を呈する一対の支持板部と、
前記交錯点に向かって凸状に湾曲した略円弧状形状の湾曲部、及び前記湾曲部の湾曲端部からそれぞれ延設された一対の延設部を有し、前記支持板部の間を各々の前記延設部によって連結した弾性変形可能な板ばね部と
を具備することを特徴とする耐震補強材。
It is provided in the vicinity of the intersection where the columns and the horizontal members including the beams and the bases arranged orthogonally to the columns intersect, and facing each other in a state in which each end is separated from the intersection of the intersections A pair of support plate portions each having a substantially plate shape fixed to the opposing surfaces of the pillar and the horizontal member,
A curved portion having a substantially arc shape that is convexly curved toward the intersection point, and a pair of extending portions that are respectively extended from the curved end portions of the curved portion, and each between the support plate portions And an elastically deformable leaf spring portion connected by the extending portion.
上下対称及び左右対称のいずれか一方に相対する一対の前記交錯部近傍にそれぞれ配設されていることを特徴とする請求項1に記載の耐震補強材。   The seismic reinforcing material according to claim 1, wherein the seismic reinforcing material is disposed in the vicinity of the pair of intersecting portions opposed to either one of vertical symmetry and left-right symmetry. 前記交錯部の前記交錯点から、前記支持板部の他端部までの長さが200mm以上、400mm以下に設定され、
前記支持板部及び前記板ばね部の少なくともいずれか一方の幅が80mm以上、100mm以下に設定されていることを特徴とする請求項1または請求項2に記載の耐震補強材。
The length from the intersection point of the intersection part to the other end of the support plate part is set to 200 mm or more and 400 mm or less,
The earthquake-resistant reinforcing material according to claim 1 or 2, wherein a width of at least one of the support plate portion and the leaf spring portion is set to 80 mm or more and 100 mm or less.
JP2004078828A 2004-03-18 2004-03-18 Seismic reinforcement Expired - Lifetime JP4177776B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004078828A JP4177776B2 (en) 2004-03-18 2004-03-18 Seismic reinforcement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004078828A JP4177776B2 (en) 2004-03-18 2004-03-18 Seismic reinforcement

Publications (2)

Publication Number Publication Date
JP2005264564A true JP2005264564A (en) 2005-09-29
JP4177776B2 JP4177776B2 (en) 2008-11-05

Family

ID=35089401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004078828A Expired - Lifetime JP4177776B2 (en) 2004-03-18 2004-03-18 Seismic reinforcement

Country Status (1)

Country Link
JP (1) JP4177776B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009287377A (en) * 2008-04-28 2009-12-10 Token Corp Vibration control device, vibration-control structure and vibration-control panel
CN102277979A (en) * 2011-05-04 2011-12-14 南京工业大学 Wood structure tenon-and-mortise joint reinforced by energy-consuming arc-shaped steel plate
CN103711226A (en) * 2014-01-14 2014-04-09 南京林业大学 Reinforced wood structure mortise and tenon node of semi-rigid energy consumption device
CN106013495A (en) * 2016-07-13 2016-10-12 大连理工大学 Arc damper for node energy consumption and shock absorption of prefabricated structure
JP2017203363A (en) * 2016-05-12 2017-11-16 一夫 有▲吉▼ Cushioning-type aseismatic structure for house
CN107419916A (en) * 2017-06-02 2017-12-01 哈尔滨工业大学(威海) Internal moment reinforcing and correcting device for beam structure
CN109653530A (en) * 2019-01-16 2019-04-19 西安建筑科技大学 A kind of ancient architecture suspension column bracing means
CN112095791A (en) * 2020-09-11 2020-12-18 西安建筑科技大学 Shape memory alloy damper enhanced mortise and tenon joint and enhancement method thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009287377A (en) * 2008-04-28 2009-12-10 Token Corp Vibration control device, vibration-control structure and vibration-control panel
JP2012127189A (en) * 2008-04-28 2012-07-05 Token Corp Vibration control device, vibration control structure and vibration control panel
CN102277979A (en) * 2011-05-04 2011-12-14 南京工业大学 Wood structure tenon-and-mortise joint reinforced by energy-consuming arc-shaped steel plate
CN103711226A (en) * 2014-01-14 2014-04-09 南京林业大学 Reinforced wood structure mortise and tenon node of semi-rigid energy consumption device
CN103711226B (en) * 2014-01-14 2015-12-30 南京林业大学 Semi-rigid energy-dissipating device reinforces wooden construction Tenon node
JP2017203363A (en) * 2016-05-12 2017-11-16 一夫 有▲吉▼ Cushioning-type aseismatic structure for house
CN106013495A (en) * 2016-07-13 2016-10-12 大连理工大学 Arc damper for node energy consumption and shock absorption of prefabricated structure
CN107419916A (en) * 2017-06-02 2017-12-01 哈尔滨工业大学(威海) Internal moment reinforcing and correcting device for beam structure
CN107419916B (en) * 2017-06-02 2019-12-13 哈尔滨工业大学(威海) Internal moment reinforcing and correcting device for beam structure
CN109653530A (en) * 2019-01-16 2019-04-19 西安建筑科技大学 A kind of ancient architecture suspension column bracing means
CN112095791A (en) * 2020-09-11 2020-12-18 西安建筑科技大学 Shape memory alloy damper enhanced mortise and tenon joint and enhancement method thereof

Also Published As

Publication number Publication date
JP4177776B2 (en) 2008-11-05

Similar Documents

Publication Publication Date Title
JP6437685B1 (en) Seismic reinforcement device for existing buildings
JP5714136B2 (en) Circular brace and its construction method
JP4177776B2 (en) Seismic reinforcement
JP4794204B2 (en) Seismic isolation device
JP4664997B2 (en) Buildings with joint hardware
JPH0366473B2 (en)
JP4853422B2 (en) Gate frame with connection of composite beams and wooden columns
KR20170066193A (en) Connecting structure of beam and column of a building and method of manufacturing using the same
JPH11350778A (en) Vibration damper and vibration-damping structure
JPH10131543A (en) Vibration-mitigating structural member
JP3897648B2 (en) Seismic control structure of reinforced concrete building
JP2005083136A (en) Composite structure support
JP3360230B2 (en) Framed braces and cross braces
JP3631965B2 (en) Bridge and seismic strength reinforcement method for bridge
JP4933229B2 (en) Seismic reinforcement structure
JP3127214U (en) Bracing unit
JP2003184176A (en) Structure for joining column and beam together
JP4607978B2 (en) Reinforcement structure of bracing in wooden buildings
JP2014118801A (en) Aseismatic reinforcement structure of wooden house
JP2002188314A (en) Wall structure having good aseismic property, construction method for it, and wall panel for applying high wall strength and attenuation function
KR102337874B1 (en) Rapid reinforcement support for H-beam columns in earthquake-damaged buildings
JP3739372B2 (en) Bracing structure in wooden buildings
JP3128455U (en) Seismic isolation structure that joins columns, beams and hardware
JP2004316253A (en) Composite-structure framework
JP5520745B2 (en) Fastener

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080822

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4177776

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term