JPH10253188A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH10253188A
JPH10253188A JP7084997A JP7084997A JPH10253188A JP H10253188 A JPH10253188 A JP H10253188A JP 7084997 A JP7084997 A JP 7084997A JP 7084997 A JP7084997 A JP 7084997A JP H10253188 A JPH10253188 A JP H10253188A
Authority
JP
Japan
Prior art keywords
heat exchanger
during
air conditioner
pipe
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7084997A
Other languages
Japanese (ja)
Inventor
Hirokazu Izaki
博和 井崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP7084997A priority Critical patent/JPH10253188A/en
Publication of JPH10253188A publication Critical patent/JPH10253188A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To carry out an effective defrosting during a heating operation in an air conditioner. SOLUTION: In an air conditioner, an outdoor heat exchanger 25 is divided into a first heat exchanger 29 and a second heat exchanger 30. During the heating operation, the first heat exchanger 29 is disposed upstream along the flow of a working fluid during the heating operation and the second heat exchanger 30 is disposed in parallel with the first heat exchanger and dowstream in the flow of the working fluid. Due to such a construction, the second heat exchanger 30 receives warm air which is produced as the air passes through the first heat exchanger 29 so that frosting can be effectively prevented.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ヒートポンプ式の
空気調和装置に関する。
The present invention relates to a heat pump type air conditioner.

【0002】[0002]

【従来の技術】一般に、ヒートポンプ式の空気調和装置
の暖房運転中に、外気の温度が低下すると、室外熱交換
器のフィンに着霜が生じてフィン間に目詰まりが発生
し、通風量が低下して熱交換量が減少することは知られ
ている。上述の着霜を除去する方法として、暖房運転を
一時的に停止し、冷房運転を行うものが知られている。
しかし、この方法によると暖房中にもかかわらず室内に
は冷風が吹出たれるので、エネルギー効率が低下すると
いう欠点がある。この欠点を解消するために、実公平3
−41243号公報には以下のような提案がなされてい
る。
2. Description of the Related Art Generally, when the temperature of the outside air decreases during the heating operation of a heat pump type air conditioner, frost forms on the fins of the outdoor heat exchanger and clogging occurs between the fins. It is known that the amount of heat exchange decreases and the amount of heat exchange decreases. As a method of removing the above-mentioned frost, a method of temporarily stopping a heating operation and performing a cooling operation is known.
However, this method has a drawback that energy efficiency is reduced because cold air is blown into the room even during heating. In order to eliminate this drawback,
JP-A-41243 proposes the following.

【0003】すなわち、図4に示すように、室外熱交換
器6には通常運転用伝熱管12とその外側にホットガス
専用伝熱管13とを設け、絶対温度Xと蒸発圧力Peと
の関係において電子演算回路16で制御し、この伝熱管
13にバイパスさせるホットガス量を、除霜するのに適
宜な量を決めるものである。なお、同図中の1は圧縮
機、2は四方弁、3は室内熱交換器、4、5は膨張機
構、10は流量制御弁、14は湿度センサー、15は圧
力センサーである。また、実線の矢印は暖房時の冷媒の
移動方向を示し、破線の矢印は冷房時の冷媒の移動方向
を示す。
That is, as shown in FIG. 4, the outdoor heat exchanger 6 is provided with a heat transfer tube 12 for normal operation and a heat transfer tube 13 exclusively for hot gas on the outside thereof, so that the relationship between the absolute temperature X and the evaporation pressure Pe is obtained. The amount of hot gas to be controlled by the electronic arithmetic circuit 16 and bypassed to the heat transfer tube 13 is determined appropriately for defrosting. In the figure, 1 is a compressor, 2 is a four-way valve, 3 is an indoor heat exchanger, 4 and 5 are expansion mechanisms, 10 is a flow control valve, 14 is a humidity sensor, and 15 is a pressure sensor. Further, solid arrows indicate the direction of movement of the refrigerant during heating, and broken arrows indicate the direction of movement of the refrigerant during cooling.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上述の
ホットガス専用伝熱管13を設けたものは、冷房運転時
には、ホットガス専用伝熱管13が使用されないため、
冷房運転時の効率が悪いという問題があった。また、ホ
ットガス専用伝熱管13に流れ込む冷媒は圧縮機1から
吐出されたそのままの冷媒であるため、ホットガス専用
伝熱管13にホットガスを流すと、暖房能力が大きく落
ち込むという問題があった。
However, in the case where the heat transfer tube dedicated to hot gas 13 is provided, the heat transfer tube dedicated to hot gas 13 is not used during the cooling operation.
There was a problem that efficiency during cooling operation was poor. In addition, since the refrigerant flowing into the heat transfer tube dedicated to hot gas 13 is the refrigerant directly discharged from the compressor 1, there is a problem that when the hot gas flows through the heat transfer tube dedicated to hot gas 13, the heating capacity is greatly reduced.

【0005】そこで、本発明の目的は、冷暖房時の効率
を共に低下させることなく、暖房時の除霜防止を良好に
行うことができる空気調和装置を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an air conditioner that can effectively prevent defrosting during heating without lowering both cooling and heating efficiency.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、請求項1の発明は、圧縮機、室外熱交換器、減圧装
置、および室内熱交換器を冷媒配管で接続し、冷暖房運
転を可能にした空気調和装置において、前記室外熱交換
器を、第一熱交換器と第二熱交換器とに分離するととも
に、前記減圧装置を、暖房時にのみ機能する減圧装置と
冷房時にのみ機能する減圧装置とで構成し、暖房運転時
における冷媒の流れに沿って圧縮機、室内熱交換器、冷
房時にのみ機能する減圧装置、第一熱交換器、暖房時に
のみ機能する減圧装置、および第二熱交換器の順に接続
し、この第二熱交換器を前記第一熱交換器の風下に配置
したものである。
In order to solve the above-mentioned problems, a first aspect of the present invention is to connect a compressor, an outdoor heat exchanger, a pressure reducing device, and an indoor heat exchanger with a refrigerant pipe to perform a cooling / heating operation. In the enabled air conditioner, the outdoor heat exchanger is separated into a first heat exchanger and a second heat exchanger, and the decompression device functions only at the time of cooling and at the time of cooling only at the time of heating. A compressor, an indoor heat exchanger, a decompression device that functions only during cooling, a first heat exchanger, a decompression device that functions only during heating, and a second device that are configured with a decompression device and follow the flow of the refrigerant during the heating operation The heat exchangers are connected in this order, and the second heat exchanger is arranged downstream of the first heat exchanger.

【0007】この発明によれば、第二熱交換器には、第
一熱交換器を通過する際にこれによって暖められた風が
送風されるため、着霜が発生しにくい。
[0007] According to the present invention, the wind heated by the second heat exchanger is blown when passing through the first heat exchanger, so that frost is less likely to occur.

【0008】また、請求項2の発明は、請求項1に記載
のものにおいて、暖房時にのみ機能する減圧装置及び/
又は冷房時にのみ機能する減圧装置を、逆止弁とこの逆
止弁に並列に接続されるキャピラリチューブとで構成し
たものである。
[0008] The invention according to claim 2 is the invention according to claim 1, wherein the pressure reducing device and / or the pressure reducing device function only during heating.
Alternatively, a pressure reducing device that functions only during cooling is constituted by a check valve and a capillary tube connected in parallel to the check valve.

【0009】この発明によれば、作動流体は、暖房運転
時には室内熱交換器から第一熱交換器に逆止弁を介して
減圧しないで送られ、冷房時には第一熱交換器から室内
熱交換器にキャピラリチューブを介して減圧して送られ
る。冷房運転時には第二熱交換器から第一熱交換器に逆
止弁を介して減圧しないで送られ、暖房時には第一熱交
換器から第二熱交換器にキャピラリチューブを介して減
圧して送られる。
According to the present invention, the working fluid is sent from the indoor heat exchanger to the first heat exchanger via the check valve without pressure reduction during the heating operation, and from the first heat exchanger to the indoor heat exchange during the cooling operation. Vacuum is sent to the vessel via a capillary tube. During cooling operation, the heat is sent from the second heat exchanger to the first heat exchanger via the check valve without pressure reduction, and during heating, the pressure is sent from the first heat exchanger to the second heat exchanger via a capillary tube with pressure reduction. Can be

【0010】さらに、請求項3の発明は、請求項1又は
2に記載のものにおいて、前記第一熱交換器と前記第二
熱交換器とを一体に形成し、前記第一熱交換器にはフラ
ットフィンを設け、前記第二熱交換器にはスリットフィ
ンを設けたものである。
[0010] Further, according to a third aspect of the present invention, in the first or second aspect, the first heat exchanger and the second heat exchanger are integrally formed, and the first heat exchanger and the second heat exchanger are connected to each other. Are provided with flat fins, and the second heat exchanger is provided with slit fins.

【0011】この発明によれば、送風された風が、第一
熱交換器のフラットフィン間を円滑に通過することがで
きるので、第二熱交換器に対して十分な風量を供給する
ことができ、熱交換効率を向上させることができる。
According to the present invention, the blown wind can smoothly pass between the flat fins of the first heat exchanger, so that a sufficient amount of air can be supplied to the second heat exchanger. As a result, the heat exchange efficiency can be improved.

【0012】[0012]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(実施の形態1)以下、本発明の実施形態を図1、図
2、図3(a)(b)に基づいて詳細に説明する。図
1、図2は、本発明に係る空気調和装置の構成を示す回
路図であり、図1は暖房運転時の回路図を、また、図2
は冷房運転時の回路図を示す。さらに、図3(a)は室
外熱交換器のフィンの形状を示す正面図であり、図3
(b)は(a)のX−X矢視図である。
(Embodiment 1) Hereinafter, an embodiment of the present invention will be described in detail with reference to FIGS. 1, 2, 3A and 3B. 1 and 2 are circuit diagrams showing a configuration of an air conditioner according to the present invention. FIG. 1 is a circuit diagram during a heating operation, and FIG.
Shows a circuit diagram during cooling operation. FIG. 3A is a front view showing the shape of the fin of the outdoor heat exchanger.
(B) is an XX arrow view of (a).

【0013】図1に示す空気調和装置は、圧縮機20、
四方弁21、室内熱交換器23、冷房時にのみ機能する
減圧装置(以下、冷房時の減圧装置という。)24、室
外熱交換器25、暖房時にのみ機能する減圧装置(以
下、暖房時の減圧装置という。)26、アキュムレータ
27を備えている。そして、これらは管路51〜59に
よって接続され、全体として冷媒回路を構成している。
上述の四方弁21は、図1に示す暖房運転時には、管路
51と管路52とを接続し、また管路57と管路58と
を接続する。一方、図2に示す冷房運転時には、管路5
1と管路57とを接続し、また管路52と管路58とを
接続する。
The air conditioner shown in FIG.
A four-way valve 21, an indoor heat exchanger 23, a decompression device that functions only during cooling (hereinafter referred to as cooling decompression device) 24, an outdoor heat exchanger 25, and a decompression device that functions only during heating (hereinafter depressurization during heating) ), And an accumulator 27. These are connected by pipes 51 to 59, and constitute a refrigerant circuit as a whole.
In the heating operation shown in FIG. 1, the four-way valve 21 connects the pipe 51 to the pipe 52 and connects the pipe 57 to the pipe 58. On the other hand, during the cooling operation shown in FIG.
1 and the conduit 57, and the conduit 52 and the conduit 58.

【0014】冷房時の減圧装置24は、逆止弁27とキ
ャピラリチューブ28とを、管路53と管路54との間
に並列に配置して構成されている。逆止弁27は、管路
54側から管路53側に流れようとする冷媒に対し、す
なわち図2の冷房運転時の冷媒に対しては閉状態とな
る。したがって、冷房運転時の冷媒は、管路54からキ
ャピラリチューブ28を介して管路53へ流れ、この場
合には減圧される。上述の冷房運転時に対し、図1に示
す暖房運転時には、逆止弁27は開状態となる。したが
って、暖房運転時の冷媒は、管路53からキャピラリチ
ューブ28を通らずに逆止弁27を通って、管路54に
流れ減圧されることはない。
The pressure reducing device 24 for cooling is configured by arranging a check valve 27 and a capillary tube 28 in parallel between a pipe 53 and a pipe 54. The check valve 27 is closed with respect to the refrigerant flowing from the pipe 54 to the pipe 53, that is, the refrigerant during the cooling operation in FIG. Therefore, the refrigerant during the cooling operation flows from the pipe 54 to the pipe 53 via the capillary tube 28, and in this case, the pressure is reduced. In the heating operation shown in FIG. 1, the check valve 27 is in an open state in contrast to the cooling operation described above. Therefore, the refrigerant during the heating operation does not flow from the pipe 53 to the pipe 54 through the check valve 27 without passing through the capillary tube 28 and is not depressurized.

【0015】室外熱交換器25は、第一熱交換器29と
第二熱交換器30とに分割されている。第一熱交換器2
9は、暖房運転時における冷媒の流れに沿って、上流側
に配置され、第二熱交換器30は下流側に配置されてい
る。さらに、これら第一熱交換器29と第二熱交換器3
0とはそれぞれの長手方向が相互に平行になるように、
また送風ファン31による送風方向に対して直角になる
ように配置されている。図3(a)(b)に示すよう
に、第一熱交換器29は、多数のパイプ32、32(た
だし同図では2本のみを図示)と、これらパイプ32、
32が貫通する多数のフラットフィン33、33(ただ
し同図では2枚のみを図示)とを主要構成部材として構
成されている。また、第二熱交換器30は、多数のパイ
プ34、34…と、これらパイプ34、34…が貫通す
る多数のスリットフィン35、35(ただし同図では2
枚のみを図示)とを主要構成部材として構成されてい
る。このように、第一熱交換器29のフィンをフラット
フィン33とし、第二熱交換器30のフィンをスリット
フィン35とすることで、送風ファン31による風が、
風上側のフラットフィン33、33間を円滑に通過し
て、風下側のスリットフィン35に十分な風量が供給さ
れるようにしている。すなわち、風上側のフラットフィ
ン33により適度な放熱効果と十分な通風効果を、また
風下側のスリットフィン35により十分な放熱効果を上
げるように構成している。
The outdoor heat exchanger 25 is divided into a first heat exchanger 29 and a second heat exchanger 30. First heat exchanger 2
9 is arranged on the upstream side along the flow of the refrigerant during the heating operation, and the second heat exchanger 30 is arranged on the downstream side. Further, the first heat exchanger 29 and the second heat exchanger 3
0 so that each longitudinal direction is parallel to each other,
Further, it is arranged so as to be perpendicular to the direction of air blowing by the blowing fan 31. As shown in FIGS. 3A and 3B, the first heat exchanger 29 includes a number of pipes 32, 32 (only two pipes are shown in FIG.
A large number of flat fins 33, 33 (only two are shown in the figure) through which 32 penetrates are configured as main constituent members. Further, the second heat exchanger 30 has a large number of pipes 34, 34, and a large number of slit fins 35, 35 (in FIG.
Are shown as main components. In this way, the fins of the first heat exchanger 29 are flat fins 33, and the fins of the second heat exchanger 30 are slit fins 35, so that the wind from the blower fan 31
A sufficient amount of air is supplied to the slit fins 35 on the leeward side by smoothly passing between the flat fins 33 on the leeward side. In other words, the flat fins 33 on the windward side provide an appropriate heat dissipation effect and a sufficient ventilation effect, and the slit fins 35 on the leeward side increase the heat dissipation effect.

【0016】暖房時の減圧装置26は、逆止弁36とキ
ャピラリチューブ37とを、管路56と管路55との間
に並列に配置して構成されている。逆止弁36は、管路
55側から管路56側に流れようとする冷媒に対し、す
なわち図1の暖房運転時の冷媒に対しては閉状態とな
る。したがって、暖房運転時の冷媒は、管路55からキ
ャピラリチューブ37を介して管路56へ流れ、この場
合には減圧される。上述の暖房運転時に対し、図2に示
す冷房運転時には、逆止弁36は開状態となる。したが
って、冷房運転時の冷媒は、管路55からキャピラリチ
ューブ37を通らずに逆止弁36を通って管路56に流
れ、減圧されることはない。
The pressure reducing device 26 for heating is configured by arranging a check valve 36 and a capillary tube 37 in parallel between a pipe 56 and a pipe 55. The check valve 36 is closed with respect to the refrigerant flowing from the pipe 55 to the pipe 56, that is, the refrigerant in the heating operation in FIG. Therefore, the refrigerant during the heating operation flows from the pipe 55 to the pipe 56 via the capillary tube 37, and in this case, the pressure is reduced. In the cooling operation shown in FIG. 2, the check valve 36 is in an open state, as compared with the heating operation described above. Therefore, the refrigerant at the time of the cooling operation flows from the pipe 55 to the pipe 56 through the check valve 36 without passing through the capillary tube 37, and is not depressurized.

【0017】次に、図1を参照して、上記構成の空気調
和装置の暖房運転時の動作について説明する。暖房運転
時には、上述のように四方弁の切替えにより、管路51
と管路52とが、また管路57と管路58とが接続され
る。
Next, the operation of the air conditioner having the above configuration during the heating operation will be described with reference to FIG. During the heating operation, the pipeline 51 is switched by switching the four-way valve as described above.
And the pipe 52 are connected, and the pipe 57 and the pipe 58 are connected.

【0018】したがって、暖房運転時の冷媒は、矢印で
示すように、圧縮機20から吐出され、管路51、四方
弁21、管路52、室内熱交換器23、管路53、逆止
弁27、管路54、第一熱交換器29、管路55、キャ
ピラリチューブ37、管路56、第二熱交換器30、管
路57、四方弁21、管路58、アキュムレータ27、
そして管路59を介して、再び圧縮機20に戻される。
Therefore, the refrigerant during the heating operation is discharged from the compressor 20 as shown by the arrow, and the pipe 51, the four-way valve 21, the pipe 52, the indoor heat exchanger 23, the pipe 53, the check valve 27, conduit 54, first heat exchanger 29, conduit 55, capillary tube 37, conduit 56, second heat exchanger 30, conduit 57, four-way valve 21, conduit 58, accumulator 27,
Then, the fluid is returned to the compressor 20 again via the pipe 59.

【0019】暖房運転中に外気温度が低下すると、室外
熱交換器25に着霜する。本実施形態では、この着霜を
防止すべく、上述のように室外熱交換器25を第一熱交
換器29と第二熱交換器30とに分割し、この第二熱交
換器30を風下に配置している。このように構成するこ
とにより、送風ファン31によって第二熱交換器30に
送られる風は、第一熱交換器29を通過してから送られ
る。この第一熱交換器29には、第二熱交換器30を流
れる冷媒よりも温度の高い冷媒が流れるので、したがっ
て、第二熱交換器30には、第一熱交換器29で幾分暖
められた風が送風されるため、着霜が発生しにくくな
る。さらに、室内熱交換器23から第一熱交換器29に
送られる冷媒は、逆止弁27を介して減圧されないで送
られる。これによれば、着霜が減少し、それに伴う除霜
運転が減少されるので、熱効率を向上させることができ
る。
When the outside air temperature decreases during the heating operation, frost forms on the outdoor heat exchanger 25. In this embodiment, in order to prevent this frost formation, the outdoor heat exchanger 25 is divided into the first heat exchanger 29 and the second heat exchanger 30 as described above, and the second heat exchanger 30 is leeward. Has been placed. With this configuration, the wind sent to the second heat exchanger 30 by the blower fan 31 is sent after passing through the first heat exchanger 29. Since the refrigerant having a higher temperature than the refrigerant flowing through the second heat exchanger 30 flows through the first heat exchanger 29, the second heat exchanger 30 is slightly warmed by the first heat exchanger 29. Since the blown wind is sent, frost formation is less likely to occur. Further, the refrigerant sent from the indoor heat exchanger 23 to the first heat exchanger 29 is sent through the check valve 27 without being decompressed. According to this, frost formation is reduced, and the accompanying defrosting operation is reduced, so that thermal efficiency can be improved.

【0020】次に、図2を参照して、上述構成の空気調
和装置の冷房運転時の動作について説明する。暖房運転
時には、上述のように、四方弁の切替えにより、管路5
1と管路57とが接続され、また管路52と管路58と
が接続される。したがって、冷房運転時の冷媒は、矢印
で示すように圧縮機20から吐出され、管路51、四方
弁21、管路57、第二熱交換器30、管路56、逆止
弁36、管路55、第一熱交換器29、管路54、キャ
ピラリチューブ28、管路53、室内熱交換器23、管
路52、四方弁21、管路58、アキュムレータ27、
そして管路29を介して、再び、圧縮機20に戻され
る。このとき、第二熱交換器30から第一熱交換器29
には、逆止弁36を介して減圧されない冷媒が送られる
ので、冷媒の凝縮、冷却が容易となり、熱効率は向上す
る。
Next, with reference to FIG. 2, the operation of the air conditioner having the above-described configuration during the cooling operation will be described. During the heating operation, as described above, switching of the four-way valve causes the pipeline 5
1 and the pipe 57 are connected, and the pipe 52 and the pipe 58 are connected. Therefore, the refrigerant during the cooling operation is discharged from the compressor 20 as shown by the arrow, and the pipe 51, the four-way valve 21, the pipe 57, the second heat exchanger 30, the pipe 56, the check valve 36, the pipe Passage 55, first heat exchanger 29, conduit 54, capillary tube 28, conduit 53, indoor heat exchanger 23, conduit 52, four-way valve 21, conduit 58, accumulator 27,
Then, it is returned to the compressor 20 again via the pipe line 29. At this time, from the second heat exchanger 30 to the first heat exchanger 29
, The refrigerant that is not decompressed is sent via the check valve 36, so that the refrigerant can be easily condensed and cooled, and the thermal efficiency is improved.

【0021】以上、本発明に係る空気調和装置の一例と
して、実施の形態1で具体的に説明したが、本発明は、
これに限定されるものではない。
As described above, an example of the air conditioner according to the present invention has been specifically described in the first embodiment.
It is not limited to this.

【0022】例えば、前述の実施の形態1では、冷房時
の減圧装置24として、逆止弁27とキャピラリチュー
ブ28とを組み合わせたものを、また暖房時の減圧装置
26として、逆止弁36とキャピラリチューブ37とを
組み合わせたものを使用したが、これらに代えて電動式
制御弁を使用することもできる。このときの制御弁の制
御は、冷房時の減圧装置24にあっては、冷房運転時の
負荷に応じて開度調整を行い、暖房運転時には全開状態
とするものである。また、暖房時の減圧装置26にあっ
ては、暖房運転時の負荷に応じて開度調整を行い、冷房
運転時には全開状態とするものである。また、前述した
ものでは第二熱交換器30のフィンがスリットフィン3
5であったが、これを、例えばコルゲートフィンに代え
てもよい。すなわち、第一熱交換器29のフィンと、第
二熱交換器30のフィンとについては、前者のフィンが
適度な放熱と十分な通風とを主に、また後者のフィンが
十分な放熱を主に行うことができることを条件に、それ
ぞれ任意の形状のフィンを使用することができるもので
ある。
For example, in the first embodiment, a combination of a check valve 27 and a capillary tube 28 is used as the pressure reducing device 24 during cooling, and a check valve 36 is used as the pressure reducing device 26 during heating. Although a combination with the capillary tube 37 is used, an electric control valve may be used instead. The control of the control valve at this time is such that in the pressure reducing device 24 during cooling, the opening is adjusted according to the load during cooling operation, and the device is fully opened during heating operation. Further, in the decompression device 26 during heating, the opening degree is adjusted according to the load during the heating operation, and is fully opened during the cooling operation. Further, in the above-described configuration, the fins of the second heat exchanger 30 are the slit fins 3.
5, but may be replaced with, for example, corrugated fins. In other words, regarding the fins of the first heat exchanger 29 and the fins of the second heat exchanger 30, the former fin mainly provides appropriate heat dissipation and sufficient ventilation, and the latter fin mainly provides sufficient heat dissipation. It is possible to use fins of any shape on condition that the fins can be formed in the same manner.

【0023】[0023]

【発明の効果】以上説明したように、請求項1の発明に
よると、室外熱交換器を、第一熱交換器と第二熱交換器
とに分割するとともに、暖房運転時における作動流体の
流れに沿って上流側に第一熱交換器を配置し、下流側に
第二熱交換器を配置しているので、第二熱交換器には、
第一熱交換器を通過する際にこれによって暖められた風
が送風されるため、着霜を有効に防止することができ
る。
As described above, according to the first aspect of the present invention, the outdoor heat exchanger is divided into the first heat exchanger and the second heat exchanger, and the flow of the working fluid during the heating operation is performed. Since the first heat exchanger is arranged on the upstream side along with the second heat exchanger on the downstream side, the second heat exchanger includes:
Since the air heated by this is sent when passing through the first heat exchanger, frost formation can be effectively prevented.

【0024】請求項2の発明によると、暖房時に機能す
る減圧装置を、逆止弁とキャピラリチューブとを並列に
接続して構成する。
According to the second aspect of the present invention, a pressure reducing device that functions during heating is configured by connecting a check valve and a capillary tube in parallel.

【0025】これによれば、暖房運転時には第一熱交換
器から第二熱交換器にキャピラリチューブを介して減圧
して送られる一方、冷房運転時には第二熱交換器から第
一熱交換器に逆止弁を介して減圧しないで送られるの
で、冷房時の熱効率の低下を伴うことなく、暖房時の熱
効率を向上させることができる。
According to this, during the heating operation, the pressure is sent from the first heat exchanger to the second heat exchanger via the capillary tube under reduced pressure, while during the cooling operation, the second heat exchanger is sent to the first heat exchanger. Since the air is sent through the check valve without pressure reduction, the heat efficiency during heating can be improved without a decrease in heat efficiency during cooling.

【0026】さらに、冷房時に機能する減圧装置を、逆
止弁とキャピラリチューブとを並列に接続して構成す
る。
Further, a decompression device functioning at the time of cooling is constituted by connecting a check valve and a capillary tube in parallel.

【0027】これによれば、冷房運転時には第二熱交換
器から室内熱交換器にキャピラリチューブを介して減圧
して送られる一方、暖房運転時には室内熱交換器から第
一熱交換器に逆止弁を介して減圧しないで送られるの
で、暖房時の熱効率の低下を伴うことなく、冷房時の熱
効率を向上させることができる。
According to this, during the cooling operation, the pressure is sent from the second heat exchanger to the indoor heat exchanger via the capillary tube under reduced pressure, while during the heating operation, the check is made from the indoor heat exchanger to the first heat exchanger. Since the air is sent through the valve without being decompressed, the heat efficiency during cooling can be improved without a decrease in heat efficiency during heating.

【0028】請求項3の発明によると、第一熱交換器に
フラットフィンを設け、前記第二熱交換器にスリットフ
ィンを設けることにより、送風された風が第一熱交換器
のフラットフィン間を円滑に通過することができるの
で、第二熱交換器に対して十分な風量を供給することが
でき、熱効率を向上させることができる。
According to the third aspect of the present invention, the first heat exchanger is provided with flat fins, and the second heat exchanger is provided with slit fins, so that the blown air can flow between the flat fins of the first heat exchanger. Can be supplied smoothly to the second heat exchanger, and the thermal efficiency can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る空気調和装置の暖房運転時の構成
を示す回路図。
FIG. 1 is a circuit diagram showing the configuration of an air conditioner according to the present invention during a heating operation.

【図2】本発明に係る空気調和装置の冷房運転時の構成
を示す回路図。
FIG. 2 is a circuit diagram showing a configuration of the air-conditioning apparatus according to the present invention during a cooling operation.

【図3】(a)は第一熱交換器及び第二熱交換器の正面
図。(b)は(a)のX−X線矢視図。
FIG. 3A is a front view of a first heat exchanger and a second heat exchanger. (B) is an XX line arrow view of (a).

【図4】従来の空気調和装置の構成を示す回路図。FIG. 4 is a circuit diagram showing a configuration of a conventional air conditioner.

【符号の説明】[Explanation of symbols]

20 圧縮機 21 四方弁 23 室内熱交換器 24 冷房時にのみ機能する減圧装置 25 室外熱交換器 26 暖房時にのみ機能する減圧装置 27、36 逆止弁 28、37 キャピラリチューブ 29 第一熱交換器 30 第二熱交換器 33 フラットフィン 35 スリットフィン REFERENCE SIGNS LIST 20 compressor 21 four-way valve 23 indoor heat exchanger 24 pressure reducing device that functions only during cooling 25 outdoor heat exchanger 26 pressure reducing device that functions only during heating 27, 36 check valve 28, 37 capillary tube 29 first heat exchanger 30 Second heat exchanger 33 Flat fin 35 Slit fin

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、室外熱交換器、減圧装置、およ
び室内熱交換器を冷媒配管で接続し、冷暖房運転を可能
にした空気調和装置において、 前記室外熱交換器を、第一熱交換器と第二熱交換器とに
分離するとともに、前記減圧装置を、暖房時にのみ機能
する減圧装置と冷房時にのみ機能する減圧装置とで構成
し、暖房運転時における冷媒の流れに沿って圧縮機、室
内熱交換器、冷房時にのみ機能する減圧装置、第一熱交
換器、暖房時にのみ機能する減圧装置、および第二熱交
換器の順に接続し、この第二熱交換器を前記第一熱交換
器の風下に配置したことを特徴とする空気調和装置。
1. An air conditioner in which a compressor, an outdoor heat exchanger, a decompression device, and an indoor heat exchanger are connected by a refrigerant pipe to enable a cooling and heating operation, wherein the outdoor heat exchanger includes a first heat exchanger. And a second heat exchanger, the decompression device comprises a decompression device that functions only during heating and a decompression device that functions only during cooling, and the compressor operates along the flow of the refrigerant during the heating operation. , An indoor heat exchanger, a decompression device that functions only during cooling, a first heat exchanger, a decompression device that functions only during heating, and a second heat exchanger are connected in this order, and the second heat exchanger is connected to the first heat exchanger. An air conditioner, which is located downstream of an exchanger.
【請求項2】 前記暖房時にのみ機能する減圧装置及び
/又は前記冷房時にのみ機能する減圧装置を、逆止弁と
この逆止弁に並列に接続されるキャピラリチューブとで
構成したことを特徴とする請求項1に記載の空気調和装
置。
2. The pressure reducing device that functions only at the time of heating and / or the pressure reducing device that functions only at the time of cooling is constituted by a check valve and a capillary tube connected in parallel to the check valve. The air conditioner according to claim 1, wherein
【請求項3】 前記第一熱交換器と前記第二熱交換器と
を一体に形成し、前記第一熱交換器にはフラットフィン
を設け、前記第二熱交換器にはスリットフィンを設けた
ことを特徴とする請求項1又は2に記載の空気調和装
置。
3. The first heat exchanger and the second heat exchanger are integrally formed, a flat fin is provided on the first heat exchanger, and a slit fin is provided on the second heat exchanger. The air conditioner according to claim 1 or 2, wherein:
JP7084997A 1997-03-07 1997-03-07 Air conditioner Pending JPH10253188A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7084997A JPH10253188A (en) 1997-03-07 1997-03-07 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7084997A JPH10253188A (en) 1997-03-07 1997-03-07 Air conditioner

Publications (1)

Publication Number Publication Date
JPH10253188A true JPH10253188A (en) 1998-09-25

Family

ID=13443436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7084997A Pending JPH10253188A (en) 1997-03-07 1997-03-07 Air conditioner

Country Status (1)

Country Link
JP (1) JPH10253188A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002286276A (en) * 2001-03-28 2002-10-03 Mitsubishi Electric Corp Air conditioner and control method therefor
WO2012035668A1 (en) * 2010-09-14 2012-03-22 グリーンアース株式会社 Heat pump cop improving device
CN104596102A (en) * 2015-01-12 2015-05-06 深圳北纯能源科技有限公司 Complementary energy recovery system and complementary energy recovery method based on heat pump technology
CN109506124A (en) * 2017-09-15 2019-03-22 株式会社神户制钢所 The operation start method of gas supply device and gas supply device
WO2021250738A1 (en) * 2020-06-08 2021-12-16 三菱電機株式会社 Air conditioner

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002286276A (en) * 2001-03-28 2002-10-03 Mitsubishi Electric Corp Air conditioner and control method therefor
WO2012035668A1 (en) * 2010-09-14 2012-03-22 グリーンアース株式会社 Heat pump cop improving device
CN104596102A (en) * 2015-01-12 2015-05-06 深圳北纯能源科技有限公司 Complementary energy recovery system and complementary energy recovery method based on heat pump technology
CN109506124A (en) * 2017-09-15 2019-03-22 株式会社神户制钢所 The operation start method of gas supply device and gas supply device
CN109506124B (en) * 2017-09-15 2021-10-29 株式会社神户制钢所 Gas supply device and operation start method for gas supply device
WO2021250738A1 (en) * 2020-06-08 2021-12-16 三菱電機株式会社 Air conditioner

Similar Documents

Publication Publication Date Title
JP4889011B2 (en) Air conditioning system
US5964099A (en) Air conditioner coolant circulation route changing apparatus
JP2002372320A (en) Refrigerating device
JPH026992B2 (en)
JPH10253188A (en) Air conditioner
JPH074794A (en) Air-conditioning equipment
JP3724011B2 (en) Air conditioner
JP3723824B2 (en) Air conditioner
US20060117778A1 (en) Cooling/heating system and method for controlling the same
JP6678413B2 (en) Air conditioner
JP3677887B2 (en) Air conditioner
JP3885063B2 (en) Air conditioner
JPH10196984A (en) Air conditioner
JP3164451B2 (en) Air conditioner
JPH11248290A (en) Air conditioner
JP3596513B2 (en) Air conditioner
JPH05240528A (en) Heat pump and air conditioner
JP3749193B2 (en) Air conditioner
JPS63101640A (en) Air conditioner
JPH07117323B2 (en) Air conditioner
JP3982893B2 (en) Air conditioner
JPH03113249A (en) Air-conditioning snow melting device
JPWO2022145004A5 (en) air conditioner
JP4548224B2 (en) Heat exchange system
JPS5912518Y2 (en) air conditioner