JPH10249142A - Exhaust gas treatment device - Google Patents
Exhaust gas treatment deviceInfo
- Publication number
- JPH10249142A JPH10249142A JP9064124A JP6412497A JPH10249142A JP H10249142 A JPH10249142 A JP H10249142A JP 9064124 A JP9064124 A JP 9064124A JP 6412497 A JP6412497 A JP 6412497A JP H10249142 A JPH10249142 A JP H10249142A
- Authority
- JP
- Japan
- Prior art keywords
- desorption
- tower
- adsorbent
- desorption tower
- carbon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Treating Waste Gases (AREA)
- Separation Of Gases By Adsorption (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は排気中に含まれる有
機原ガスを除去する吸着剤を再生する脱着塔を備えた排
気処理装置に関するものである。The present invention relates to an exhaust treatment apparatus provided with a desorption tower for regenerating an adsorbent for removing an organic raw gas contained in exhaust gas.
【0002】近年、半導体工場には、半導体装置(LS
I)の大量製造に伴って、半導体装置の製造装置の排気
に含まれる有機原ガスを吸着剤にて除去する排気処理装
置が設置されている。吸着剤は、排気処理装置内の脱着
塔にて再生され、循環活用されるので、吸着剤を効率良
く再生することが要求されている。In recent years, semiconductor devices (LS) have been installed in semiconductor factories.
With the mass production of I), an exhaust treatment device for removing an organic raw gas contained in the exhaust gas of the semiconductor device manufacturing device with an adsorbent is installed. Since the adsorbent is regenerated in the desorption tower in the exhaust treatment device and is recycled, it is required to regenerate the adsorbent efficiently.
【0003】[0003]
【従来の技術】図9(a)は、従来の排気処理装置に備
えられた脱着塔1の概略縦断面図である。脱着塔1に
は、図示しない吸着塔にて有機原ガスを吸着した吸着剤
としての活性炭がその上端から供給される。活性炭は脱
着部2にて加熱される。脱着温度まで活性炭が加熱され
ると、活性炭に吸着した有機原ガスが活性炭から離れて
活性炭が再生される。再生された活性炭は冷却部3にて
冷却され、再び吸着塔に供給される。2. Description of the Related Art FIG. 9 (a) is a schematic vertical sectional view of a desorption tower 1 provided in a conventional exhaust treatment device. Activated carbon as an adsorbent obtained by adsorbing an organic raw gas in an adsorption tower (not shown) is supplied to the desorption tower 1 from its upper end. The activated carbon is heated in the desorption section 2. When the activated carbon is heated to the desorption temperature, the organic raw gas adsorbed on the activated carbon separates from the activated carbon to regenerate the activated carbon. The regenerated activated carbon is cooled in the cooling unit 3 and supplied to the adsorption tower again.
【0004】図9(b)に示すように、脱着部2は、円
筒形の脱着塔1内面に沿って設けられた真鍮電熱ヒータ
4と、脱着塔1の中心部とヒータとの間に放射状に設け
られヒータの熱が伝導されるフィン5とから構成され
る。フィン5は、活性炭が直接落下しないように、垂直
方向(図9(b)において図面表裏方向)において一部
が重なり合うように設けられている。従って、活性炭
は、落下する際に当たったフィン5に伝導された熱によ
って間接的に加熱される。[0004] As shown in FIG. 9 (b), a desorption section 2 is provided with a brass electric heater 4 provided along the inner surface of a cylindrical desorption tower 1, and a radial section between the center of the desorption tower 1 and the heater. And fins 5 to which the heat of the heater is conducted. The fins 5 are provided so as to partially overlap each other in the vertical direction (the front and back sides in FIG. 9B) so that the activated carbon does not drop directly. Therefore, the activated carbon is indirectly heated by the heat conducted to the fins 5 hit when falling.
【0005】[0005]
【発明が解決しようとする課題】ところで、近年、半導
体装置の製造工程には、沸点の高い有機原ガス(例え
ば、Nメチル−2ピロリドン(NMP)、沸点202
℃)が用いられるようになってきている。そのため、脱
着塔1では、沸点の高い有機原ガスに対応して活性炭を
200℃以上の高温な脱着温度に加熱して活性炭の再生
を行う必要がある。Incidentally, in recent years, in the process of manufacturing a semiconductor device, an organic raw gas having a high boiling point (for example, N-methyl-2-pyrrolidone (NMP),
° C) is being used. Therefore, in the desorption tower 1, it is necessary to regenerate the activated carbon by heating the activated carbon to a high desorption temperature of 200 ° C. or higher corresponding to the organic raw gas having a high boiling point.
【0006】しかしながら、従来の脱着塔1では、活性
炭をヒータ4から放射状に備えられたフィン5にて間接
的に加熱しているため、200℃以上の高温に加熱する
ことが難しく活性炭を効率よく再生することができな
い。低温にて活性炭を再生すると、活性炭の吸着能力が
低下し排気処理装置の処理能力が低下する。例えば、低
温にて再生した活性炭の吸着性能を示す比表面積は、新
しい活性炭の比表面積の約40%にまで低下する。その
ため、従来の排気処理装置では、処理能力を維持するた
めに活性炭を常に新たな活性炭と交換する必要があり、
その交換に多くの費用がかかるので、排気処理装置の稼
働費用が上昇するという問題がある。However, in the conventional desorption tower 1, since the activated carbon is indirectly heated by the fins 5 provided radially from the heater 4, it is difficult to heat the activated carbon to a high temperature of 200 ° C. or more, and the activated carbon is efficiently produced. Can't play. When the activated carbon is regenerated at a low temperature, the adsorption capacity of the activated carbon is reduced and the processing capacity of the exhaust treatment device is reduced. For example, the specific surface area showing the adsorption performance of activated carbon regenerated at low temperature is reduced to about 40% of the specific surface area of new activated carbon. Therefore, in the conventional exhaust treatment device, it is necessary to always replace the activated carbon with new activated carbon in order to maintain the treatment capacity,
Since the replacement requires a lot of cost, there is a problem that the operating cost of the exhaust treatment device increases.
【0007】本発明は上記問題点を解決するためになさ
れたものであって、その目的は吸着剤を高温にて効率よ
く再生することができる脱着塔を備えた排気処理装置を
提供することにある。The present invention has been made to solve the above problems, and an object of the present invention is to provide an exhaust treatment apparatus provided with a desorption tower capable of efficiently regenerating an adsorbent at a high temperature. is there.
【0008】[0008]
【課題を解決するための手段】上記目的を達成するた
め、請求項1に記載の発明は、上端に設けられた供給口
から供給され塔内を落下する原ガスを吸着した吸着剤を
所定の脱着温度に加熱して該吸着剤を再生する脱着部を
有する脱着塔を備えた排気処理装置において、前記脱着
部には、塔内を落下する吸着剤を加熱するヒータを脱着
塔内に直装したことを要旨とする。In order to achieve the above-mentioned object, the present invention according to claim 1 is characterized in that an adsorbent which is supplied from a supply port provided at an upper end and adsorbs a raw gas which falls down in a tower is adsorbed by a predetermined amount. In an exhaust treatment apparatus provided with a desorption tower having a desorption section for regenerating the adsorbent by heating to a desorption temperature, a heater for heating an adsorbent falling in the tower is directly mounted in the desorption tower. The gist is that you have done it.
【0009】請求項2に記載の発明は、請求項1に記載
の排気処理装置において、前記ヒータの表面に、前記吸
着剤の一部表面が接する凹部を形成したことを要旨とす
る。請求項3に記載の発明は、請求項1又は2に記載の
排気処理装置において、前記供給口とヒータとの間に、
落下する吸着剤を塔内に均等に分散させる分散部を設け
たことを要旨とする。According to a second aspect of the present invention, in the exhaust treatment apparatus according to the first aspect, a recess is formed in a surface of the heater so that a partial surface of the adsorbent is in contact with the heater. The invention according to claim 3 is the exhaust treatment device according to claim 1 or 2, wherein a space between the supply port and the heater is provided.
The gist of the present invention is to provide a dispersing unit for uniformly dispersing the falling adsorbent in the tower.
【0010】請求項4に記載の発明は、請求項1乃至3
のうちのいずれか1項に記載の排気処理装置において、
前記脱着側壁のうち、少なくとも前記脱着部の部分を内
壁と外壁との二重構造とし、内壁と外壁との間に不活性
ガスを供給したことを要旨とする。[0010] The invention described in claim 4 is the invention according to claims 1 to 3.
In the exhaust treatment device according to any one of the above,
The gist of the invention is that at least a part of the detachable side wall of the detachable side wall has a double structure of an inner wall and an outer wall, and an inert gas is supplied between the inner wall and the outer wall.
【0011】請求項5に記載の発明は、請求項4に記載
の排気処理装置において、前記内壁と外壁に供給する不
活性ガスの供給量を制御する制御手段を備えたことを要
旨とする。According to a fifth aspect of the present invention, in the exhaust treatment apparatus of the fourth aspect, a control means for controlling a supply amount of the inert gas supplied to the inner wall and the outer wall is provided.
【0012】請求項6に記載の発明は、請求項1乃至5
のうちのいずれか1項に記載の排気処理装置において、
前記脱着塔の供給口と、前記再生した吸着剤を排出する
排出口とに前記脱着塔内を密閉する弁を備えたことを要
旨とする。[0012] The invention according to claim 6 is the invention according to claims 1 to 5.
In the exhaust treatment device according to any one of the above,
The gist is that a supply port of the desorption tower and a discharge port for discharging the regenerated adsorbent are provided with a valve for sealing the inside of the desorption tower.
【0013】(作用)従って、請求項1に記載の発明に
よれば、原ガスを吸着した吸着剤は、脱着塔内に直装さ
れたヒータにて直接加熱され、原ガスの沸点より高い所
定の脱着温度まで上昇し、原ガスが脱着される。(Operation) Therefore, according to the first aspect of the present invention, the adsorbent having adsorbed the raw gas is directly heated by the heater directly mounted in the desorption tower, so that the adsorbent is higher than the boiling point of the raw gas. And the raw gas is desorbed.
【0014】請求項2に記載の発明によれば、ヒータの
表面には、吸着剤の一部表面が接する凹部が形成され、
吸着剤とヒータとの接触面積が大きくなる。請求項3に
記載の発明によれば、供給口とヒータとの間には、落下
する吸着剤を塔内に均等に分散させる分散部が設けら
れ、吸着剤が均一に加熱される。According to the second aspect of the present invention, a concave portion is formed on the surface of the heater, the concave portion being in contact with a part of the surface of the adsorbent.
The contact area between the adsorbent and the heater increases. According to the third aspect of the present invention, a dispersing section for uniformly dispersing the falling adsorbent in the tower is provided between the supply port and the heater, and the adsorbent is heated uniformly.
【0015】請求項4に記載の発明によれば、脱着側壁
のうち、少なくとも脱着部の部分が内壁と外壁との二重
構造とされ、内壁と外壁との間には不活性ガスが供給さ
れて脱着部が保温される。According to the fourth aspect of the present invention, at least a portion of the detachable side wall of the detachable side wall has a double structure of an inner wall and an outer wall, and an inert gas is supplied between the inner wall and the outer wall. The detachable part is kept warm.
【0016】請求項5に記載の発明によれば、内壁と外
壁に供給する不活性ガスの供給量を制御する制御手段が
備えられ、不活性ガスが供給制御される。請求項6に記
載の発明によれば、脱着塔の供給口と、前記再生した吸
着剤を排出する排出口とには弁が設けられ、その弁によ
って脱着塔内が密閉される。According to the fifth aspect of the present invention, the control means for controlling the supply amount of the inert gas supplied to the inner wall and the outer wall is provided, and the supply of the inert gas is controlled. According to the invention described in claim 6, a valve is provided between the supply port of the desorption tower and the discharge port for discharging the regenerated adsorbent, and the inside of the desorption tower is sealed by the valve.
【0017】[0017]
【発明の実施の形態】以下、本発明を具体化した一実施
形態を図1〜図5に従って説明する。図1に示すよう
に、本実施形態の有機排気処理装置11には、吸着塔1
2と脱着塔13とが設けられている。吸着塔12は、図
示しない半導体製造装置の排気ガスから、その排気ガス
に含まれる有機原ガスを吸着剤としての活性炭に吸着さ
せて浄化するために設けられている。脱着塔13は、活
性炭に吸着した有機原ガスを脱着させ、活性炭を再生す
るために設けられている。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to FIGS. As shown in FIG. 1, the organic exhaust treatment device 11 of the present embodiment includes an adsorption tower 1
2 and a desorption tower 13 are provided. The adsorption tower 12 is provided for purifying an exhaust gas of a semiconductor manufacturing apparatus (not shown) by adsorbing an organic raw gas contained in the exhaust gas on activated carbon as an adsorbent. The desorption tower 13 is provided to desorb the organic raw gas adsorbed on the activated carbon and regenerate the activated carbon.
【0018】吸着塔12は、その下端が輸送管14を介
して図示しない半導体製造装置に連結され、その製造装
置の排気が輸送管14に設けられたモーターファン15
によって供給される。吸着塔12には、活性炭流動部1
6が垂直方向に複数段設けられている。最上段の活性炭
流動部16には、脱着塔13にて再生された活性炭(以
下、脱着炭という))が常時供給される。各活性炭流動
部16は、供給される活性炭を所定の方向に水平移動さ
せるとともに、活性炭を上段から下段へ向かって徐々に
搬送させる。The adsorption tower 12 has a lower end connected to a semiconductor manufacturing apparatus (not shown) via a transport pipe 14, and the exhaust of the manufacturing apparatus is supplied to a motor fan 15 provided in the transport pipe 14.
Supplied by In the adsorption tower 12, the activated carbon fluidizing section 1 is provided.
6 are provided in a plurality of stages in the vertical direction. Activated carbon (hereinafter, referred to as desorbed carbon) regenerated in the desorption tower 13 is constantly supplied to the activated carbon flowing section 16 at the uppermost stage. Each activated carbon flowing section 16 horizontally moves the supplied activated carbon in a predetermined direction, and gradually transports the activated carbon from the upper stage to the lower stage.
【0019】従って、吸着塔12に供給された排気ガス
は、吸着塔12の下端から上端に向かって上昇する間
に、各活性炭流動部16により搬送される活性炭間を通
過する。そして、排気ガスは、その排気ガスに含まれる
有機原ガスが活性炭に吸着され、浄化された浄化ガスと
して吸着塔12下端から排出される。有機原ガスを吸着
した活性炭(以下、吸着炭という)は、脱着塔13上端
に搬送される。Therefore, the exhaust gas supplied to the adsorption tower 12 passes between the activated carbons transported by the activated carbon flowing sections 16 while rising from the lower end to the upper end of the adsorption tower 12. The exhaust gas is discharged from the lower end of the adsorption tower 12 as a purified gas, in which the organic raw gas contained in the exhaust gas is adsorbed on the activated carbon and purified. The activated carbon that has absorbed the organic raw gas (hereinafter referred to as adsorbed carbon) is conveyed to the upper end of the desorption tower 13.
【0020】脱着塔13は四角形筒状に形成されてい
る。脱着塔13には、脱着部17が設けられている。脱
着部17は、搬送される吸着炭を所定の脱着温度まで加
熱するために設けられている。脱着温度は、有機原ガス
の沸点に対応した高温(例えば、400〜500℃)に
設定されている。例えば、有機原ガスとしてNメチル−
2ピロリドン(NMP)の場合、沸点が202℃である
ため、吸着炭は、有機原ガスの沸点よりも十分に高い温
度に加熱される。すると、吸着炭に吸着した有機原ガス
は容易に脱着し、吸着炭が再生されて脱着炭となる。The desorption tower 13 is formed in a square cylindrical shape. The desorption tower 13 is provided with a desorption section 17. The desorption section 17 is provided for heating the conveyed adsorbed carbon to a predetermined desorption temperature. The desorption temperature is set to a high temperature (for example, 400 to 500 ° C.) corresponding to the boiling point of the organic raw gas. For example, N-methyl-
In the case of 2-pyrrolidone (NMP), since the boiling point is 202 ° C., the adsorbed carbon is heated to a temperature sufficiently higher than the boiling point of the organic raw gas. Then, the organic raw gas adsorbed on the adsorbed carbon is easily desorbed, and the adsorbed carbon is regenerated to become desorbed carbon.
【0021】例えば、本出願人は、本実施形態の排気処
理装置11を用いて吸着炭を500℃の高温にて再生
し、脱着炭の比表面積が新しい活性炭の比表面積の約9
3%となることを実験により得ている。また、本出願人
は、従来の排気処理装置(脱着温度200℃)にて再生
した脱着炭の比表面積が、新しい活性炭の比表面積の約
41%となることを実験により得ている。従って、吸着
炭は、吸着した有機原ガスのほとんどが脱着され、有機
原ガスの除去効率がよい。For example, the present applicant regenerates the adsorbed carbon at a high temperature of 500 ° C. using the exhaust treatment device 11 of the present embodiment, and the specific surface area of the desorbed carbon is about 9% of the specific surface area of the new activated carbon.
It has been obtained by experiment that it is 3%. In addition, the present applicant has obtained through experiments that the specific surface area of the desorbed carbon regenerated by the conventional exhaust treatment device (desorption temperature: 200 ° C.) is about 41% of the specific surface area of the new activated carbon. Accordingly, most of the adsorbed organic raw gas is desorbed from the adsorbed carbon, and the organic raw gas is efficiently removed.
【0022】有機ガスが脱着された脱着炭は、前記吸着
塔12に循環され、再利用される。吸着炭から脱着され
た有機原ガスは、濃縮塔18に送られる。濃縮塔18に
はコンデンサ19が設けられ、その濃縮塔18に送られ
た有機原ガスはコンデンサ19に循環供給される冷却水
によって冷却されて液化し、回収溶剤として図示しない
貯留槽に蓄えられる。The desorbed coal from which the organic gas has been desorbed is circulated to the adsorption tower 12 and reused. The organic raw gas desorbed from the adsorbed carbon is sent to the concentration tower 18. The condenser tower 19 is provided with a condenser 19, and the organic raw gas sent to the condenser tower 18 is cooled and liquefied by cooling water circulated and supplied to the condenser 19, and stored in a storage tank (not shown) as a recovery solvent.
【0023】また、排気処理装置11には、上方搬送部
20が設けられている。上方搬送部20は、吸着塔12
と脱着塔13との間で活性炭を循環させるとともに、搬
送する活性炭を各塔の上方から供給するために設けられ
ている。上方搬送部20は、吸着炭搬送部21と脱着炭
搬送部22とから構成される。両搬送部21,22に
は、モーターファン23にて大気が供給される。吸着炭
搬送部21は、供給される大気によって吸着塔12から
排出された吸着炭を脱着塔13上端へ搬送する。脱着炭
搬送部22は、供給される大気によって脱着塔13から
排出された脱着炭を吸着塔12上部へ搬送する。The exhaust treatment device 11 is provided with an upper transfer section 20. The upper transport section 20 is provided with the adsorption tower 12
Activated carbon is circulated between the column and the desorption tower 13, and the supplied activated carbon is supplied from above each column. The upper transport unit 20 includes an adsorbed coal transport unit 21 and a desorbed coal transport unit 22. Atmosphere is supplied to both transport units 21 and 22 by a motor fan 23. The adsorbed carbon transport unit 21 transports the adsorbed carbon discharged from the adsorption tower 12 by the supplied atmosphere to the upper end of the desorption tower 13. The desorbed coal transport unit 22 transports the desorbed coal discharged from the desorption tower 13 to the upper part of the adsorption tower 12 by the supplied atmosphere.
【0024】次に、脱着塔13の構成を図2及び図3に
従って詳述する。図2に示すように、脱着塔13は、そ
の上端に供給口24が設けられ、前記吸着炭搬送部21
により搬送された吸着炭25は供給口24を介して脱着
塔13内に供給され、脱着部17へ落下する。Next, the structure of the desorption tower 13 will be described in detail with reference to FIGS. As shown in FIG. 2, the desorption tower 13 is provided with a supply port 24 at its upper end, and
Is transported into the desorption tower 13 through the supply port 24 and drops to the desorption section 17.
【0025】供給口24と脱着部17との間には、分散
部としての分散板26が設けられている。分散板26
は、供給される脱着炭を脱着部17に対して水平方向均
等に分散させるために設けられている。分散板26は、
脱着炭が通過可能な所定の内径に形成された貫通孔が複
数形成された金属板(パンチングメタル)よりなり、脱
着塔13中心を頂点とする山形状に形成されている。A dispersing plate 26 as a dispersing portion is provided between the supply port 24 and the attaching / detaching portion 17. Dispersion plate 26
Is provided in order to distribute the supplied desorbed carbon evenly in the horizontal direction with respect to the desorption section 17. The dispersion plate 26
It is made of a metal plate (punched metal) having a plurality of through holes formed with a predetermined inner diameter through which desorbed coal can pass, and is formed in a mountain shape having the center of the desorption tower 13 as an apex.
【0026】脱着塔13内に供給された吸着炭は、分散
板26の頂点付近に集中して落下する。そして、吸着炭
は、山形状の分散板26によって脱着塔13内壁方向に
移動するとともに、その分散板26に形成された貫通孔
を通過して脱着部17上に落下する。その結果、集中し
て供給された吸着炭は、分散板26によって水平方向均
等に分散され、脱着部17に供給される。The adsorbed carbon supplied into the desorption tower 13 falls near the top of the dispersion plate 26 in a concentrated manner. Then, the adsorbed carbon is moved toward the inner wall of the desorption tower 13 by the mountain-shaped dispersion plate 26, and falls onto the desorption section 17 through a through hole formed in the dispersion plate 26. As a result, the adsorbed carbon supplied in a concentrated manner is evenly dispersed in the horizontal direction by the dispersion plate 26 and supplied to the desorption unit 17.
【0027】図3に示すように、脱着部17は、四角形
筒状に形成された対向する側面に渡って複数のヒータ2
7が所定の配列で直挿されている。各ヒータ27の配列
は、分散されて落下する吸着炭が必ずヒータ27に当た
るように設定されている。As shown in FIG. 3, the detachable portion 17 is provided with a plurality of heaters 2 over opposed side faces formed in a rectangular cylindrical shape.
7 are directly inserted in a predetermined arrangement. The arrangement of the heaters 27 is set so that the adsorbed carbon that is dispersed and falls always hits the heaters 27.
【0028】図4に示すように、各ヒータ27は、耐熱
性及び熱伝導性のよい材質を断面略円筒状に形成し、吸
着炭25を加熱するためのニクロム線28が内装されて
いる。また、各ヒータ27の表面には、吸着炭の外形形
状と略同一の凹部29が形成されている。従って、吸着
炭の一部表面が凹部29と接触するため、各ヒータ27
と吸着炭との接触面積が大きくなり、ヒータ27の熱が
効率よく吸着炭に伝えられる。また、吸着炭は、前記分
散板26によって脱着部17に均等に分散され落下する
ので、各吸着炭の温度は、ばらつきがなくほぼ均一とな
る。As shown in FIG. 4, each of the heaters 27 is formed of a material having good heat resistance and heat conductivity in a substantially cylindrical cross section, and includes a nichrome wire 28 for heating the adsorbed carbon 25 therein. In addition, a recess 29 having substantially the same outer shape as that of the adsorbed carbon is formed on the surface of each heater 27. Therefore, since a part of the surface of the adsorbed carbon comes into contact with the concave portion 29, each heater 27
The contact area between the carbon and the adsorbed carbon increases, and the heat of the heater 27 is efficiently transmitted to the adsorbed carbon. Further, since the adsorbed carbon is evenly dispersed by the dispersing plate 26 and falls into the desorption section 17, the temperature of each adsorbed carbon is substantially uniform without variation.
【0029】従って、吸着炭は、脱着塔13内を落下す
る間にヒータ27により直接加熱されるとともに、大き
な接触面積によってヒータ27の熱が容易に吸着炭に伝
達される。その結果、各吸着炭の温度は、高温の脱着温
度(本実施形態では500℃)まで上昇する。Therefore, the adsorbed carbon is directly heated by the heater 27 while falling in the desorption tower 13, and the heat of the heater 27 is easily transmitted to the adsorbed carbon by a large contact area. As a result, the temperature of each adsorbed carbon rises to a high desorption temperature (500 ° C. in the present embodiment).
【0030】すると、吸着炭に吸着された有機原ガス
は、高温によって吸着したほとんどが容易に脱着される
ので、吸着炭は新しい活性炭と同様(再生された吸着炭
の比表面積が新しい活性炭の比表面積の約93%以上)
にまで再生された脱着炭となる。また、各吸着炭は、ほ
ぼ均一な温度に加熱されるので、各吸着炭にばらつきが
なく、均一に再生される。Then, most of the organic raw gas adsorbed on the adsorbed carbon is adsorbed by the high temperature and easily desorbed. Therefore, the adsorbed carbon is similar to the new activated carbon (the specific surface area of the regenerated adsorbed carbon is lower than that of the new activated carbon. (More than about 93% of surface area)
It becomes desorbed charcoal regenerated up to. In addition, since each adsorbed carbon is heated to a substantially uniform temperature, each adsorbed carbon is uniformly reproduced without any variation.
【0031】再生された脱着炭は、脱着部17の下方に
設けられた冷却部30に落下する。冷却部30は、コン
デンサよりなり、脱着部17にて加熱再生された脱着炭
を冷却するために設けられている。即ち、脱着炭は、冷
却部30に供給循環される冷却水により冷却される。そ
して、冷却された脱着炭は、脱着塔13下端に設けられ
た排出口31より排出され、上方搬送部20によって吸
着塔12に再び供給される。The regenerated desorbed coal falls into a cooling unit 30 provided below the desorption unit 17. The cooling unit 30 includes a condenser, and is provided to cool the desorbed coal heated and regenerated in the desorption unit 17. That is, the desorbed coal is cooled by the cooling water supplied and circulated to the cooling unit 30. Then, the cooled desorbed coal is discharged from a discharge port 31 provided at the lower end of the desorption tower 13, and is again supplied to the adsorption tower 12 by the upper transport unit 20.
【0032】従って、本実施形態では、従来の低温で活
性炭を再生する場合に比べて、吸着炭を効率よく再生す
ることができるので、活性炭を長期間に渡って利用する
ことができる。その結果、活性炭を交換する必要が少な
くなり、交換期間が長くなるので、排気処理装置11の
稼働コストを低減することができる。また、活性炭を効
率よく再生することができるので、吸着塔12における
有機原ガスの吸着能力、即ち排気処理装置11の初期性
能を容易に維持することができる。Therefore, in this embodiment, the adsorbed carbon can be efficiently regenerated as compared with the conventional case of regenerating the activated carbon at a low temperature, so that the activated carbon can be used for a long period of time. As a result, the need to replace the activated carbon is reduced, and the replacement period is lengthened, so that the operating cost of the exhaust treatment device 11 can be reduced. In addition, since the activated carbon can be efficiently regenerated, the ability to adsorb the organic raw gas in the adsorption tower 12, that is, the initial performance of the exhaust treatment device 11, can be easily maintained.
【0033】脱着塔13上端に設けられた供給口24に
は、電磁弁32が設けられている。また、脱着塔13下
端に設けられた排出口31には、電磁弁33が設けられ
ている。両電磁弁32,33は、脱着塔13内を密閉す
るために利用される。また、両電磁弁32,33は、脱
着塔13内の温度を一定に保つために設けられている。
即ち、上端の電磁弁32を開路すると、その電磁弁32
を介してヒータ27により加熱された脱着塔13内の空
気が塔外へ排出される。また、下端の電磁弁33を開路
すると、その電磁弁33を介して脱着塔13内に比べて
低い温度の大気が脱着塔13内に供給され、脱着塔13
内の温度が低下する。従って、電磁弁32,33をそれ
ぞれ適宜開閉することにより、脱着塔13内の温度を一
定とすることができる。The supply port 24 provided at the upper end of the desorption tower 13 is provided with a solenoid valve 32. An electromagnetic valve 33 is provided at a discharge port 31 provided at the lower end of the desorption tower 13. The two solenoid valves 32 and 33 are used to seal the inside of the desorption tower 13. The two solenoid valves 32 and 33 are provided to keep the temperature inside the desorption tower 13 constant.
That is, when the electromagnetic valve 32 at the upper end is opened, the electromagnetic valve 32
The air in the desorption tower 13 heated by the heater 27 is discharged to the outside of the tower. When the lower electromagnetic valve 33 is opened, air having a lower temperature than that in the desorption tower 13 is supplied into the desorption tower 13 through the electromagnetic valve 33, and the desorption tower 13 is opened.
Temperature in the interior. Therefore, the temperature in the desorption tower 13 can be kept constant by opening and closing the solenoid valves 32 and 33 as appropriate.
【0034】また、脱着塔13の側壁13aは、内壁3
4と外壁35との二重構造に形成され、外壁35と内壁
34との間には、窒素ガス等の不活性ガスが脱着塔13
下端及び上端に設けられた電磁弁36,37の開閉操作
により加圧供給されている。従って、脱着塔13内の温
度は、二重構造の内壁34、外壁35、及び、供給され
る不活性ガスによって外部へ伝播しにくくなっている。
即ち、二重構造の側壁及び不活性ガスにより脱着塔13
の保温部が構成されている。The side wall 13a of the desorption tower 13 has an inner wall 3
4 and an outer wall 35, and an inert gas such as nitrogen gas is supplied between the outer wall 35 and the inner wall 34.
Pressure is supplied by opening and closing the solenoid valves 36 and 37 provided at the lower end and the upper end. Therefore, the temperature in the desorption tower 13 is not easily transmitted to the outside by the inner wall 34 and the outer wall 35 of the double structure and the supplied inert gas.
That is, the desorption tower 13 is formed by the double side wall and the inert gas.
Is constituted.
【0035】また、不活性ガスは、脱着塔13内の温度
を一定に保つために利用される。即ち、電磁弁36,3
7を閉路のまま保持すると、不活性ガスにより脱着塔1
3内の温度は外部へ伝播し難く、上昇する。一方、電磁
弁36,37を開路して不活性ガスを循環させると、脱
着塔13内の温度は循環する不活性ガスに奪われて低く
なる。これにより、脱着塔13内を所定の温度に保つこ
とができる。The inert gas is used to keep the temperature inside the desorption tower 13 constant. That is, the solenoid valves 36 and 3
7 is kept closed, the desorption tower 1
The temperature inside 3 is hard to propagate outside and rises. On the other hand, when the solenoid valves 36 and 37 are opened to circulate the inert gas, the temperature inside the desorption tower 13 is lowered by the circulating inert gas. Thereby, the inside of the desorption tower 13 can be maintained at a predetermined temperature.
【0036】尚、二重構造の側壁は、いわゆる防爆構造
となっている。即ち、脱着塔13の内壁34が劣化等の
原因により破損しても、二重構造の外壁35によって高
温になったヒータ27、吸着炭等が破損した部分から脱
着塔13外部へ噴出するのを防ぐことができる。The double-structured side wall has a so-called explosion-proof structure. That is, even if the inner wall 34 of the desorption tower 13 is damaged due to deterioration or the like, it is possible to prevent the heater 27, the adsorbed carbon, and the like, which have become hot due to the double-walled outer wall 35, from escaping from the damaged portion to the outside of the desorption tower 13. Can be prevented.
【0037】また、脱着塔13の脱着部17側壁には、
温度計取り付け口38が設けられ、その温度計取り付け
口から図5に示す温度計39(図2において図示略)が
脱着塔13内にて挿入されている。温度計39は、脱着
部17における脱着塔13内の温度を検出するために設
けられている。検出された温度は、例えば前記電磁弁3
2,33,36,37を開閉制御するために用いられ
る。即ち、温度計39により検出した脱着塔13内温度
に基づいて、電磁弁32,33を開閉制御して塔内の高
温の気体を塔外へ排出、温度の低い大気を塔内に供給す
ることにより脱着塔13内の温度を一定に保つようにな
っている。また、塔内温度に基づいて、電磁弁36,3
7を開閉して不活性ガスの供給・停止を制御することに
より、塔内温度を一定に保つようになっている。On the side wall of the desorption section 17 of the desorption tower 13,
A thermometer mounting port 38 is provided, and a thermometer 39 (not shown in FIG. 2) shown in FIG. 5 is inserted into the desorption tower 13 from the thermometer mounting port. The thermometer 39 is provided for detecting the temperature inside the desorption tower 13 in the desorption section 17. The detected temperature is, for example, the electromagnetic valve 3
2, 33, 36, 37 are used for opening and closing control. That is, based on the temperature inside the desorption tower 13 detected by the thermometer 39, the solenoid valves 32 and 33 are controlled to open and close to discharge the high-temperature gas inside the tower to the outside of the tower and supply the low-temperature air to the inside of the tower. This keeps the temperature inside the desorption tower 13 constant. Also, based on the temperature in the tower, the solenoid valves 36, 3
By controlling the supply and stop of the inert gas by opening and closing 7, the temperature in the tower is kept constant.
【0038】更に、前記冷却部30下方の側壁には、温
度計取り付け口40が設けられ、その温度計取り付け口
から図5に示す温度計41(図2において図示略)が脱
着塔13内に挿入されている。温度計41は、脱着炭の
温度を検出するために設けられている。検出された温度
は、図5に示されるポンプ42を駆動制御するために利
用される。即ち、即ち、冷却部30により冷却された脱
着炭の温度が所望の温度よりも高い場合、ポンプ42を
駆動制御して冷却水の供給量を多くし、脱着炭の温度を
低くするようになっている。Further, a thermometer mounting port 40 is provided on a side wall below the cooling section 30, and a thermometer 41 (not shown in FIG. 2) shown in FIG. 5 is inserted into the desorption tower 13 from the thermometer mounting port. Has been inserted. The thermometer 41 is provided to detect the temperature of the desorbed coal. The detected temperature is used to drive and control the pump 42 shown in FIG. That is, when the temperature of the desorbed coal cooled by the cooling unit 30 is higher than a desired temperature, the pump 42 is drive-controlled to increase the supply amount of the cooling water and lower the temperature of the desorbed coal. ing.
【0039】図5は、有機排気処理装置11の電気的構
成の一例を示すブロック図である。有機排気処理装置1
1には、制御装置43が設けられている。制御装置43
には、温度計39,41、ヒータ27、ポンプ42及び
電磁弁32,33,36,37が接続されている。FIG. 5 is a block diagram showing an example of an electrical configuration of the organic exhaust treatment device 11. As shown in FIG. Organic exhaust treatment equipment 1
1, a control device 43 is provided. Control device 43
Are connected to the thermometers 39 and 41, the heater 27, the pump 42, and the solenoid valves 32, 33, 36 and 37.
【0040】また、制御装置43は、ヒータ27を制御
して脱着塔13内に供給される吸着炭を所定の脱着温度
に加熱するとともに、温度計39により検出された脱着
塔13内の温度を入力し、その温度に基づいて電磁弁3
2〜37を開閉制御して脱着塔13内温度を一定に保
つ。また、制御装置43は、温度計41により検出され
た脱着炭の温度を入力し、その温度に基づいてポンプ4
2を制御して冷却水の供給量を制御し、脱着炭の温度を
所定の温度に保つ。The control device 43 controls the heater 27 to heat the adsorbed carbon supplied into the desorption tower 13 to a predetermined desorption temperature, and to control the temperature in the desorption tower 13 detected by the thermometer 39. Input, and based on the temperature, the solenoid valve 3
The temperature in the desorption tower 13 is kept constant by controlling the opening and closing of 2 to 37. Further, the control device 43 inputs the temperature of the desorbed coal detected by the thermometer 41, and based on the temperature, the pump 4
2 is controlled to control the supply amount of the cooling water to keep the temperature of the desorbed coal at a predetermined temperature.
【0041】以上記述したように、本実施形態によれ
ば、以下の効果を奏する。本実施形態では、脱着塔13
の脱着部17にヒータ27を直装し、ヒータ27上に吸
着炭を落下させて吸着炭を直接加熱するようにした。吸
着炭は、高温の脱着温度まで加熱され、吸着炭に吸着さ
れた有機原ガスは、高温によって吸着したほとんどが容
易に脱着され、吸着炭は新しい活性炭と同様にまでほぼ
再生される。その結果、活性炭を長期間に渡って交換す
る必要がないので、排気処理装置11の稼働コストを低
減することができる。また、吸着炭が新しい活性炭と同
様にまでほぼ再生されるので、吸着塔12における有機
原ガスの吸着能力、即ち、排気処理装置11の初期性能
を長期間維持することができる。As described above, the present embodiment has the following advantages. In the present embodiment, the desorption tower 13
The heater 27 is directly mounted on the desorption section 17 of the above, and the adsorbed carbon is dropped on the heater 27 to directly heat the adsorbed carbon. The adsorbed carbon is heated to a high desorption temperature, and most of the organic raw gas adsorbed on the adsorbed carbon is easily adsorbed and desorbed by the high temperature, and the adsorbed carbon is almost regenerated as well as new activated carbon. As a result, it is not necessary to replace the activated carbon for a long period of time, so that the operating cost of the exhaust treatment device 11 can be reduced. In addition, since the adsorbed carbon is almost regenerated to the same extent as new activated carbon, the ability to adsorb the organic raw gas in the adsorption tower 12, that is, the initial performance of the exhaust treatment device 11, can be maintained for a long time.
【0042】また、吸着炭の供給口と脱着部17との間
に分散板26を設け、その分散板26により吸着炭を分
散させて脱着部17に落下させるようにした。従って、
各吸着炭を均一に加熱することができる。Further, a dispersion plate 26 is provided between the supply port of the adsorbed carbon and the desorbing section 17, and the adsorbed carbon is dispersed by the dispersing plate 26 and dropped on the desorbing section 17. Therefore,
Each adsorbed carbon can be heated uniformly.
【0043】また、ヒータ27の表面に吸着炭の外形形
状と略同一の凹部29を形成した。吸着炭は、凹部29
においてヒータ27と接触し、その接触面積が大きくな
る。従って、吸着炭には、ヒータ27の熱が効率よく伝
播するので、吸着炭が高温に効率よく加熱することがで
きる。A concave portion 29 having substantially the same outer shape as that of the adsorbed carbon was formed on the surface of the heater 27. The adsorbed charcoal is
, The contact area increases. Therefore, since the heat of the heater 27 is efficiently transmitted to the adsorbed carbon, the adsorbed carbon can be efficiently heated to a high temperature.
【0044】尚、本発明は前記実施の形態の他、以下の
態様で実施してもよい。上記実施形態では、脱着塔13
の脱着部17上方に山形状の分散板26を設けて落下す
る吸着炭が脱着部17に対して平面的に均等に分散する
ようにして加熱効率を高めるようにしたが、図6に示す
ように、二股の分離部26aを設けて活性炭を分散させ
るようにしてもよい。The present invention may be carried out in the following modes in addition to the above embodiment. In the above embodiment, the desorption tower 13
The heating efficiency is increased by providing a mountain-shaped dispersion plate 26 above the desorption section 17 so that the adsorbed carbon that falls is evenly distributed in a plane with respect to the desorption section 17 as shown in FIG. Alternatively, a bifurcated separating portion 26a may be provided to disperse the activated carbon.
【0045】上記実施形態では、脱着塔13の側面全体
二重構造として内壁34と外壁35との間に窒素ガス等
の不活性ガスを加圧供給して保温部としたが、保温部を
脱着塔13の一部にのみ設けるようにして実施してもよ
い。例えば、図7に示すように、脱着部17側面のみを
不活性ガスにより覆うようにして実施してもよい。ま
た、図8に示すように、脱着部17側面のみを不活性ガ
スにより覆うとともに、供給口24及び排出口31の電
磁弁のうちの少なくとも一方(図8において双方)を省
略した構成で実施してもよい。In the above-described embodiment, the heat retaining portion is formed by pressurizing and supplying an inert gas such as nitrogen gas between the inner wall 34 and the outer wall 35 as a double-sided overall structure of the desorption tower 13. You may implement so that it may be provided only in a part of column 13. For example, as shown in FIG. 7, only the side surface of the detachable portion 17 may be covered with an inert gas. As shown in FIG. 8, only the side surface of the desorption section 17 is covered with the inert gas, and at least one (both in FIG. 8) of the electromagnetic valves of the supply port 24 and the discharge port 31 is omitted. You may.
【0046】上記実施形態では、ヒータ27の外周に活
性炭の大きさに対応した径を有する凹部29を形成した
が、外周を単純な円筒形状等の任意の形状にして実施し
てもよい。In the above embodiment, the recess 29 having a diameter corresponding to the size of the activated carbon is formed on the outer periphery of the heater 27. However, the outer periphery may be formed in any shape such as a simple cylindrical shape.
【0047】上記実施形態では、脱着塔13に吸着炭を
再生する脱着部17と、再生された脱着炭を冷却する冷
却部30とを一体に備えたが、脱着部17と冷却部30
とを別体の構成として実施してもよい。In the above embodiment, the desorption section 17 for regenerating the adsorbed carbon in the desorption tower 13 and the cooling section 30 for cooling the regenerated desorbed coal are integrally provided.
May be implemented as a separate configuration.
【0048】上記実施形態では、吸着剤として活性炭を
用いて有機原ガスを除去したが、モレキュラーシープ,
活性アルミナ,特殊薬剤添加吸着剤等の吸着剤を用いて
実施してもよい。In the above embodiment, the organic raw gas was removed by using activated carbon as an adsorbent.
It may be carried out by using an adsorbent such as activated alumina and a special agent added adsorbent.
【0049】上記実施形態では、有機原ガスを吸着して
排気ガスを浄化する排気処理装置11に具体化したが、
有機原ガス以外の原ガスを吸着して処理する排気処理装
置に具体化して実施してもよい。In the above embodiment, the present invention is embodied in the exhaust treatment apparatus 11 for adsorbing the organic raw gas and purifying the exhaust gas.
The present invention may be embodied in an exhaust treatment device that adsorbs and treats a source gas other than the organic source gas.
【0050】[0050]
【発明の効果】以上詳述したように、請求項1乃至6に
記載の発明によれば、吸着剤を高温にて効率よく再生す
ることが可能な脱着塔を備えた排気処理装置を提供する
ことができる。As described above, according to the first to sixth aspects of the present invention, there is provided an exhaust treatment apparatus provided with a desorption tower capable of efficiently regenerating an adsorbent at a high temperature. be able to.
【図1】 一実施形態の有機排気処理装置の概略構成
図。FIG. 1 is a schematic configuration diagram of an organic exhaust treatment device according to an embodiment.
【図2】 一実施形態の脱着塔の概略構成図。FIG. 2 is a schematic configuration diagram of a desorption tower according to one embodiment.
【図3】 図2のB−B線断面図。FIG. 3 is a sectional view taken along line BB of FIG. 2;
【図4】 一実施形態のヒータの断面図。FIG. 4 is a cross-sectional view of a heater according to one embodiment.
【図5】 有機排気処理装置の電気的構成ブロック図。FIG. 5 is a block diagram showing an electrical configuration of the organic exhaust treatment device.
【図6】 別の脱着塔の概略構成図。FIG. 6 is a schematic configuration diagram of another desorption tower.
【図7】 別の脱着塔の概略構成図。FIG. 7 is a schematic configuration diagram of another desorption tower.
【図8】 別の脱着塔の概略構成図。FIG. 8 is a schematic configuration diagram of another desorption tower.
【図9】 (a) は従来の脱着塔の概略縦断面図、(b) は
概略平断面図。9A is a schematic vertical sectional view of a conventional desorption tower, and FIG. 9B is a schematic plan sectional view.
【符号の説明】 11 排気処理装置 13 脱着塔 17 脱着部 25 吸着剤としての活性炭 26 分散部としての分散板 27 ヒータ[Description of Signs] 11 Exhaust treatment device 13 Desorption tower 17 Desorption unit 25 Activated carbon as adsorbent 26 Dispersion plate as dispersion unit 27 Heater
Claims (6)
内を落下する原ガスを吸着した吸着剤を所定の脱着温度
に加熱して該吸着剤を再生する脱着部を有する脱着塔を
備えた排気処理装置において、 前記脱着部には、塔内を落下する吸着剤を加熱するヒー
タを脱着塔内に直装した排気処理装置。1. A desorption tower having a desorption section for heating an adsorbent, which is supplied from a supply port provided at an upper end thereof and adsorbing raw gas falling in the tower to a predetermined desorption temperature, to regenerate the adsorbent, is provided. In the exhaust treatment device, the heater for heating the adsorbent falling in the tower is directly installed in the desorption tower in the desorption section.
て、前記ヒータの表面に、前記吸着剤の一部表面が接す
る凹部を形成した排気処理装置。2. The exhaust processing apparatus according to claim 1, wherein a concave portion is formed on the surface of the heater so that a partial surface of the adsorbent is in contact with the heater.
おいて、前記供給口とヒータとの間に、落下する吸着剤
を塔内に均等に分散させる分散部を設けた排気処理装
置。3. The exhaust gas treatment apparatus according to claim 1, further comprising a dispersion section between the supply port and the heater for uniformly dispersing the falling adsorbent in the tower.
記載の排気処理装置において、 前記脱着側壁のうち、少なくとも前記脱着部の部分を内
壁と外壁との二重構造とし、内壁と外壁との間に不活性
ガスを供給した排気処理装置。4. The exhaust gas treatment apparatus according to claim 1, wherein at least a portion of the detachable side wall of the detachable side wall has a double structure of an inner wall and an outer wall. An exhaust treatment device that supplies an inert gas between itself and the outer wall.
て、 前記内壁と外壁に供給する不活性ガスの供給量を制御す
る制御手段を備えた排気処理装置。5. The exhaust processing apparatus according to claim 4, further comprising a control unit that controls a supply amount of the inert gas supplied to the inner wall and the outer wall.
記載の排気処理装置において、 前記脱着塔の供給口と、前記再生した吸着剤を排出する
排出口とに前記脱着塔内を密閉する弁を備えた排気処理
装置。6. The exhaust treatment device according to claim 1, wherein a supply port of the desorption tower and a discharge port for discharging the regenerated adsorbent are provided inside the desorption tower. Exhaust treatment device equipped with a sealing valve.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP06412497A JP3265219B2 (en) | 1997-03-18 | 1997-03-18 | Exhaust treatment device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP06412497A JP3265219B2 (en) | 1997-03-18 | 1997-03-18 | Exhaust treatment device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10249142A true JPH10249142A (en) | 1998-09-22 |
JP3265219B2 JP3265219B2 (en) | 2002-03-11 |
Family
ID=13249019
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP06412497A Expired - Lifetime JP3265219B2 (en) | 1997-03-18 | 1997-03-18 | Exhaust treatment device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3265219B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002219327A (en) * | 2001-01-30 | 2002-08-06 | Denso Corp | Dehumidifier |
JP2007185617A (en) * | 2006-01-13 | 2007-07-26 | Takasago Thermal Eng Co Ltd | Adsorption column for purifying gas and method for regenerating adsorbent in adsorption column |
-
1997
- 1997-03-18 JP JP06412497A patent/JP3265219B2/en not_active Expired - Lifetime
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002219327A (en) * | 2001-01-30 | 2002-08-06 | Denso Corp | Dehumidifier |
JP4491973B2 (en) * | 2001-01-30 | 2010-06-30 | 株式会社デンソー | Dehumidifier |
JP2007185617A (en) * | 2006-01-13 | 2007-07-26 | Takasago Thermal Eng Co Ltd | Adsorption column for purifying gas and method for regenerating adsorbent in adsorption column |
JP4754358B2 (en) * | 2006-01-13 | 2011-08-24 | 高砂熱学工業株式会社 | Adsorption tower for gas purification and method for regenerating adsorbent in adsorption tower |
Also Published As
Publication number | Publication date |
---|---|
JP3265219B2 (en) | 2002-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2013059760A (en) | Adsorption unit, adsorption device, and method for regenerating thereof | |
KR101509152B1 (en) | Compressed air dryer for recycling tank cooling by atmosphere and its method | |
JP2001113116A (en) | Method and device for treating waste gas | |
JP2001322801A (en) | Hydrogen storage device | |
TWI526656B (en) | Desiccant monomer, layered temperature control desiccant component, drying device and temperature control method thereof | |
CN112105441B (en) | Carbon dioxide separation and recovery system and method | |
CN112165980B (en) | Carbon dioxide separation and recovery system and method | |
WO2010061920A1 (en) | Regeneration tower for apparatus for dry discharge-gas treatment | |
KR101723507B1 (en) | System for separating chemical material from exhaust gas | |
JP3265219B2 (en) | Exhaust treatment device | |
CN203303956U (en) | Solid adsorbent regeneration device | |
JP2002102693A (en) | Method for regenerating conductive adsorbing agent charged with organic substance | |
JP4548891B2 (en) | Organic solvent recovery method | |
JP2017136560A (en) | Carbon dioxide recovery system and carbon dioxide separation recovery system | |
JP2001137646A (en) | Device and method for adsorption treating waste gas | |
JP3199875U (en) | Dehumidifying monomer, layered temperature control dehumidifying element and drying device | |
JP2008043920A (en) | Organic matter-containing gas treatment facility and its treatment method | |
JP3988762B2 (en) | Organic substance-containing gas treatment equipment and treatment method | |
JP2005125200A (en) | Regeneration method for carbon based adsorbent and exhaust gas treatment device having regeneration function of carbon based adsorbent | |
JPH0139812B2 (en) | ||
KR20200137961A (en) | Dry room for gas replacement | |
JP2008282780A (en) | Gas permutation device and gas permutation method | |
KR20230037470A (en) | Atmospheric moisture purifier | |
JPH07265643A (en) | Device for continuously recovering specified gas | |
JP2021133281A (en) | Volatile organic compound processing apparatus and method for operating the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20011218 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071228 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081228 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091228 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091228 Year of fee payment: 8 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091228 Year of fee payment: 8 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091228 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101228 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111228 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111228 Year of fee payment: 10 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111228 Year of fee payment: 10 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111228 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121228 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121228 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131228 Year of fee payment: 12 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |