JPH1025555A - Production of aluminum alloy rolled sheet for resin-coated building material excellent in strength an bendability - Google Patents

Production of aluminum alloy rolled sheet for resin-coated building material excellent in strength an bendability

Info

Publication number
JPH1025555A
JPH1025555A JP19700796A JP19700796A JPH1025555A JP H1025555 A JPH1025555 A JP H1025555A JP 19700796 A JP19700796 A JP 19700796A JP 19700796 A JP19700796 A JP 19700796A JP H1025555 A JPH1025555 A JP H1025555A
Authority
JP
Japan
Prior art keywords
strength
conditions
less
temperature
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19700796A
Other languages
Japanese (ja)
Other versions
JP3274808B2 (en
Inventor
Sotaro Sekida
関田宗太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sky Aluminium Co Ltd
Original Assignee
Sky Aluminium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sky Aluminium Co Ltd filed Critical Sky Aluminium Co Ltd
Priority to JP19700796A priority Critical patent/JP3274808B2/en
Publication of JPH1025555A publication Critical patent/JPH1025555A/en
Application granted granted Critical
Publication of JP3274808B2 publication Critical patent/JP3274808B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)
  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve a bendability of an alloy sheet without deteriorating its strength even by high temp. baking finish by subjecting an Al alloy ingot having a specified compsn. to heat treatment or the like under prescribed conditions. SOLUTION: An Al alloy contains, by weight, 0.5 to 1.6% Mn and furthermore contains a small amt. of Fe, Si, Cu, Mg, Zn, Cr, Zr, V or the like for the impartment of strength. The ingot having the aforesaid compsn. is subjected to soaking treatment, hot rolling, primary cold rolling and process annealing in succession to obtain fine recrystallized grains. Then, secondary cold rolling is executed for improving its strength. Thereafter, final annealing is executed, and the temp. and holding time are prescribed so as to be regulated to the conditions in fluororesin coating finish or above and also not so as to produce new recrystallized grains. In this way, deterioration in its strength and deformation after baking finish do not occur. For example, in the case of a batch annealing furnace, it is executed under the conditions of 240 to 350 deg.C×0.5 to 24hr. As a result, the alloy sheet having >=110N/mm<2> proof stress, and in which the average grain diameter in the rolled face is regulated to <=80μm can be obtd.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、高強度を維持
し、曲げ加工性を改善した樹脂塗装建材用アルミニウム
合金圧延板の製造方法に関し、特に弗素樹脂のような高
温焼付を施す樹脂塗装建材用アルミニウム合金圧延板の
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a rolled aluminum alloy plate for resin-coated building material which maintains high strength and has improved bending workability, and more particularly to a resin-coated building material subjected to high-temperature baking such as fluororesin. The present invention relates to a method for manufacturing a rolled aluminum alloy plate.

【0002】[0002]

【従来の技術】樹脂塗装建材は、最近、弗素樹脂のよう
な高温焼付塗料を用い、かつ、90゜曲げ以上の100
〜180゜の厳しい曲げ加工の施工デザインとなるケー
スがあり、この場合、従来材では強度が不足したり曲げ
加工時割れてしまうという不都合が生じる。例えば、従
来(イ)高温焼付塗装性に優れた建築用アルミニウム板
の製造方法(特開平6−172945)、(ロ)強度と
曲げ加工性に優れた樹脂塗装建材用アルミニウム合金圧
延板およびその製造方法(特開平6−212333)が
知られている。しかしながら、(イ)は曲げ加工性では
そこそこ優れた効果があるものの、弗素樹脂焼付塗装条
件(通常240〜280℃×20min)が上限(28
0℃×20min)となった場合の耐力は、ほとんど1
10N/mm2以下の低強度となってしまい、これを解
決することは困難である。また(ロ)は耐力では優れた
効果があるものの、90゜曲げ以上の曲げ加工、例えば
120〜180゜の曲げ加工では割れが発生してしま
い、これも解決することは困難である。
2. Description of the Related Art Recently, high-temperature baking paints such as fluororesins have been used for resin-coated building materials, and a resin material having a bending strength of 90 ° or more has been used.
There is a case where a severe bending work design of up to 180 ° is made, and in this case, there is a problem that the conventional material has insufficient strength or breaks during bending. For example, conventional (a) a method for producing an aluminum plate for building having excellent high-temperature baking coating properties (Japanese Patent Laid-Open No. 6-172945), (b) a rolled aluminum alloy sheet for resin-coated building materials having excellent strength and bending workability and production thereof A method (JP-A-6-212333) is known. However, although (a) has a modestly superior effect on bending workability, the upper limit (28) is set under the condition of baking with fluororesin (usually 240 to 280 ° C. × 20 min).
(0 ° C. × 20 min), the yield strength is almost 1
The strength is as low as 10 N / mm 2 or less, and it is difficult to solve this. Although (b) has an excellent effect on the proof stress, cracking occurs in bending at a bending of 90 ° or more, for example, bending at 120 to 180 °, and it is difficult to solve this.

【0003】[0003]

【発明が解決しようとする課題】この発明は上記の従来
技術の欠点を解消し、高温焼付塗装によっても強度(耐
力110N/mm2以上)を損なうことなく曲げ加工性
を向上したアルミニウム合金板の製造方法を提供するこ
とを目的とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned drawbacks of the prior art and provides an aluminum alloy sheet having improved bending workability without loss of strength (proof strength of 110 N / mm 2 or more) even by high-temperature baking coating. It is intended to provide a manufacturing method.

【0004】[0004]

【課題を解決するための手段】本発明者らは上記課題を
解決するためにAl板の成分組成と製造条件を検討した
結果、本発明を完成したものである。すなわち本発明
は、Mn:0.5〜1.6%(重量%、以下同じ)、F
e:0.10〜0.8%を含み、さらに、Si:0.0
5〜0.5%、Cu:0.05〜0.5%、Mg:0.
05〜0.3%、Zn:0.05〜0.5%、Cr:
0.05〜0.3%、Zr:0.05〜0.2%、V:
0.05〜0.2%の一種以上を含み残部不可避不純物
およびAlとからなるAl合金鋳塊を、500℃を超え
640℃以下の温度で均熱処理し、熱間圧延を550℃
以下の温度で開始し300℃以下で終了し、冷間圧延を
40%以上施した後、A、300〜500℃×0.5〜
24hr または B、400〜620℃×0(保持な
し)〜10min の条件で中間焼鈍し再結晶させ、さ
らに冷間圧延を15〜35%施した後、C、240〜3
50℃×0.5〜24hr または D、300〜50
0℃×0(保持なし)〜10min の条件で新たな再
結晶を生じない最終焼鈍を施す、そして最終焼鈍後に、
耐力が110N/mm2以上で、圧延面の平均結晶粒径
が80μm以下であることを特徴とする強度と曲げ加工
性に優れた樹脂塗装建材用アルミニウム合金圧延板の製
造方法を要旨としている。
Means for Solving the Problems The present inventors have studied the component composition and manufacturing conditions of an Al plate in order to solve the above problems, and as a result, have completed the present invention. That is, in the present invention, Mn: 0.5 to 1.6% (% by weight, hereinafter the same), F
e: 0.10 to 0.8%, and further, Si: 0.0
5 to 0.5%, Cu: 0.05 to 0.5%, Mg: 0.
05-0.3%, Zn: 0.05-0.5%, Cr:
0.05-0.3%, Zr: 0.05-0.2%, V:
An Al alloy ingot containing one or more of 0.05% to 0.2% and the balance of unavoidable impurities and Al is soaked at a temperature of more than 500 ° C. and 640 ° C. or less, and hot rolling is performed at 550 ° C.
Starting at the following temperature, ending at 300 ° C or less, and performing cold rolling at 40% or more, A, 300-500 ° C × 0.5-
24 hr or B, 400-620 ° C. × 0 (no holding) to 10 min, intermediate annealing and recrystallization, and after cold rolling 15-35%, C, 240-3
50 ° C x 0.5 to 24 hours or D, 300 to 50
A final annealing that does not cause new recrystallization is performed under the conditions of 0 ° C. × 0 (no holding) to 10 min, and after the final annealing,
The gist of the present invention is a method for producing a rolled aluminum alloy plate for resin-coated building material having excellent strength and bending workability, wherein the yield strength is 110 N / mm 2 or more and the average crystal grain size of the rolled surface is 80 μm or less.

【0005】[0005]

【発明の実施の形態】まず、本発明における化学成分の
限定理由を説明する。 Mn:Mnは強度を向上する元素であり、0.5%未満
ではその効果が小さく、1.6%を超えると向上しすぎ
て曲げ加工性が低下する。従って、Mn量は0.5〜
1.6%の範囲とする。 Fe:Feは強度に寄与するが、鋳造時にMnと化合し
てAl−Mn−Fe系晶出化合物となり曲げ加工性を阻
害する元素である、0.10%未満では必要強度が得ら
れず、0.8%を超えると曲げ加工性を著しく阻害す
る。従って、Fe量は0.10〜0.8%の範囲とす
る。 Si:Siは強度を付与する元素であるが、0.05%
未満では効果が無く、0.5%を超えると強度の向上が
飽和して、それ以上添加しても無駄である。従って、S
i量は0.05〜0.5%の範囲とする。 Cu:Cuは強度を付与する元素であるが、0.05%
未満では効果が無く、0.5%を超えると耐食性が劣化
するので好ましくない。従って、Cu量は0.05〜
0.5%の範囲とする。 Mg:Mgは固溶して強度を向上する元素であり、0.
05%未満ではその効果が小さく、0.3%を超えると
向上しすぎて曲げ加工性が低下する。従って、Mg量は
0.05〜0.3%の範囲とする。 Zn:Znは強度を付与する元素であるが、0.05%
未満では効果が無く、0.5%を超えると耐食性が劣化
するので好ましくない。従って、Zn量は0.03〜
0.5%の範囲とする。 Cr:Crは強度向上に寄与する元素であるが、0.0
5%未満では効果が無く、0.3%を超えると巨大化合
物が生成され曲げ加工性が低下する。従って、Cr量は
0.05〜0.3%の範囲とする。 Zr,V:ZrおよびVは強度を付与する元素である
が、0.05%未満ではその効果が無く、0.2%を超
えると巨大化合物が生成され曲げ加工性が低下するので
好ましくない。従って、Zr量およびV量は0.05〜
0.2%の範囲とする。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First, the reasons for limiting the chemical components in the present invention will be described. Mn: Mn is an element that improves the strength. If it is less than 0.5%, its effect is small, and if it exceeds 1.6%, it is excessively improved and the bending workability is reduced. Therefore, the amount of Mn is 0.5 to
The range is 1.6%. Fe: Fe contributes to the strength, but is an element that combines with Mn during casting to become an Al—Mn—Fe crystallized compound and inhibits bending workability. If less than 0.10%, the required strength cannot be obtained. If it exceeds 0.8%, bending workability is significantly impaired. Therefore, the Fe content is in the range of 0.10 to 0.8%. Si: Si is an element that imparts strength, but 0.05%
If it is less than 0.5%, there is no effect, and if it exceeds 0.5%, the improvement in strength saturates, and it is useless to add more. Therefore, S
The i amount is in the range of 0.05 to 0.5%. Cu: Cu is an element that imparts strength, but 0.05%
If it is less than 0.5%, there is no effect, and if it exceeds 0.5%, the corrosion resistance is undesirably deteriorated. Therefore, the amount of Cu is 0.05 to
The range is 0.5%. Mg: Mg is an element that improves strength by forming a solid solution.
If it is less than 05%, the effect is small, and if it exceeds 0.3%, it is excessively improved and the bending workability is reduced. Therefore, the Mg content is in the range of 0.05 to 0.3%. Zn: Zn is an element that imparts strength, but 0.05%
If it is less than 0.5%, there is no effect, and if it exceeds 0.5%, the corrosion resistance is undesirably deteriorated. Therefore, the amount of Zn is 0.03-
The range is 0.5%. Cr: Cr is an element contributing to the improvement of the strength.
If it is less than 5%, there is no effect, and if it exceeds 0.3%, a giant compound is formed and bending workability is reduced. Therefore, the Cr content is in the range of 0.05 to 0.3%. Zr, V: Zr and V are elements that impart strength. However, if the content is less than 0.05%, the effect is not obtained. If the content is more than 0.2%, a giant compound is generated and bending workability is deteriorated. Therefore, the amount of Zr and the amount of V are 0.05 to
The range is 0.2%.

【0006】上記元素以外は不純物あるいは任意添加元
素である。 Ti,B:通常のアルミニウム合金においては、鋳塊の
微細化のために、Ti単独もしくはTiとBを複合添加
することが行なわれている。本発明においてもTi単独
もしくはTiとBを複合添加しても良い。その場合、T
i量は0.005%未満では効果が無く、0.15%を
超えると初晶TiAl3が晶出して曲げ加工性が阻害さ
れるので、Ti量は0.005〜0.15%の範囲とす
る。また、TiとともにBを添加する場合のB量は、1
ppm未満では効果が無く、500ppmを超えるとT
iB2が生成して曲げ加工性が阻害されるので、B量は
1〜500ppmとする。 Be:Beは、溶湯酸化の防止のために添加する場合が
あるが、本発明においても添加しても良い。その場合の
Be量は、1ppm未満では効果が無く、500ppm
を超えると効果が飽和して、それ以上添加することは無
駄である。従って、Be量は1〜500ppmの範囲と
する。また、アルミニウム地金に起因するNa、Ca、
Pb、Bi、Ga、Sn、Ni等の不純物は各々単独で
200ppm未満に抑えることが好ましい。
[0006] Other than the above elements are impurities or optional addition elements. Ti, B: In an ordinary aluminum alloy, Ti alone or a combination of Ti and B is added in order to refine the ingot. In the present invention, Ti alone or a combination of Ti and B may be added. In that case, T
If the i content is less than 0.005%, there is no effect, and if it exceeds 0.15%, primary crystal TiAl 3 is crystallized and bending workability is impaired, so the Ti content is in the range of 0.005 to 0.15%. And When B is added together with Ti, the amount of B is 1
If it is less than 500 ppm, there is no effect, and if it exceeds 500 ppm, T
Because workability iB 2 is bent to produce is inhibited, B content is set to 1 to 500 ppm. Be: Be may be added to prevent oxidation of the molten metal, but may also be added in the present invention. If the amount of Be in this case is less than 1 ppm, there is no effect, and 500 ppm
If the amount exceeds, the effect is saturated, and adding more than that is useless. Therefore, the Be amount is in the range of 1 to 500 ppm. In addition, Na, Ca,
It is preferable that impurities such as Pb, Bi, Ga, Sn, and Ni are each independently suppressed to less than 200 ppm.

【0007】次に、アルミニウム合金圧延板の製造方法
について工程順に説明する。 [鋳造]鋳造法は特に限定されず、常法によって鋳塊を
作ればよいが、DC鋳造法(半連続鋳造法)が望まし
い。 [均熱処理]均熱処理は中間焼鈍工程で微細再結晶粒を
得るために行なうが、均熱温度が500℃以下ではAl
6Mn析出物が微小となって中間焼鈍で微細再結晶粒が
得られにくく、640℃を超えると溶解の恐れがある。
従って均熱温度は500℃を超え640℃以下、好まし
くは560℃を超え640℃以下の範囲とする。また、
保持時間は温度にもよるが1〜30hrとすれば本発明
の目的は達成する。 [加熱処理および熱間圧延]熱間圧延終了温度を再結晶
温度以下の300℃以下に抑えるために熱間圧延開始温
度は550℃以下とする。熱間圧延開始温度が550℃
を超えると熱間圧延終了温度が300℃を超えてしまっ
て全面または部分的再結晶を起こし、結晶粒粗大化や強
度低下を招いてしまうので好ましくない。熱間圧延のた
めの加熱はこの熱間圧延条件を満たすように行なう。た
だし、加熱処理は、均熱処理後の鋳塊が550℃以下に
徐冷されるのを待って熱間圧延を行なう場合は省略して
もよい。 [一次冷間圧延]一次冷間圧延は、次の中間焼鈍工程で
微細再結晶粒を得て、曲げ加工時の肌荒れ防止のために
行なうが、40%未満の圧延率では再結晶粒が80μm
を超えて粗大化し肌荒れが目立ってしまう。従って、肌
荒れ防止のために一次冷間圧延率は40%以上とする。 [中間焼鈍]中間焼鈍は再結晶粒を得るために行い、バ
ッチ焼鈍炉、連続焼鈍炉のいずれを用いてもかまわな
い。再結晶粒を得る目的のため、バッチ焼鈍炉を用いる
場合は再結晶温度の300℃以上で、連続焼鈍炉を用い
る場合は時間が短いので400℃以上で行なう。また、
バッチ焼鈍炉では500℃、連続焼鈍炉では620℃を
それぞれ超えると粗大結晶粒となって曲げ加工時に肌荒
れを招く場合がある。従って中間焼鈍は、バッチ焼鈍炉
では 300〜500℃×0.5〜24hr、連続焼鈍
炉では400〜620℃×0(保持なし)〜10min
の条件で行なう。 [二次冷間圧延(最終冷間圧延)]二次冷間圧延は強度
向上のために行なうが、冷間圧延率15%未満では最終
焼鈍によって本発明の強度目標を下回り、35%を超え
ると最終焼鈍によって強度と曲げ加工性のバランスが崩
れて本発明の目標を達成しない。従って二次冷間圧延は
15〜35%の範囲とする。 [最終焼鈍]最終焼鈍の温度・保持時間の条件は、弗素
樹脂焼付塗装条件(240〜280℃×20min)以
上でかつ新たな再結晶粒が生じない条件と規定する。こ
うすることにより、弗素樹脂焼付塗装後の強度低下や変
形は起こらない。また、バッチ焼鈍炉、連続焼鈍炉のど
ちらを用いても良い。バッチ焼鈍炉を用いる場合は24
0℃以上、連続焼鈍炉を用いる場合は時間が短いので3
00℃以上で行なう。また、バッチ焼鈍炉では350
℃、連続焼鈍炉では500℃を超えると新たな再結晶粒
が生じて強度が低下する。従って最終焼鈍は、バッチ焼
鈍炉では240〜350℃×0.5〜24hr、連続焼
鈍炉では300〜500℃×0(保持なし)〜10mi
nの条件で行なう。
Next, a method of manufacturing a rolled aluminum alloy sheet will be described in the order of steps. [Casting] The casting method is not particularly limited, and an ingot may be made by a conventional method, but a DC casting method (semi-continuous casting method) is preferable. [Soaking heat treatment] The soaking heat treatment is performed to obtain fine recrystallized grains in the intermediate annealing step.
6 Mn precipitates are minute, and it is difficult to obtain fine recrystallized grains by intermediate annealing. If the temperature exceeds 640 ° C., there is a possibility of melting.
Therefore, the soaking temperature is in the range of more than 500 ° C and 640 ° C or less, preferably more than 560 ° C and 640 ° C or less. Also,
Although the holding time depends on the temperature, the object of the present invention is achieved by setting it to 1 to 30 hours. [Heat treatment and hot rolling] The hot rolling start temperature is set to 550 ° C or lower in order to keep the hot rolling end temperature at 300 ° C or lower, which is lower than the recrystallization temperature. Hot rolling start temperature is 550 ℃
If the temperature exceeds 300 ° C., the hot rolling end temperature will exceed 300 ° C., and the whole or partial recrystallization will occur, which will lead to coarsening of crystal grains and reduction in strength, which is not preferable. Heating for hot rolling is performed so as to satisfy the hot rolling conditions. However, the heat treatment may be omitted when hot rolling is performed after the ingot after the soaking is gradually cooled to 550 ° C. or lower. [Primary cold rolling] Primary cold rolling is performed to obtain fine recrystallized grains in the next intermediate annealing step and to prevent surface roughness during bending, but at a rolling reduction of less than 40%, the recrystallized grains have a size of 80 µm.
And the skin becomes rougher. Therefore, the primary cold rolling rate is set to 40% or more to prevent roughening of the surface. [Intermediate annealing] Intermediate annealing is performed to obtain recrystallized grains, and any of a batch annealing furnace and a continuous annealing furnace may be used. For the purpose of obtaining recrystallized grains, when using a batch annealing furnace, the recrystallization temperature is 300 ° C. or higher, and when using a continuous annealing furnace, the process is performed at 400 ° C. or higher because of a short time. Also,
If the temperature exceeds 500 ° C. in a batch annealing furnace and 620 ° C. in a continuous annealing furnace, coarse crystal grains are formed, which may cause roughening during bending. Therefore, the intermediate annealing is performed at 300 to 500 ° C. × 0.5 to 24 hours in the batch annealing furnace and 400 to 620 ° C. × 0 (no holding) to 10 min in the continuous annealing furnace.
The conditions are as follows. [Secondary Cold Rolling (Final Cold Rolling)] The secondary cold rolling is performed to improve the strength. However, if the cold rolling reduction is less than 15%, the final annealing falls below the strength target of the present invention and exceeds 35%. In addition, the balance between strength and bending workability is lost due to final annealing, and the object of the present invention is not achieved. Therefore, the secondary cold rolling is set in the range of 15 to 35%. [Final annealing] The conditions of the temperature and the holding time of the final annealing are defined as conditions that are higher than or equal to the fluororesin baking coating conditions (240 to 280 ° C x 20 min) and that no new recrystallized grains are generated. By doing so, there is no reduction in strength or deformation after the baking of the fluororesin. Either a batch annealing furnace or a continuous annealing furnace may be used. 24 when using a batch annealing furnace
When using a continuous annealing furnace at 0 ° C or higher, since the time is short, 3
Perform at 00 ° C or higher. In a batch annealing furnace, 350
If the temperature exceeds 500 ° C. in a continuous annealing furnace at a temperature of 500 ° C., new recrystallized grains are generated and the strength is reduced. Therefore, the final annealing is performed at 240 to 350 ° C. × 0.5 to 24 hours in the batch annealing furnace, and at 300 to 500 ° C. × 0 (no holding) to 10 mi in the continuous annealing furnace.
Perform under the condition of n.

【0008】また、焼鈍後、必要に応じてストレッチャ
ー、ローラーレベラー等で歪矯正を行なう場合がある
が、この場合、樹脂焼付塗装前の耐力が若干向上し、樹
脂焼付塗装後は低下するが焼鈍直後の耐力以下になるこ
とはなく、本発明の効果を妨げない。
[0008] After annealing, distortion correction may be performed with a stretcher, a roller leveler, or the like as necessary. In this case, the proof stress before the resin baking coating is slightly improved, and after the resin baking coating, the strength is reduced. It does not become lower than the proof stress immediately after annealing, and does not hinder the effects of the present invention.

【0009】このようにして得られたアルミニウム合金
圧延板は、特に曲げ加工性に優れ、樹脂焼付塗装後は強
度低下もなく高強度を有していることから、特に曲げ加
工の厳しい90〜180゜曲げ加工を要求される樹脂焼
付塗装建材として好適である。
The rolled aluminum alloy sheet thus obtained is particularly excellent in bending workability and has high strength without any reduction in strength after baking resin coating.好 適 Suitable as a resin baking coating material that requires bending.

【0010】[0010]

【実施例】表1の合金A〜Gについて、常法に従ってD
C鋳造法(半連続鋳造法)により鋳造し、厚さ450m
m×幅1200mm×長さ3000mm)の鋳塊を得
た。
EXAMPLES For alloys A to G in Table 1, D
Cast by C casting method (semi-continuous casting method), 450m thick
mx 1200 mm wide 3000 mm length).

【0011】[0011]

【表1】 [Table 1]

【0012】得られた鋳塊に対し、表2の製造番号1〜
14に示す条件で均熱→加熱→熱間圧延を施して厚さ8
mmとした(ただし、製造番号3と14は10mm、製
造番号12は5.5mm)。そして一次冷間圧延で厚さ
4.0mm(ただし、製造番号13は3.35mm、製
造番号14は5.0mm)とし、バッチ焼鈍炉又は連続
焼鈍炉で中間焼鈍を行なった。その後二次冷間圧延を施
して厚さ3.0mmとし、さらにバッチ焼鈍炉又は連続
焼鈍炉で最終焼鈍を行なって最終板とした。そして、各
最終板について強度と結晶粒径と曲げ加工性を調べた。
強度は引張試験で耐力を測定し、結晶粒径は切断法によ
り圧延面の平均結晶粒径を求め、さらに曲げ加工性は1
35゜曲げ(ポンチ先端0mmR)試験にて割れと肌荒れ
の有無を調査した。その結果を表2中に併せて示す。な
お、表中 下線部は本願の範囲から外れる条件を示
す。
With respect to the obtained ingot, production numbers 1 to
Under the conditions shown in Fig. 14, soaking → heating → hot rolling is applied to a thickness of 8
mm (however, serial numbers 3 and 14 are 10 mm, serial number 12 is 5.5 mm). Then, the thickness was set to 4.0 mm (however, production number 13 was 3.35 mm, production number 14 was 5.0 mm) by primary cold rolling, and intermediate annealing was performed in a batch annealing furnace or a continuous annealing furnace. Thereafter, secondary cold rolling was performed to a thickness of 3.0 mm, and final annealing was performed in a batch annealing furnace or a continuous annealing furnace to obtain a final sheet. Then, the strength, crystal grain size, and bending workability of each final plate were examined.
For the strength, the proof stress was measured by a tensile test, and for the crystal grain size, the average crystal grain size of the rolled surface was determined by a cutting method.
The presence or absence of cracks and rough skin was examined by a 35 ° bending (punch tip 0 mm R ) test. The results are also shown in Table 2. In the table Underlined conditions indicate conditions outside the scope of the present application.

【0013】[0013]

【表2】 [Table 2]

【0014】以下、個々の結果について説明する。製造
番号1〜5の材料は、いずれも成分組成および製造プロ
セスの両者が本発明で規定する条件を満たす発明例であ
り、表2に示すように耐力は110N/mm2以上の高
強度を示し、曲げ性は135゜曲げ試験でも割れや肌荒
れが発生しない、強度と曲げ加工性に優れた材料となっ
ていることが明らかである。
Hereinafter, each result will be described. The materials of Production Nos. 1 to 5 are invention examples in which both the component composition and the production process satisfy the conditions specified in the present invention. As shown in Table 2, the proof stress shows a high strength of 110 N / mm 2 or more. It is clear that the material is excellent in strength and bending workability without cracking or roughening even in a 135 ° bending test.

【0015】一方、製造番号6〜9の材料は、本発明で
規定する製造プロセス条件は満たすが、成分組成条件を
満たさない比較例である。製造番号6はMn量が本発明
で規定する成分範囲よりも低い合金Dを用い、製造番号
7はMn量が本発明で規定する成分範囲よりも高い合金
Eを用いたもので、前者はMn量が少ないため曲げ加工
性は良好であるが耐力は110N/mm2以下の低強度
となり、後者はMn量が多いため高耐力になりすぎて曲
げ加工性が低下してしまった。製造番号8はFe量が本
発明で規定する成分範囲よりも低い合金Fを用い、製造
番号9はFe量が本発明で規定する成分範囲よりも高い
合金Gを用いたもので、前者はFe量が少ないため曲げ
加工性は良好であるが耐力は110N/mm2以下の低
強度となり、後者はFe量が多いため高耐力になってし
まったことと、Al−Mn−Fe系晶出化合物のサイズ
が大となったことで曲げ加工性は低下した。
On the other hand, the materials of production numbers 6 to 9 are comparative examples which satisfy the production process conditions defined in the present invention but do not satisfy the component composition conditions. Production No. 6 uses alloy D whose Mn content is lower than the component range specified in the present invention, and Production No. 7 uses alloy E whose Mn content is higher than the component range specified in the present invention. Since the amount was small, the bendability was good, but the yield strength was as low as 110 N / mm 2 or less, and the latter was too high in yield strength due to the large amount of Mn, and the bendability was reduced. Production No. 8 uses alloy F whose Fe content is lower than the component range specified in the present invention, and Production No. 9 uses alloy G whose Fe content is higher than the component range specified in the present invention. Although the bending workability is good because the amount is small, the yield strength is low strength of 110 N / mm 2 or less, and the latter has a high yield strength due to the large amount of Fe, and the Al—Mn—Fe crystallized compound The bending workability was reduced by the increase in the size of.

【0016】また、製造番号10〜14の材料は、本発
明で規定する成分組成条件を満たした合金Aを用いては
いるが、製造プロセス条件が本発明で規定する条件から
外れた比較例である。製造番号10は熱間圧延前の加熱
温度が高すぎて、熱間圧延終了温度が300℃を超えて
しまったため熱間圧延終了時に再結晶が起こってしま
い、耐力と曲げ加工性が低下してしまった。製造番号1
1は均熱温度が低すぎて、均熱処理でAl6Mnの析出
が不充分であったため中間焼鈍で再結晶粒の粗大化が起
り、結晶粒が大きくなりすぎて耐力と曲げ加工性が低下
してしまった。製造番号12は一次冷間圧延率が低すぎ
て、結晶粒が大きくなってしまい、曲げ加工性が低下し
てしまった。製造番号13は二次冷間圧延率が低すぎ
て、耐力不足となってしまった。さらに、製造番号14
は二次冷間圧延率が高かったため、軟化が早まり、耐力
不足となってしまった。
Although the alloys A satisfying the component composition conditions specified in the present invention are used for the materials of the manufacturing numbers 10 to 14, the comparative examples in which the manufacturing process conditions deviate from the conditions specified in the present invention. is there. In production number 10, the heating temperature before hot rolling was too high, and the hot rolling end temperature exceeded 300 ° C., so that recrystallization occurred at the end of hot rolling, and the proof stress and bending workability decreased. Oops. Serial number 1
In No. 1, the soaking temperature was too low, and the precipitation of Al 6 Mn was insufficient in the soaking process, so that the recrystallized grains became coarse in the intermediate annealing, and the crystal grains became too large, and the proof stress and bending workability decreased. have done. In production number 12, the primary cold rolling reduction was too low, the crystal grains became large, and the bending workability was reduced. In the case of Production No. 13, the secondary cold rolling reduction was too low, and the yield strength was insufficient. Further, the serial number 14
Since the secondary cold rolling reduction was high, the softening was accelerated and the proof stress was insufficient.

【0017】またさらに、製造番号15〜21は、他の
条件は一定とし、中間焼鈍条件と最終焼鈍条件の影響を
見たものである。すなわち、製造番号18〜21は製造
プロセス条件の内、中間焼鈍条件あるいは最終焼鈍条件
のいずれかが本発明で規定する条件から外れた比較例で
ある。製造番号18は中間焼鈍温度が低すぎて、中間焼
鈍終了時点で再結晶していないため最終焼鈍で軟化が早
まり耐力不足となってしまった。製造番号19は中間焼
鈍温度が高すぎて、中間焼鈍終了時点で再結晶粒が粗大
化してしまい、曲げ加工で肌荒れが生じてしまった。製
造番号20は最終焼鈍温度が低すぎて、焼き付け塗装工
程で変形が生じてしまった。製造番号21は最終焼鈍温
度が高すぎて、最終焼鈍で新たな粗大再結晶粒が発生し
て、強度低下や曲げ加工での肌荒れが生じてしまった。
一方、製造番号15〜17は製造プロセス条件も本発明
で規定する条件範囲内の発明例であり、いずれも強度と
曲げ性に優れた材料となっている。
Further, the production numbers 15 to 21 show the effects of the intermediate annealing conditions and the final annealing conditions while keeping the other conditions constant. That is, the production numbers 18 to 21 are comparative examples in which any of the intermediate annealing conditions and the final annealing conditions out of the production process conditions deviate from the conditions specified in the present invention. In Production No. 18, the intermediate annealing temperature was too low, and recrystallization was not performed at the end of the intermediate annealing. In Production No. 19, the intermediate annealing temperature was too high, and the recrystallized grains became coarse at the end of the intermediate annealing, resulting in rough surface due to bending. In production number 20, the final annealing temperature was too low, and deformation occurred in the baking coating process. In the case of Production No. 21, the final annealing temperature was too high, and new coarse recrystallized grains were generated in the final annealing, resulting in a decrease in strength and roughening due to bending.
On the other hand, the production numbers 15 to 17 are examples of the invention in which the production process conditions are also within the range defined by the present invention, and all are excellent in strength and bendability.

【0018】[0018]

【発明の効果】上記実施例からも明らかなように、本発
明によれば、特に曲げ加工性が良好で、かつ、樹脂焼付
塗装後の耐力は110N/mm2以上と高い、曲げ加工
性と強度に優れたアルミニウム合金圧延板を得ることが
できる。そして、本発明によるアルミニウム合金圧延板
を特に高温の焼付塗装が必要な弗素等の樹脂塗装建材
(カーテンウォールや内外装建材等)に使用することに
よって、高強度を要する厳しい曲げ加工の施工デザイン
が可能となる。
As is clear from the above examples, according to the present invention, the bendability is particularly good, and the proof strength after baking resin is as high as 110 N / mm 2 or more. An aluminum alloy rolled plate having excellent strength can be obtained. By using the rolled aluminum alloy sheet according to the present invention as a resin-coated building material (curtain wall, interior / exterior building material, etc.) such as fluorine which requires a high-temperature baking coating, a construction design of severe bending processing requiring high strength is realized. It becomes possible.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 Mn:0.5〜1.6%(重量%、以下
同じ)、Fe:0.10〜0.8%を含み、さらに、S
i:0.05〜0.5%、Cu:0.05〜0.5%、
Mg:0.05〜0.3%、Zn:0.05〜0.5
%、Cr:0.05〜0.3%、Zr:0.05〜0.
2%、V:0.05〜0.2%の一種以上を含み残部不
可避不純物およびAlとからなるAl合金鋳塊を、 500℃を超え640℃以下の温度で均熱処理し、 熱間圧延を550℃以下の温度で開始し300℃以下で
終了し、 冷間圧延を40%以上施した後、 A、300〜500℃×0.5〜24hr または
B、400〜620℃×0(保持なし)〜10min
の条件で中間焼鈍し再結晶させ、 さらに冷間圧延を15〜35%施した後、 C、240〜350℃×0.5〜24hr または
D、300〜500℃×0(保持なし)〜10min
の条件で新たな再結晶を生じない最終焼鈍を施す、 そして最終焼鈍後に、耐力が110N/mm2以上で、
圧延面の平均結晶粒径が80μm以下であることを特徴
とする強度と曲げ加工性に優れた樹脂塗装建材用アルミ
ニウム合金圧延板の製造方法。
1. Mn: 0.5 to 1.6% (% by weight, the same applies hereinafter), Fe: 0.10 to 0.8%, and S
i: 0.05 to 0.5%, Cu: 0.05 to 0.5%,
Mg: 0.05-0.3%, Zn: 0.05-0.5
%, Cr: 0.05-0.3%, Zr: 0.05-0.
2%, V: An Al alloy ingot containing one or more of 0.05 to 0.2% and the balance of unavoidable impurities and Al is heat-treated at a temperature of more than 500 ° C. and 640 ° C. or less, and hot rolling is performed. Starting at a temperature of 550 ° C. or less and ending at a temperature of 300 ° C. or less, and after performing cold rolling of 40% or more, A, 300 to 500 ° C. × 0.5 to 24 hours or
B, 400-620 ° C x 0 (no holding)-10 min
Intermediate annealing and recrystallization under the conditions described above, and further cold-rolled by 15 to 35%, C, 240 to 350 ° C x 0.5 to 24 hours or
D, 300-500 ° C x 0 (no holding)-10 min
The final annealing that does not cause new recrystallization is performed under the conditions described above. After the final annealing, the proof stress is 110 N / mm 2 or more,
A method for producing a rolled aluminum alloy plate for resin-coated building material having excellent strength and bending workability, wherein the average crystal grain size of a rolled surface is 80 μm or less.
JP19700796A 1996-07-08 1996-07-08 Method of manufacturing rolled aluminum alloy plate for resin coating building material with excellent strength and bending workability Expired - Fee Related JP3274808B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19700796A JP3274808B2 (en) 1996-07-08 1996-07-08 Method of manufacturing rolled aluminum alloy plate for resin coating building material with excellent strength and bending workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19700796A JP3274808B2 (en) 1996-07-08 1996-07-08 Method of manufacturing rolled aluminum alloy plate for resin coating building material with excellent strength and bending workability

Publications (2)

Publication Number Publication Date
JPH1025555A true JPH1025555A (en) 1998-01-27
JP3274808B2 JP3274808B2 (en) 2002-04-15

Family

ID=16367245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19700796A Expired - Fee Related JP3274808B2 (en) 1996-07-08 1996-07-08 Method of manufacturing rolled aluminum alloy plate for resin coating building material with excellent strength and bending workability

Country Status (1)

Country Link
JP (1) JP3274808B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003105469A (en) * 2000-08-09 2003-04-09 Furukawa Electric Co Ltd:The Architectural aluminum alloy material and method for manufacturing the same
JP2006322035A (en) * 2005-05-18 2006-11-30 Furukawa Sky Kk Rolled sheet of aluminum alloy for painted roof material and manufacturing method therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003105469A (en) * 2000-08-09 2003-04-09 Furukawa Electric Co Ltd:The Architectural aluminum alloy material and method for manufacturing the same
JP4632588B2 (en) * 2000-08-09 2011-02-16 古河スカイ株式会社 Al alloy material for building and its manufacturing method
JP2006322035A (en) * 2005-05-18 2006-11-30 Furukawa Sky Kk Rolled sheet of aluminum alloy for painted roof material and manufacturing method therefor

Also Published As

Publication number Publication date
JP3274808B2 (en) 2002-04-15

Similar Documents

Publication Publication Date Title
JP4577218B2 (en) Method for producing Al-Mg-Si alloy sheet excellent in bake hardness and hemmability
US4968356A (en) Method of producing hardened aluminum alloy forming sheet having high strength and superior corrosion resistance
EP0413907A1 (en) Method of producing hardened aluminum alloy sheets having superior corrosion resistance
JP4229307B2 (en) Aluminum alloy plate for aircraft stringers having excellent stress corrosion cracking resistance and method for producing the same
JPH0931616A (en) Aluminum-magnesium-silicon alloy sheet excellent in formability and its production
JP3210419B2 (en) Aluminum alloy sheet for DI can excellent in flange formability and method for producing the same
JP3274808B2 (en) Method of manufacturing rolled aluminum alloy plate for resin coating building material with excellent strength and bending workability
JPH11350058A (en) Aluminum alloy sheet excellent in formability and baking hardenability and its production
JP2003089859A (en) Method for producing aluminum alloy sheet having excellent bending workability
JPH07166285A (en) Hardened al alloy sheet by baking and production thereof
JP2856936B2 (en) Aluminum alloy sheet for press forming excellent in strength-ductility balance and bake hardenability, and method for producing the same
JP3226259B2 (en) Aluminum alloy plate excellent in formability, bake hardenability and corrosion resistance and method for producing the same
JP3993155B2 (en) Manufacturing method of aluminum alloy hot-rolled sheet for resin-coated building materials with excellent strength and bending workability
JPH05171328A (en) Thin hollow shape of aluminum alloy excellent in bendability and its production
JP3218099B2 (en) Method for producing aluminum alloy sheet with low ear ratio and excellent formability
JP3993154B2 (en) Manufacturing method of aluminum alloy hot-rolled sheet for resin-coated building materials with excellent strength and bending workability
JPH062090A (en) Manufacture of high strength aluminum alloy sheet for forming small in anisotropy
JPH08333644A (en) Aluminum alloy foil and its production
JPH07150282A (en) Al-mg-si alloy sheet excellent in formability and baking hardenability by crystalline grain control and its production
JP3543362B2 (en) Method for producing aluminum alloy sheet excellent in formability and bake hardenability
JPH09209098A (en) Production of rolled aluminum alloy sheet for resin coated building material, excellent in strength and bendability
JPH02254143A (en) Production of hard aluminum alloy sheet for forming
JPH0931614A (en) Production of aluminum alloy fin material with high strength and high heat resistance for heat exchanger
JPH08302440A (en) Aluminum alloy sheet with high strength
JPH06264171A (en) Aluminum alloy sheet for blind and its production

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20090201

LAPS Cancellation because of no payment of annual fees